1
|
Ruffell SGD, Crosland‐Wood M, Palmer R, Netzband N, Tsang W, Weiss B, Gandy S, Cowley‐Court T, Halman A, McHerron D, Jong A, Kennedy T, White E, Perkins D, Terhune DB, Sarris J. Ayahuasca: A review of historical, pharmacological, and therapeutic aspects. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e146. [PMID: 38868739 PMCID: PMC11114307 DOI: 10.1002/pcn5.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
Ayahuasca is a psychedelic plant brew originating from the Amazon rainforest. It is formed from two basic components, the Banisteriopsis caapi vine and a plant containing the potent psychedelic dimethyltryptamine (DMT), usually Psychotria viridis. Here we review the history of ayahuasca and describe recent work on its pharmacology, phenomenological responses, and clinical applications. There has been a significant increase in interest in ayahuasca since the turn of the millennium. Anecdotal evidence varies significantly, ranging from evangelical accounts to horror stories involving physical and psychological harm. The effects of the brew on personality and mental health outcomes are discussed in this review. Furthermore, phenomenological analyses of the ayahuasca experience are explored. Ayahuasca is a promising psychedelic agent that warrants greater empirical attention regarding its basic neurochemical mechanisms of action and potential therapeutic application.
Collapse
Affiliation(s)
- Simon G. D. Ruffell
- Onaya ScienceIquitosPeru
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Max Crosland‐Wood
- Onaya ScienceIquitosPeru
- Psychology and Psychotherapy departmentCentral and North West London NHS TrustLondonUK
| | - Rob Palmer
- Onaya ScienceIquitosPeru
- School of MedicineUniversity of YaleNew HavenConnecticutUSA
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | | | - WaiFung Tsang
- Onaya ScienceIquitosPeru
- Institute of Psychology, Psychiatry and NeuroscienceSouth London and The Maudsley NHS TrustLondonUK
- Department of Psychology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Brandon Weiss
- Onaya ScienceIquitosPeru
- Division of PsychiatryImperial College LondonLondonUK
| | | | - Tessa Cowley‐Court
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Andreas Halman
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | | | - Angelina Jong
- Institute of Psychology, Psychiatry and NeuroscienceSouth London and The Maudsley NHS TrustLondonUK
- Department of Psychology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | | | | | - Daniel Perkins
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
- Centre for Mental HealthSwinburne UniversityMelbourneAustralia
| | - Devin B. Terhune
- Psychology and Psychotherapy departmentCentral and North West London NHS TrustLondonUK
| | - Jerome Sarris
- Psychae InstituteMelbourneVictoriaAustralia
- NICM Health Research InstituteWestern Sydney UniversitySydneyAustralia
- Florey Institute for Neuroscience and Mental HealthUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
2
|
Syed OA, Tsang B, Gerlai R. The zebrafish for preclinical psilocybin research. Neurosci Biobehav Rev 2023; 153:105381. [PMID: 37689090 DOI: 10.1016/j.neubiorev.2023.105381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
In this review, we discuss the possible utility of zebrafish in research on psilocybin, a psychedelic drug whose recreational use as well as possible clinical application are gaining increasing interest. First, we review behavioral tests with zebrafish, focussing on anxiety and social behavior, which have particular relevance in the context of psilocybin research. Next, we briefly consider methods of genetic manipulations with which psilocybin's phenotypical effects and underlying mechanisms may be investigated in zebrafish. We briefly review the known mechanisms of psilocybin, and also discuss what we know about its safety and toxicity profile. Last, we discuss examples of how psilocybin may be employed for testing treatment efficacy in preclinical research for affective disorders in zebrafish. We conclude that zebrafish has a promising future in preclinical research on psychedelic drugs.
Collapse
Affiliation(s)
- Omer A Syed
- Department of Biology, University of Toronto Mississauga, Canada.
| | - Benjamin Tsang
- Department of Cell & Systems Biology, University of Toronto, Canada.
