1
|
Cheng J, Wang B, Hu H, Lin X, Liu Y, Lin J, Zhang J, Niu S, Yan J. Regulation of histone acetylation by garcinol blocks the reconsolidation of heroin-associated memory. Biomed Pharmacother 2024; 173:116414. [PMID: 38460374 DOI: 10.1016/j.biopha.2024.116414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Drug-associated long-term memories underlie substance use disorders, including heroin use disorder (HUD), which are difficult to eliminate through existing therapies. Addictive memories may become unstable when reexposed to drug-related cues and need to be stabilized again through protein resynthesis. Studies have shown the involvement of histone acetylation in the formation and reconsolidation of long-term drug-associated memory. However, it remains unknown whether and how histone acetyltransferases (HAT), the essential regulators of histone acetylation, contribute to the reconsolidation of heroin-associated memories. Herein, we investigated the function of HAT in the reconsolidation concerning heroin-conditioned memory by using a rat self-administration model. Systemic administration of the HAT inhibitor garcinol inhibited cue and heroin-priming induced reinstatement of heroin seeking, indicating the treatment potential of garcinol for relapse prevention.
Collapse
Affiliation(s)
- Junzhe Cheng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Binbin Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Hongkun Hu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xinzhu Lin
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yuhang Liu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi 830001, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi 830001, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi 830001, China.
| |
Collapse
|
2
|
Milton AL. Drug memory reconsolidation: from molecular mechanisms to the clinical context. Transl Psychiatry 2023; 13:370. [PMID: 38040677 PMCID: PMC10692359 DOI: 10.1038/s41398-023-02666-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
Since its rediscovery at the beginning of the 21st Century, memory reconsolidation has been proposed to be a therapeutic target for reducing the impact of emotional memories that can go awry in mental health disorders such as drug addiction (substance use disorder, SUD). Addiction can be conceptualised as a disorder of learning and memory, in which both pavlovian and instrumental learning systems become hijacked into supporting drug-seeking and drug-taking behaviours. The past two decades of research have characterised the details of the molecular pathways supporting the reconsolidation of pavlovian cue-drug memories, with more recent work indicating that the reconsolidation of instrumental drug-seeking memories also relies upon similar mechanisms. This narrative review considers what is known about the mechanisms underlying the reconsolidation of pavlovian and instrumental memories associated with drug use, how these approaches have translated to experimental medicine studies, and the challenges and opportunities for the clinical use of reconsolidation-based therapies.
Collapse
Affiliation(s)
- Amy L Milton
- Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Huang S, Shi C, Liu F, Si Y, Shen D, Yang L, Gao Y, Liao Y. Activation of Epac in the BLA disrupts reconsolidation and attenuates heroin-seeking behaviour. Addict Biol 2023; 28:e13330. [PMID: 37753572 DOI: 10.1111/adb.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 09/28/2023]
Abstract
The susceptibility to drug cravings evoked by stimuli poses a formidable hurdle in the treatment of addiction and the prevention of relapse. Pharmacological interventions targeting drug-associated memories hold promise for curbing relapse by impeding the process of memory reconsolidation, predominantly governed by cAMP signalling. Exchange Protein Activated by cAMP (Epac) serves as a distinctive mediator of cAMP signalling, which has been implicated in reinforcing the effects of cocaine and facilitating the acquisition. Nonetheless, the role of Epac in heroin-related memory and the subsequent seeking behaviour remains enigmatic. In this study, we explored the impact of Epac activation on the reconsolidation process of drug-related memories associated with heroin self-administration. Over the course of 10 consecutive days, rats underwent training, wherein they acquired the behaviour of nose poking to obtain heroin accompanied by a tone + light cue. This nose-poking behaviour was subsequently extinguished when heroin infusion and cue presentation were discontinued. Subsequently, we administered 8-pCPT-cAMP (8-CPT), an Epac-specific activator, into the basolateral amygdala at various time points, either in the presence or absence of a conditioned stimulus. Our findings demonstrate that administering 8-CPT immediately after memory retrieval effectively reduces cue- and heroin-induced reinstatement, with the observed effects persisting significantly for a minimum of 28 days. However, infusion of 8-CPT for a duration of 6 h following the memory retrieval trial, or without it altogether, had no discernible impact. Thus, these findings strongly suggest that Epac activation can disrupt the reconsolidation of heroin-associated memory, thereby diminishing the reinstatement of heroin-seeking behaviour.
