1
|
Steiger A, Farfan J, Fisher N, Heller HC, Fernandez FX, Ruby NF. Reversible Suppression of Fear Memory Recall by Transient Circadian Arrhythmia. Front Integr Neurosci 2022; 16:900620. [PMID: 35694186 PMCID: PMC9184752 DOI: 10.3389/fnint.2022.900620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
We tested the hypothesis that a temporary period of circadian arrhythmia would transiently impair recall of an aversive memory in Siberian hamsters (Phodopus sungorus). Unlike mice or rats, circadian arrhythmia is easily induced in this species by a one-time manipulation of their ambient lighting [i.e., the disruptive phase shift (DPS) protocol]. Hamsters were conditioned to associate footshocks with a shock chamber (context) and with a predictive auditory tone (cue), and then exposed to the DPS protocol. Following DPS, animals either became arrhythmic (ARR), reentrained to the light-dark cycle (ENT), or became arrhythmic for < 14 days before their circadian locomotor rhythms spontaneously recovered and reentrained (ARR-ENT). Tests for contextual memory showed that freezing was decreased 9–10 days post-DPS when both ARR and ARR-ENT groups were arrhythmic. Once ARR-ENT animals reentrained (day 41), however, freezing was elevated back to Pre-DPS levels and did not differ from those observed in ENT hamsters. ENT animals maintained high levels of freezing at both time points, whereas, freezing remained low in ARR hamsters. In contrast to contextual responses, cued responses were unaffected by circadian arrhythmia; all three groups exhibited elevated levels of freezing in response to the tones. The differential impact of circadian arrhythmia on contextual versus cued associative memory suggests that arrhythmia preferentially impacts memory processes that depend on the hippocampus.
Collapse
Affiliation(s)
- Athreya Steiger
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Julia Farfan
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Nathan Fisher
- Department of Biology, Stanford University, Stanford, CA, United States
| | - H. Craig Heller
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona College of Science, Tucson, AZ, United States
| | - Norman F. Ruby
- Department of Biology, Stanford University, Stanford, CA, United States
- *Correspondence: Norman F. Ruby,
| |
Collapse
|
2
|
Medeiros KAAL, Almeida-Souza TH, Silva RS, Santos HF, Santos EV, Gois AM, Leal PC, Santos JR. Involvement of nitric oxide in the neurobiology of fear-like behavior. Nitric Oxide 2022; 124:24-31. [PMID: 35533947 DOI: 10.1016/j.niox.2022.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/06/2022] [Accepted: 04/26/2022] [Indexed: 12/20/2022]
Abstract
Fear is an emotional reaction that arises in dangerous situations, inducing the adaptation to an existing condition. This behavior was conserved in all vertebrates throughout evolution and is observed in mammals, birds, fish, amphibians, and reptiles. The neurocircuitry of fear involves areas of the limbic system, cortical regions, midbrain, and brainstem. These areas communicate with each other so that there is an expression of fear and memory formation to deal with the same situation at another time. The effect of nitric oxide (NO) on fear modulation has been explored. NO is a gaseous compound that easily diffuses through the cell membrane and is produced through the oxidation reaction of l-Arginine to l-citrulline catalyzed by nitric oxide synthase (NOS). Activating the intracellular NO receptor (soluble guanylyl cyclase enzyme - sGC) triggers an enzymatic cascade that can culminate in plastic events in the neuron. NOS inhibitors induce anxiolytic-like responses in fear modulation, whereas NO donors promote fear- and anxiety-like behaviors. This review describes the neurobiology of fear in mammals and non-mammals, how NO is produced in the central nervous system, and how NO acts in fear-like behavior.
Collapse
Affiliation(s)
- Katty A A L Medeiros
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Thiago H Almeida-Souza
- Laboratory of Neurophysiology, Department of Physiology, Federal University of Sergipe, São Cristovão, SE, Brazil
| | - Rodolfo S Silva
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Heitor F Santos
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Eliziane V Santos
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Auderlan M Gois
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil
| | - Pollyana C Leal
- Graduate Program of Dentistry, Federal University of Sergipe, Aracaju, SE, Brazil
| | - José R Santos
- Laboratory of Behavioral and Evolutionary Neurobiology, Department of Biosciences, Federal University of Sergipe, Itabaiana, SE, Brazil.
| |
Collapse
|
3
|
Moulin TC, Covill LE, Itskov PM, Williams MJ, Schiöth HB. Rodent and fly models in behavioral neuroscience: An evaluation of methodological advances, comparative research, and future perspectives. Neurosci Biobehav Rev 2020; 120:1-12. [PMID: 33242563 DOI: 10.1016/j.neubiorev.2020.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/25/2020] [Accepted: 11/12/2020] [Indexed: 01/31/2023]
Abstract
The assessment of behavioral outcomes is a central component of neuroscientific research, which has required continuous technological innovations to produce more detailed and reliable findings. In this article, we provide an in-depth review on the progress and future implications for three model organisms (mouse, rat, and Drosophila) essential to our current understanding of behavior. By compiling a comprehensive catalog of popular assays, we are able to compare the diversity of tasks and usage of these animal models in behavioral research. This compilation also allows for the evaluation of existing state-of-the-art methods and experimental applications, including optogenetics, machine learning, and high-throughput behavioral assays. We go on to discuss novel apparatuses and inter-species analyses for centrophobism, feeding behavior, aggression and mating paradigms, with the goal of providing a unique view on comparative behavioral research. The challenges and recent advances are evaluated in terms of their translational value, ethical procedures, and trustworthiness for behavioral research.