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
3
|
Daldegan-Bueno D, Simionato NM, Favaro VM, Maia LO. The current state of ayahuasca research in animal models: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110738. [PMID: 36863501 DOI: 10.1016/j.pnpbp.2023.110738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023]
Abstract
RATIONALE The psychedelic brew ayahuasca is increasingly being investigated for its therapeutic potential. Animal models are essential to investigate the pharmacological effects of ayahuasca since they can control important factors influencing it, such as the set and setting. OBJECTIVE Review and summarise data available on ayahuasca research using animal models. METHODS We systematically searched five databases (PubMed, Web of Science, EMBASE, LILACS and PsycInfo) for peer-reviewed studies in English, Portuguese or Spanish published up to July 2022. The search strategy included ayahuasca- and animal model-related terms adapted from the SYRCLE search syntax. RESULTS We identified 32 studies investigating ayahuasca effects on toxicological, behavioural and (neuro)biological parameters in rodents, primates and zebrafish. Toxicological results show that ayahuasca is safe at ceremonial-based doses but toxic at high doses. Behavioural results indicate an antidepressant effect and a potential to reduce the reward effects of ethanol and amphetamines, while the anxiety-related outcomes are yet inconclusive; also, ayahuasca can influence locomotor activity, highlighting the importance of controlling the analysis for locomotion when using tasks depending on it. Neurobiological results show that ayahuasca affects brain structures involved in memory, emotion and learning and that other neuropathways, besides the serotonergic action, are important in modulating its effects. CONCLUSIONS Studies using animal models indicate that ayahuasca is toxicologically safe in ceremonial-comparable doses and indicates a therapeutic potential for depression and substance use disorder while not supporting an anxiolytic effect. Essential gaps in the ayahuasca field can still be sufficed using animal models.
Collapse
Affiliation(s)
- Dimitri Daldegan-Bueno
- Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil; Centre for Applied Research in Mental Health and Addiction, Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | | | - Vanessa Manchim Favaro
- Division of Neuromuscular Diseases, Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Lucas Oliveira Maia
- Interdisciplinary Cooperation for Ayahuasca Research and Outreach (ICARO), School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil; Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil; Interdisciplinary Center for Studies in Palliative Care (CIECP), School of Nursing, Federal University of Alfenas (UNIFAL-MG), Alfenas, Brazil
| |
Collapse
|
4
|
Ayahuasca's therapeutic potential: What we know - and what not. Eur Neuropsychopharmacol 2023; 66:45-61. [PMID: 36368095 DOI: 10.1016/j.euroneuro.2022.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/10/2022]
Abstract
The therapeutic potential of the psychedelic brew ayahuasca has been investigated in preclinical and clinical studies. Currently, the most consistent evidence refers to depression. However, various studies suggest that ayahuasca may comprise therapeutic benefits in other health conditions. This narrative review provides a comprehensive, up-to-date overview of ayahuasca's therapeutic effects in diverse clinical conditions in human (clinical, cross-sectional, observational, and qualitative) and preclinical (animal and in vitro) studies. In addition to summarizing and discussing the most commonly studied conditions, such as depression, anxiety, and substance use disorders (SUD), we also examine less frequently studied psychiatric, neurological, and physical conditions. Moreover, we discuss evidence from epidemiological studies on the impact of regular, long-term ayahuasca use on health and psychosocial outcomes. Overall, evidence for depression and SUD is more consistent, with numerous and diverse studies. However, a growing body of evidence suggests that other conditions equally relevant to public health might be promising targets for ayahuasca's therapeutic effects. This includes preliminary studies indicating potential for grief, eating disorders, posttraumatic stress disorder, personality disorders, Parkinson's and Alzheimer's disease, and severe physical illnesses (e.g., cancer, chronic conditions). Moreover, preliminary evidence in long-term ayahuasca users does not suggest detrimental effects but possible benefits for individual and collective health. In light of the emerging evidence of psychedelic drugs as therapeutic agents, it is essential to further investigate in rigorous designs the therapeutic potential of ayahuasca in conditions other than depression.
Collapse
|
5
|
Tan JK, Nazar FH, Makpol S, Teoh SL. Zebrafish: A Pharmacological Model for Learning and Memory Research. Molecules 2022; 27:7374. [PMID: 36364200 PMCID: PMC9657833 DOI: 10.3390/molecules27217374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/25/2023] Open
Abstract
Learning and memory are essential to organism survival and are conserved across various species, especially vertebrates. Cognitive studies involving learning and memory require using appropriate model organisms to translate relevant findings to humans. Zebrafish are becoming increasingly popular as one of the animal models for neurodegenerative diseases due to their low maintenance cost, prolific nature and amenability to genetic manipulation. More importantly, zebrafish exhibit a repertoire of neurobehaviors comparable to humans. In this review, we discuss the forms of learning and memory abilities in zebrafish and the tests used to evaluate the neurobehaviors in this species. In addition, the pharmacological studies that used zebrafish as models to screen for the effects of neuroprotective and neurotoxic compounds on cognitive performance will be summarized here. Lastly, we discuss the challenges and perspectives in establishing zebrafish as a robust model for cognitive research involving learning and memory. Zebrafish are becoming an indispensable model in learning and memory research for screening neuroprotective agents against cognitive impairment.