Collapse
Affiliation(s)
- Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Cuijie Shi
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fanglin Liu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yue Si
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Dan Shen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Xinxiang Medical University, Xinxiang, Henan, China
| | - Liping Yang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
- Clinical and Translational Sciences Lab, The Douglas Research Centre, McGill University, Montreal, Canada
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
C.A. G, G.B. G, H.L. H, D. P, T. S, S.L. D, K. B, W.P. K, C.W. H, T.L. K. Disentangling the effects of Corticotrophin Releasing Factor and GABA release from the ventral bed nucleus of the stria terminalis on ethanol self-administration in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.02.530838. [PMID: 37205547 PMCID: PMC10187230 DOI: 10.1101/2023.03.02.530838] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Excessive alcohol use causes a great deal of harm and negative health outcomes. Corticotrophin releasing factor (CRF), a stress-related neuropeptide, has been implicated in binge ethanol intake and ethanol dependence. CRF containing neurons in the bed nucleus of the stria terminalis (BNSTCRF) can control ethanol consumption. These BNSTCRF neurons also release GABA, raising the question, is it CRF or GABA release or both that is controlling alcohol consumption. Here, we used viral vectors to separate the effects of CRF and GABA release from BNSTCRF neurons on the escalation of ethanol intake in an operant self-administration paradigm in male and female mice. We found that CRF deletion in BNST neurons reduces ethanol intake in both sexes, with a stronger effect in males. For sucrose self-administration there was no effect of CRF deletion. Suppression of GABA release, via knockdown of vGAT, from BNSTCRF produced a transient increase in ethanol operant self-administration following in male mice, and reduced in motivation to work for sucrose on a progressive ratio schedule of reinforcement in a sex-dependent manner. Together, these results highlight how different signaling molecules from the same populations of neurons can bidirectionally control behavior. Moreover, they suggest that BNST CRF release is important for high intensity ethanol drinking that precedes dependence, whereas GABA release from these neurons may play a role in regulating motivation.
Collapse
|
5
|
Hao JR, Hu QM, Yang X, Wei P, Wang HY, Sun N, Gao C. Isoflurane impairs GluN2B-containing NMDA receptors trafficking and cognition via decreasing histone acetylation and EphB2 expression in aged hippocampal neurons. Basic Clin Pharmacol Toxicol 2023; 132:180-196. [PMID: 36321664 DOI: 10.1111/bcpt.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/25/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022]
Abstract
Perioperative neurocognitive disorders (PND) is a common complication that occurs among elderly patients in the perioperative course. Current clinical evidence has shown that isoflurane exposure could cause cognitive decline, but the exact molecular mechanisms remain unclear. As both NMDARs-dependent synaptic plasticity and histone acetylation play vital roles in processing learning and memory, we postulated that these alternations might occur in the isoflurane-associated PND. Here, we found that isoflurane impaired fear memory in aged mice, decreased GluN2B-containing NMDA receptors phosphorylation and trafficking, as well as the expression of EphB2, a key regulator of synaptic localization of NMDA receptors. We also identified that isoflurane could increase the expression of HDAC2, which was significantly enriched at the ephb2 gene promoter and regulated the transcription of ephb2. Furthermore, we showed that suberoylanilide hydroxamic acid (SAHA), a nonselective HDAC inhibitor or knocking-down HDAC2 rescued the cognitive dysfunction in isoflurane-treated aged mice via increasing acetylation of H3Ac, expression of EphB2 and promoting NMDA receptor trafficking. Collectively, our study highlighted the crucial role of histone posttranslational modifications for EphB2-GluN2B signals in isoflurane-associated PND, and modulating HDAC2 might be a new therapeutic strategy for isoflurane-associated PND.
