1
|
Landry O, François A, Oye Mintsa Mi-Mba MF, Traversy MT, Tremblay C, Emond V, Bennett DA, Gylys KH, Buxbaum JD, Calon F. Postsynaptic Protein Shank3a Deficiency Synergizes with Alzheimer's Disease Neuropathology to Impair Cognitive Performance in the 3xTg-AD Murine Model. J Neurosci 2023; 43:4941-4954. [PMID: 37253603 PMCID: PMC10312061 DOI: 10.1523/jneurosci.1945-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Synaptic loss is intrinsically linked to Alzheimer's disease (AD) neuropathology and symptoms, but its direct impact on clinical symptoms remains elusive. The postsynaptic protein Shank3 (SH3 and multiple ankyrin repeat domains) is of particular interest, as the loss of a single allele of the SHANK3 gene is sufficient to cause profound cognitive symptoms in children. We thus sought to determine whether a SHANK3 deficiency could contribute to the emergence or worsening of AD symptoms and neuropathology. We first found a 30%-50% postmortem loss of SHANK3a associated with cognitive decline in the parietal cortex of individuals with AD. To further probe the role of SHANK3 in AD, we crossed male and female 3xTg-AD mice modelling Aβ and tau pathologies with Shank3a-deficient mice (Shank3Δex4-9). We observed synergistic deleterious effects of Shank3a deficiency and AD neuropathology on object recognition memory at 9, 12, and 18 months of age and on anxious behavior at 9 and 12 months of age in hemizygous Shank3Δex4-9-3xTg-AD mice. In addition to the expected 50% loss of Shank3a, levels of other synaptic proteins, such as PSD-95, drebrin, and homer1, remained unchanged in the parietotemporal cortex of hemizygous Shank3Δex4-9 animals. However, Shank3a deficiency increased the levels of soluble Aβ42 and human tau at 18 months of age compared with 3xTg-AD mice with normal Shank3 expression. The results of this study in human brain samples and in transgenic mice are consistent with the hypothesis that Shank3 deficiency makes a key contribution to cognitive impairment in AD.SIGNIFICANCE STATEMENT Although the loss of several synaptic proteins has been described in Alzheimer's disease (AD), it remains unclear whether their reduction contributes to clinical symptoms. The results of this study in human samples show lower levels of SHANK3a in AD brain, correlating with cognitive decline. Data gathered in a novel transgenic mouse suggest that Shank3a deficiency synergizes with AD neuropathology to induce cognitive impairment, consistent with a causal role in AD. Therefore, treatment aiming at preserving Shank3 in the aging brain may be beneficial to prevent AD.
Collapse
Affiliation(s)
- Olivier Landry
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Arnaud François
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Méryl-Farelle Oye Mintsa Mi-Mba
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Marie-Therese Traversy
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - Vincent Emond
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois 60612
| | - Karen H Gylys
- School of Nursing, University of California, Los Angeles, California 90095
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York 10029, New York
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Quebec G1V 0A6, Quebec, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Quebec G1V 4G2, Quebec, Canada
| |
Collapse
|
2
|
Grossman A, Avital A. Emotional and sensory dysregulation as a possible missing link in attention deficit hyperactivity disorder: A review. Front Behav Neurosci 2023; 17:1118937. [PMID: 36935890 PMCID: PMC10017514 DOI: 10.3389/fnbeh.2023.1118937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a common developmental disorder affecting 5-7% of adults and children. We surveyed the literature to examine ADHD through three pillars: developmental characteristics, symptomatology, and treatment strategies. Firstly, in terms of developmental characterstics, early life stress may increase the risk of developing ADHD symptoms according to animal models' research. Secondly, the current core symptoms of ADHD are comprised of inattention, hyperactivity, and impulsivity. However, the up-to-date literature indicates individuals with ADHD experience emotional and sensory dysregulation as well, which early-life stress may also increase the risk of. Finally, we discuss the therapeutic benefits of methylphenidate on both the current core ADHD symptoms and the sensory and emotional dysregulation found in those with ADHD. In summation, we surveyed the recent literature to analyze (i) the potential role of early-life stress in ADHD development, (ii) the involvement of emotional and sensory dysregulation in ADHD symptomatology and finally, (iii) the therapeutic intervention with methylphenidate, aiming to reduce the potential effect of early life stress in ADHD, and mainly emotional and sensory dysregulation. The apparent but currently less recognized additional symptoms of emotional and sensory dysregulation in ADHD call for further investigation of these possible causes and thus increasing treatments efficacy in individuals with ADHD.
Collapse
|
3
|
Gallman K, Fortune E, Rivera D, Soares D. Differences in behavior between surface and cave Astyanax mexicanus may be mediated by changes in catecholamine signaling. J Comp Neurol 2020; 528:2639-2653. [PMID: 32291742 DOI: 10.1002/cne.24923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 11/07/2022]
Abstract
Astyanax mexicanus is a teleost fish that is in the process of allopatric speciation. Ancestral Astyanax are found in surface rivers and derived blind forms are found in cave systems. Adaptation to life in nutrient poor caves without predation includes the evolution of enhanced food seeking behaviors and loss of defensive responses. These behavioral adaptations may be mediated by changes in catecholaminergic control systems in the brain. We examined the distribution of tyrosine hydroxylase, a conserved precursor for the synthesis of the catecholamines dopamine and noradrenaline, in the brains of surface and cave Astyanax using immunohistochemistry. We found differences in tyrosine hydroxylase staining in regions that are associated with nonvisual sensory perception, motor control, endocrine release, and attention. These differences included significant increases in the diameters of tyrosine hydroxylase immunoreactive soma in cave Astyanax in the olfactory bulb, basal telencephalon, preoptic nuclei, ventral thalamus, posterior tuberculum, and locus coeruleus. These increases in modulation by dopamine and noradrenaline likely indicate changes in behavioral control that underlie adaptations to the cave environment.