Collapse
Affiliation(s)
- Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| | - Faris Hazwan Nazar
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), UKM Medical Center, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Moreira ALP, Luchiari AC. Effects of oxybenzone on zebrafish behavior and cognition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152101. [PMID: 34863770 DOI: 10.1016/j.scitotenv.2021.152101] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The increased ultraviolet (UV) radiation on the Earth's surface increased the need for UV filters products. One of the most used is oxybenzone, which is indiscriminately released in the environment. Oxybenzone's ecotoxicological effects on physiology have been investigated because of the bioaccumulation and action as an endocrine disruptor. However, little is known about its effects on behavior or cognition. In this study, we approach the effects of short-term oxybenzone exposure on locomotion, anxiety-like, social behavior, and short-term memory in zebrafish (Danio rerio). Adult zebrafish were exposed to oxybenzone 10, 100 and 1000 μg L-1 for 15 days and then tested (novel tank, shoal preference, mirror test, and T-maze with novelty). Fish exposed to oxybenzone showed reduced locomotion, decreased anxiety-like behavior, less time near/interacting with the shoal, fewer interactions with the mirror image, and decreased exploration of the novel arm in the T-maze test. These results suggest that oxybenzone affects perception, increases risk-taking, impairs proper aggressive response, and jeopardizes the animals' ability to retain information. These results reinforce the risk posed by products discarded into the aquatic ecosystems, especially those with underestimated toxic potential.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil.
| |
Collapse
|
7
|
de Abreu MS, Costa F, Giacomini ACVV, Demin KA, Petersen EV, Rosemberg DB, Kalueff AV. Exploring CNS effects of American traditional medicines using zebrafish models. Curr Neuropharmacol 2021; 20:550-559. [PMID: 34254921 DOI: 10.2174/1570159x19666210712153329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022] Open
Abstract
Although American traditional medicine (ATM) has been practiced for millennia, its complex multi-target mechanisms of therapeutic action remain poorly understood. Animal models are widely used to elucidate the therapeutic effects of various ATMs, including their modulation of brain and behavior. Complementing rodent models, the zebrafish (Danio rerio) is a promising novel organism in translational neuroscience and neuropharmacology research. Here, we emphasize the growing value of zebrafish for testing neurotropic effects of ATMs and outline future directions of research in this field. We also demonstrate the developing utility of zebrafish as complementary models for probing CNS mechanisms of ATM action and their potential to treat brain disorders.
Collapse
Affiliation(s)
- Murilo S de Abreu
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Fabiano Costa
- Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, Brazil
| | - Ana C V V Giacomini
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | | | - Elena V Petersen
- Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Denis B Rosemberg
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, United States
| | | |
Collapse
|
8
|
Trigueiro NSDS, Canedo A, Braga DLDS, Luchiari AC, Rocha TL. Zebrafish as an Emerging Model System in the Global South: Two Decades of Research in Brazil. Zebrafish 2020; 17:412-425. [PMID: 33090089 DOI: 10.1089/zeb.2020.1930] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The zebrafish (Danio rerio) is an emerging model system in several research areas worldwide, especially in the Global South. In this context, the present study revised the historical use and trends of zebrafish as experimental models in Brazil. The data concerning the bibliometric parameters, research areas, geographic distribution, experimental design, zebrafish strain, and reporter lines, as well as recent advances were revised. In addition, the comparative trends of Brazilian and global research were discussed. Revised data showed the rapid growth of Brazilian scientific production using zebrafish as a model, especially in three main research areas (Neuroscience &and Behavior, Pharmacology and Toxicology, and Environment/Ecology). Studies were conducted in 19 Brazilian states (70.37%), confirming the wide geographic distribution and importance of zebrafish research. Results indicated that research related to toxicological approaches are widespread in Global South countries such as Brazil. Studies were performed mainly using in vivo tests (89.58%) with adult fish (59.75%) and embryos (30.67%). Moreover, significant research gaps and recommendations for future research are presented. The present study shows that the zebrafish is a suitable vertebrate model system in the Global South.