Collapse
Affiliation(s)
- Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qiu-Mei Hu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiu Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pan Wei
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hu-Yi Wang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China.,School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
6
|
Chen L, Yan H, Wang Y, He Z, Leng Q, Huang S, Wu F, Feng X, Yan J. The Mechanisms and Boundary Conditions of Drug Memory Reconsolidation. Front Neurosci 2021; 15:717956. [PMID: 34421529 PMCID: PMC8377231 DOI: 10.3389/fnins.2021.717956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Drug addiction can be seen as a disorder of maladaptive learning characterized by relapse. Therefore, disrupting drug-related memories could be an approach to improving therapies for addiction. Pioneering studies over the last two decades have revealed that consolidated memories are not static, but can be reconsolidated after retrieval, thereby providing candidate pathways for the treatment of addiction. The limbic-corticostriatal system is known to play a vital role in encoding the drug memory engram. Specific structures within this system contribute differently to the process of memory reconsolidation, making it a potential target for preventing relapse. In addition, as molecular processes are also active during memory reconsolidation, amnestic agents can be used to attenuate drug memory. In this review, we focus primarily on the brain structures involved in storing the drug memory engram, as well as the molecular processes involved in drug memory reconsolidation. Notably, we describe reports regarding boundary conditions constraining the therapeutic potential of memory reconsolidation. Furthermore, we discuss the principles that could be employed to modify stored memories. Finally, we emphasize the challenge of reconsolidation-based strategies, but end with an optimistic view on the development of reconsolidation theory for drug relapse prevention.
Collapse
Affiliation(s)
- Liangpei Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - He Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Yufang Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Ziping He
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qihao Leng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shihao Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Feilong Wu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiangyang Feng
- Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China.,Department of Forensic Science, School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
7
|
Higginbotham JA, Jones NM, Wang R, Christian RJ, Ritchie JL, McLaughlin RJ, Fuchs RA. Basolateral amygdala CB1 receptors gate HPA axis activation and context-cocaine memory strength during reconsolidation. Neuropsychopharmacology 2021; 46:1554-1564. [PMID: 33452429 PMCID: PMC8280224 DOI: 10.1038/s41386-020-00919-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/24/2020] [Accepted: 11/15/2020] [Indexed: 11/09/2022]
Abstract
Re-exposure to a cocaine-associated context triggers craving and relapse through the retrieval of salient context-drug memories. Upon retrieval, context-drug memories become labile and temporarily sensitive to modification before they are reconsolidated into long-term memory stores. The effects of systemic cannabinoid type 1 receptor (CB1R) antagonism indicate that CB1R signaling is necessary for cocaine-memory reconsolidation and associated glutamatergic plasticity in the basolateral amygdala (BLA); however, the contribution of BLA CB1R signaling to cocaine-memory reconsolidation is unknown. Here, we assessed whether intra-BLA CB1R manipulations immediately after cocaine-memory retrieval alter cocaine-memory strength indexed by subsequent drug context-induced cocaine-seeking behavior in an instrumental rodent model of drug relapse. Administration of the CB1R antagonist, AM251 (0.3 µg/hemisphere) into the BLA increased subsequent drug context-induced cocaine-seeking behavior in a memory retrieval-dependent and anatomically selective manner. Conversely, the CB1R agonist, WIN55,212-2 (0.5 or 5 µg/hemisphere) failed to alter this behavior. In follow-up experiments, cocaine-memory retrieval elicited robust hypothalamic-pituitary-adrenal axis activation, as indicated by a rise in serum corticosterone concentrations. Intra-BLA AM251 administration during memory reconsolidation selectively increased this cocaine-memory retrieval-induced corticosterone response. Intra-BLA corticosterone administration (3 or 10 ng/hemisphere) during memory reconsolidation did not augment subsequent cocaine-seeking behavior, suggesting that CB1R-dependent effects of corticosterone on memory strength, if any, are mediated outside of the BLA. Together, these findings suggest that CB1R signaling in the BLA gates cocaine-memory strength, possibly by diminishing the impact of cue-induced arousal on the integrity of the reconsolidating memory trace or on the efficacy of the memory reconsolidation process.