Collapse
Affiliation(s)
- Kathryn Gallman
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| | - Eric Fortune
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| | - Daihana Rivera
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| | - Daphne Soares
- Biological Sciences, New Jersey Institute of Technology, New Jersey, USA
| |
Collapse
|
4
|
Hendrickson RC, Thomas RG, Schork NJ, Raskind MA. Optimizing Aggregated N-Of-1 Trial Designs for Predictive Biomarker Validation: Statistical Methods and Theoretical Findings. Front Digit Health 2020; 2:13. [PMID: 34713026 PMCID: PMC8521797 DOI: 10.3389/fdgth.2020.00013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Significance: Parallel-group randomized controlled trials (PG-RCTs) are the gold standard for detecting differences in mean improvement across treatment conditions. However, PG-RCTs provide limited information about individuals, making them poorly optimized for quantifying the relationship of a biomarker measured at baseline with treatment response. In N-of-1 trials, an individual subject moves between treatment conditions to determine their specific response to each treatment. Aggregated N-of-1 trials analyze a cohort of such participants, and can be designed to optimize both statistical power and clinical or logistical constraints, such as allowing all participants to begin with an open-label stabilization phase to facilitate the enrollment of more acutely symptomatic participants. Here, we describe a set of statistical simulation studies comparing the power of four different trial designs to detect a relationship between a predictive biomarker measured at baseline and subjects' specific response to the PTSD pharmacotherapeutic agent prazosin. Methods: Data was simulated from 4 trial designs: (1) open-label; (2) open-label + blinded discontinuation; (3) traditional crossover; and (4) open label + blinded discontinuation + brief crossover (the N-of-1 design). Designs were matched in length and assessments. The primary outcome, analyzed with a linear mixed effects model, was whether a statistically significant association between biomarker value and response to prazosin was detected with 5% Type I error. Simulations were repeated 1,000 times to determine power and bias, with varied parameters. Results: Trial designs 2 & 4 had substantially higher power with fewer subjects than open label design. Trial design 4 also had higher power than trial design 2. Trial design 4 had slightly lower power than the traditional crossover design, although power declined much more rapidly as carryover was introduced. Conclusions: These results suggest that an aggregated N-of-1 trial design beginning with an open label titration phase may provide superior power over open label or open label and blinded discontinuation designs, and similar power to a traditional crossover design, in detecting an association between a predictive biomarker and the clinical response to the PTSD pharmacotherapeutic prazosin. This is achieved while allowing all participants to spend the first 8 weeks of the trial on open-label active treatment.
Collapse
Affiliation(s)
- Rebecca C Hendrickson
- VISN 20 Northwest Network Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - Ronald G Thomas
- Department of Biostatistics, University of California, San Diego, San Diego, CA, United States
| | - Nicholas J Schork
- Quantitative Medicine and Systems Biology, The Translational Genomics Research Institute (TGen), Phoenix, AZ, United States.,The Joint City of Hope/TGen IMPACT Center (NJS), City of Hope National Medical Center, Duarte, CA, United States
| | - Murray A Raskind
- VISN 20 Northwest Network Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
5
|
Alexander KS, Nalloor R, Bunting KM, Vazdarjanova A. Investigating Individual Pre-trauma Susceptibility to a PTSD-Like Phenotype in Animals. Front Syst Neurosci 2020; 13:85. [PMID: 31992972 PMCID: PMC6971052 DOI: 10.3389/fnsys.2019.00085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a complex condition that develops after experiencing a severe emotional trauma, with or without physical trauma. There is no known cure and evidence-based treatments, which are effective in reducing symptoms, have low retention rates. It is therefore important, in addition to seeking new therapeutics, to identify ways to reduce the likelihood of developing PTSD. The fact that some, but not all, individuals exposed to the same traumatic event develop PTSD suggests that there is individual susceptibility. Investigating susceptibility and underlying factors will be better guided if there is a coherent framework for such investigations. In this review, we propose that susceptibility is a dynamic state that is comprised of susceptibility factors (before trauma) and sequalae factors (during or after trauma, but before PTSD diagnosis). We define key features of susceptibility and sequalae factors as: (1) they are detectable before trauma (susceptibility factors) or during/shortly after trauma (sequalae factors), (2) they can be manipulated, and (3) manipulation of these factors alters the likelihood of developing PTSD, thus affecting resilience. In this review we stress the importance of investigating susceptibility to PTSD with appropriate animal models, because prospective human studies are expensive and manipulation of susceptibility and sequalae factors for study purposes may not always be feasible. This review also provides a brief overview of a subset of animal models that study PTSD-related behaviors and related alterations in endocrine and brain systems that focus on individual differences, peri- and post-trauma. Attention is drawn to the RISP model (Revealing Individual Susceptibility to a PTSD-like Phenotype) which assesses susceptibility before trauma. Using the RISP model and expression of plasticity-associated immediate early genes, Arc and Homer1a, we have identified impaired hippocampal function as a potential susceptibility factor. We further discuss other putative susceptibility factors and approaches to mitigate them. We assert that this knowledge will guide successful strategies for interventions before, during or shortly after trauma that can decrease the probability of developing PTSD.
Collapse
Affiliation(s)
- Khadijah S Alexander
- VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Rebecca Nalloor
- VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Kristopher M Bunting
- VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| | - Almira Vazdarjanova
- VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, United States
| |
Collapse
|