Collapse
Affiliation(s)
- Nicholas Silvestre de Souza Trigueiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Aryelle Canedo
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Daniel Lôbo de Siqueira Braga
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Department of Biosciences and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
9
|
Müller TE, Fontana BD, Bertoncello KT, Franscescon F, Mezzomo NJ, Canzian J, Stefanello FV, Parker MO, Gerlai R, Rosemberg DB. Understanding the neurobiological effects of drug abuse: Lessons from zebrafish models. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109873. [PMID: 31981718 DOI: 10.1016/j.pnpbp.2020.109873] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Drug abuse and brain disorders related to drug comsumption are public health problems with harmful individual and social consequences. The identification of therapeutic targets and precise pharmacological treatments to these neuropsychiatric conditions associated with drug abuse are urgently needed. Understanding the link between neurobiological mechanisms and behavior is a key aspect of elucidating drug abuse-related targets. Due to various molecular, biochemical, pharmacological, and physiological features, the zebrafish (Danio rerio) has been considered a suitable vertebrate for modeling complex processes involved in drug abuse responses. In this review, we discuss how the zebrafish has been successfully used for modeling neurobehavioral phenotypes related to drug abuse and review the effects of opioids, cannabinoids, alcohol, nicotine, and psychedelic drugs on the central nervous system (CNS). Moreover, we summarize recent advances in zebrafish-based studies and outline potential advantages and limitations of the existing zebrafish models to explore the neurochemical bases of drug abuse and addiction. Finally, we discuss how the use of zebrafish models may present fruitful approaches to provide valuable clinically translatable data.
Collapse
Affiliation(s)
- Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Kanandra T Bertoncello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Nathana J Mezzomo
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Pharmacology, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Flavia V Stefanello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, Portsmouth PO1 2DT, UK
| | - Robert Gerlai
- Department of Psychology, University of Toronto, Mississauga, Canada; Department of Cell and Systems Biology, University of Toronto, Canada
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
10
|
Abbott KL, Flannery PC, Gill KS, Boothe DM, Dhanasekaran M, Mani S, Pondugula SR. Adverse pharmacokinetic interactions between illicit substances and clinical drugs. Drug Metab Rev 2019; 52:44-65. [PMID: 31826670 DOI: 10.1080/03602532.2019.1697283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adverse pharmacokinetic interactions between illicit substances and clinical drugs are of a significant health concern. Illicit substances are taken by healthy individuals as well as by patients with medical conditions such as mental illnesses, acquired immunodeficiency syndrome, diabetes mellitus and cancer. Many individuals that use illicit substances simultaneously take clinical drugs meant for targeted treatment. This concomitant usage can lead to life-threatening pharmacokinetic interactions between illicit substances and clinical drugs. Optimal levels and activity of drug-metabolizing enzymes and drug-transporters are crucial for metabolism and disposition of illicit substances as well as clinical drugs. However, both illicit substances and clinical drugs can induce changes in the expression and/or activity of drug-metabolizing enzymes and drug-transporters. Consequently, with concomitant usage, illicit substances can adversely influence the therapeutic outcome of coadministered clinical drugs. Likewise, clinical drugs can adversely affect the response of coadministered illicit substances. While the interactions between illicit substances and clinical drugs pose a tremendous health and financial burden, they lack a similar level of attention as drug-drug, food-drug, supplement-drug, herb-drug, disease-drug, or other substance-drug interactions such as alcohol-drug and tobacco-drug interactions. This review highlights the clinical pharmacokinetic interactions between clinical drugs and commonly used illicit substances such as cannabis, cocaine and 3, 4-Methylenedioxymethamphetamine (MDMA). Rigorous efforts are warranted to further understand the underlying mechanisms responsible for these clinical pharmacokinetic interactions. It is also critical to extend the awareness of the life-threatening adverse interactions to both health care professionals and patients.
Collapse
Affiliation(s)
- Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Patrick C Flannery
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO, USA
| | - Kristina S Gill
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Dawn M Boothe
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL, USA
| | - Sridhar Mani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| |
Collapse
|