Collapse
Affiliation(s)
- Jessica A. Higginbotham
- grid.30064.310000 0001 2157 6568Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA USA
| | - Nicole M. Jones
- grid.30064.310000 0001 2157 6568Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA USA
| | - Rong Wang
- grid.30064.310000 0001 2157 6568Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA USA
| | - Robert J. Christian
- grid.30064.310000 0001 2157 6568Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA USA
| | - Jobe L. Ritchie
- grid.30064.310000 0001 2157 6568Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA USA
| | - Ryan J. McLaughlin
- grid.30064.310000 0001 2157 6568Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA USA ,grid.30064.310000 0001 2157 6568Washington State University Alcohol and Drug Abuse Research Program, Pullman, WA USA ,grid.30064.310000 0001 2157 6568Translational Addiction Research Collaborative, Washington State University, Pullman, WA USA
| | - Rita A. Fuchs
- grid.30064.310000 0001 2157 6568Department of Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, WA USA ,grid.30064.310000 0001 2157 6568Washington State University Alcohol and Drug Abuse Research Program, Pullman, WA USA ,grid.30064.310000 0001 2157 6568Translational Addiction Research Collaborative, Washington State University, Pullman, WA USA
| |
Collapse
|
8
|
Epigenetics of addiction. Neurochem Int 2021; 147:105069. [PMID: 33992741 DOI: 10.1016/j.neuint.2021.105069] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/16/2021] [Accepted: 05/09/2021] [Indexed: 11/22/2022]
Abstract
Substance use disorders are complex biopsychosocial disorders that have substantial negative neurocognitive impact in various patient populations. These diseases involve the compulsive use of licit or illicit substances despite adverse medicolegal consequences and appear to be secondary to long-lasting epigenetic and transcriptional adaptations in brain reward and non-reward circuits. The accumulated evidence supports the notion that repeated drug use causes changes in post-translational histone modifications and in DNA methylation/hydroxymethylation processes in several brain regions. This review provides an overview of epigenetic changes reported in models of cocaine, methamphetamine, and opioid use disorders. The accumulated data suggest that future therapeutic interventions should focus on the development of epigenetic drugs against addictive diseases.
Collapse
|
9
|
Abstract
A growing body of evidence from the past 15 years implicates epigenetic mechanisms in the behavioral effects of addictive drugs. The main focus of these studies has been epigenetic mechanisms of psychomotor sensitization and drug reinforcement, as assessed by the conditioned place preference and drug self-administration procedures. Some of these studies have documented long-lasting changes in the expression of epigenetic enzymes and molecules that persist for weeks after the last drug exposure. These observations have inspired more recent investigations on the epigenetic mechanisms of relapse to drug seeking after prolonged abstinence. Here, we review studies that have examined epigenetic mechanisms (e.g., histone modifications, chromatin remodeler-associated modifications, and DNA methylation) that contribute to relapse to cocaine, amphetamine, methamphetamine, morphine, heroin, nicotine, or alcohol seeking, as assessed in rodent models. We first provide a brief overview of studies that have examined persistent epigenetic changes in the brain after prolonged abstinence from noncontingent drug exposure or drug self-administration. Next, we review studies on the effect of either systemic or brain site-specific epigenetic manipulations on the reinstatement of drug-conditioned place preference after extinction of the learned preference, the reinstatement of drug seeking after operant drug self-administration and extinction of the drug-reinforced responding, and the incubation of drug craving (the time-dependent increase in drug seeking after cessation of drug self-administration). We conclude by discussing the implications of these studies for understanding mechanisms contributing to persistent relapse vulnerability after prolonged abstinence. We also discuss the implications of these results for translational research on the potential use of systemically administered epigenetic enzyme inhibitors for relapse prevention in human drug users.
Collapse
|
10
|
Bicyclic polyprenylated acylphloroglucinols and their derivatives: structural modification, structure-activity relationship, biological activity and mechanism of action. Eur J Med Chem 2020; 205:112646. [PMID: 32791400 DOI: 10.1016/j.ejmech.2020.112646] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 12/22/2022]
Abstract
Bicyclic polyprenylated acylphloroglucinols (BPAPs), the principal bioactive benzophenone products isolated from plants of genera Garcinia and Hypericum, have attracted noticeable attention from the synthetic and biological communities due to their fascinating chemical structures and promising biological activities. However, the potential drug interaction, undesired physiochemical properties and toxicity have limited their potential use and development. In the last decade, pharmaceutical research on the structural modifications, structure-activity relationships (SARs) and mechanisms of action of BPAPs has been greatly developed to overcome the challenges. A comprehensive review of these scientific literature is extremely needed to give an overview of the rapidly emerging area and facilitate research related to BPAPs. This review, containing over 226 references, covers the progress made in the chemical synthesis-based structure modifications, SARs and the mechanism of action of BPAPs in vivo and vitro. The most relevant articles will focus on the discovery of lead compounds via synthetic modifications and the important BPAPs for which the direct targets have been deciphered. From this review, several key points of the SARs and mode of actions of this novel class of compounds have been summarized. The perspective and future direction of the research on BPAPs are concluded. This review would be helpful to get a better grasp of medicinal research of BPAPs and become a compelling guide for chemists dedicated to the synthesis of these compounds.
Collapse
|