Collapse
Affiliation(s)
- Thiago C Moulin
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Laura E Covill
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pavel M Itskov
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Department of Pharmacology, Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia; Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Michael J Williams
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
4
|
Statham P, Hannuna S, Jones S, Campbell N, Robert Colborne G, Browne WJ, Paul ES, Mendl M. Quantifying defence cascade responses as indicators of pig affect and welfare using computer vision methods. Sci Rep 2020; 10:8933. [PMID: 32488058 PMCID: PMC7265448 DOI: 10.1038/s41598-020-65954-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/07/2020] [Indexed: 11/15/2022] Open
Abstract
Affective states are key determinants of animal welfare. Assessing such states under field conditions is thus an important goal in animal welfare science. The rapid Defence Cascade (DC) response (startle, freeze) to sudden unexpected stimuli is a potential indicator of animal affect; humans and rodents in negative affective states often show potentiated startle magnitude and freeze duration. To be a practical field welfare indicator, quick and easy measurement is necessary. Here we evaluate whether DC responses can be quantified in pigs using computer vision. 280 video clips of induced DC responses made by 12 pigs were analysed by eye to provide 'ground truth' measures of startle magnitude and freeze duration which were also estimated by (i) sparse feature tracking computer vision image analysis of 200 Hz video, (ii) load platform, (iii) Kinect depth camera, and (iv) Kinematic data. Image analysis data strongly predicted ground truth measures and were strongly positively correlated with these and all other estimates of DC responses. Characteristics of the DC-inducing stimulus, pig orientation relative to it, and 'relaxed-tense' pig behaviour prior to it moderated DC responses. Computer vision image analysis thus offers a practical approach to measuring pig DC responses, and potentially pig affect and welfare, under field conditions.
Collapse
Affiliation(s)
- Poppy Statham
- Animal Welfare and Behaviour Group, Bristol Veterinary School, University of Bristol, Langford House, Langford, BS40 5DU, UK
| | - Sion Hannuna
- Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK
| | - Samantha Jones
- Animal Welfare and Behaviour Group, Bristol Veterinary School, University of Bristol, Langford House, Langford, BS40 5DU, UK
| | - Neill Campbell
- Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK
| | - G Robert Colborne
- School of Veterinary Science, Massey University, Palmerston North, 4410, New Zealand
| | - William J Browne
- School of Education and Centre for Multilevel Modelling, University of Bristol, 35 Berkeley Square, Bristol, BS8 1JA, UK
| | - Elizabeth S Paul
- Animal Welfare and Behaviour Group, Bristol Veterinary School, University of Bristol, Langford House, Langford, BS40 5DU, UK
| | - Michael Mendl
- Animal Welfare and Behaviour Group, Bristol Veterinary School, University of Bristol, Langford House, Langford, BS40 5DU, UK.
| |
Collapse
|
5
|
Bergstrom HC. Assaying Fear Memory Discrimination and Generalization: Methods and Concepts. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 91:e89. [PMID: 31995285 PMCID: PMC7000165 DOI: 10.1002/cpns.89] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Generalization describes the transfer of conditioned responding to stimuli that perceptually differ from the original conditioned stimulus. One arena in which discriminant and generalized responding is of particular relevance is when stimuli signal the potential for harm. Aversive (fear) conditioning is a leading behavioral model for studying associative learning and memory processes related to threatening stimuli. This article describes a step-by-step protocol for studying discrimination and generalization using cued fear conditioning in rodents. Alternate conditioning paradigms, including context generalization, differential generalization, discrimination training, and safety learning, are also described. The protocol contains instructions for constructing a cued fear memory generalization gradient and methods for isolating discrete cued-from-context cued conditioned responses (i.e., "the baseline issue"). The preclinical study of generalization is highly pertinent in the context of fear learning and memory because a lack of fear discrimination (overgeneralization) likely contributes to the etiology of anxiety-related disorders and post-traumatic stress disorder. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Tone cued fear generalization gradient Basic Protocol 2: Quantification of freezing Support Protocol: Alternate conditioning paradigms.
Collapse
Affiliation(s)
- Hadley C Bergstrom
- Vassar College, Department of Psychological Science, Program in Neuroscience and Behavior, Poughkeepsie, New York
| |
Collapse
|