1
|
Matsushima T, Toji N, Wada K, Shikanai H, Izumi T. Embryonic exposure to valproic acid and neonicotinoid deteriorates the hyperpolarizing GABA shift and impairs long-term potentiation of excitatory transmission in the local circuit of intermediate medial mesopallium of chick telencephalon. Cereb Cortex 2025; 35:bhaf044. [PMID: 40037548 DOI: 10.1093/cercor/bhaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Embryonic exposure to valproic acid and imidacloprid (a neonicotinoid insecticide) impairs filial imprinting in hatchlings, and the deteriorating effects of valproic acid are mitigated by post-hatch injection of bumetanide, a blocker of the chloride intruder Na-K-2Cl cotransporter 1. Here, we report that these exposures depolarized the reversal potential of local GABAergic transmission in the neurons of the intermediate medial mesopallium, the pallial region critical for imprinting. Furthermore, exposure increased field excitatory post-synaptic potentials in pre-tetanus recordings and impaired long-term potentiation (LTP) by low-frequency tetanic stimulation. Bath-applied bumetanide rescued the impaired LTP in the valproic acid slices, whereas VU0463271, a blocker of the chloride extruder KCC2, suppressed LTP in the control slices, suggesting that hyperpolarizing GABA action is necessary for the potentiation of excitatory synaptic transmission. Whereas a steep increase in the gene expression of KCC2 appeared compared to NKCC1 during the peri-hatch development, significant differences were not found between valproic acid and control post-hatch chicks in these genes. Instead, both valproic acid and imidacloprid downregulated several transcriptional regulators (FOS, NR4A1, and NR4A2) and upregulated the RNA component of signal recognition particles (RN7SL1). Despite different chemical actions, valproic acid and imidacloprid could cause common neuronal effects that lead to impaired imprinting.
Collapse
Affiliation(s)
- Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, N10 W8 Kita-ku, 060-0810 Sapporo, Japan
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, 061-0293 Tobetsu, Japan
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto, Italy
| | - Noriyuki Toji
- Department of Biology, Faculty of Science, Hokkaido University, N10 W8 Kita-ku, 060-0810 Sapporo, Japan
| | - Kazuhiro Wada
- Department of Biology, Faculty of Science, Hokkaido University, N10 W8 Kita-ku, 060-0810 Sapporo, Japan
| | - Hiroki Shikanai
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, 061-0293 Tobetsu, Japan
| | - Takeshi Izumi
- Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Kanazawa 1757, 061-0293 Tobetsu, Japan
| |
Collapse
|
2
|
De Agrò M, Galpayage Dona HS, Vallortigara G. Seeing life in the teeming world: animacy perception in arthropods. Front Psychol 2024; 15:1492239. [PMID: 39640042 PMCID: PMC11617153 DOI: 10.3389/fpsyg.2024.1492239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The term "animacy perception" describes the ability of animals to detect cues that indicate whether a particular object in the environment is alive or not. Such skill is crucial for survival, as it allows for the rapid identification of animated agents, being them potential social partners, or dangers to avoid. The literature on animacy perception is rich, and the ability has been found to be present in a wide variety of vertebrate taxa. Many studies suggest arthropods also possess this perceptual ability, however, the term "animacy" has not often been explicitly used in the research focused on these models. Here, we review the current literature providing evidence of animacy perception in arthropods, focusing especially on studies of prey categorization, predator avoidance, and social interactions. First, we present evidence for the detection of biological motion, which involves recognizing the spatio-temporal patterns characteristic of liveliness. We also consider the congruency between shape and motion that gives rise to animacy percept, like the maintenance of a motion direction aligned with the main body axis. Next, we discuss how some arthropods use static visual cues, such as facial markings, to detect and recognize individuals. We explore the mechanisms, development, and neural basis of this face detection system, focusing on the well-studied paper wasps. Finally, we discuss thanatosis-a behavior in which an animal feigns death to disrupt cues of liveliness-as evidence for the active manipulation of animacy perception in arthropods.
Collapse
Affiliation(s)
- Massimo De Agrò
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | | | | |
Collapse
|
3
|
Yang G, Wang Y, Jiang Y. Social perception of animacy: Preferential attentional orienting to animals links with autistic traits. Cognition 2024; 251:105900. [PMID: 39047583 DOI: 10.1016/j.cognition.2024.105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Animate cues enjoy priority in attentional processes as they carry survival-relevant information and herald social interaction. Whether and in what way such an attention effect is associated with more general aspects of social cognition remains largely unexplored. Here we investigated whether the attentional preference for animals varies with observers' autistic traits - an indicator of autism-like characteristics in general populations related to one's social cognitive abilities. Using the dot-probe paradigm, we found that animal cues can rapidly and persistently recruit preferential attention over inanimate ones in observers with relatively low, but not high, autistic traits, as measured by Autism-Spectrum Quotient (AQ). Moreover, individual AQ scores were negatively correlated with the attentional bias toward animals, especially at the early orienting stage. These results were not simply due to low-level visual factors, as inverted or phase-scrambled pictures did not yield a similar pattern. Our findings demonstrate an automatic and enduring attentional bias beneficial to both rapid detection and continuous monitoring of animals and reveal its link with autistic traits, highlighting the critical role of animacy perception in the architecture of social cognition.
Collapse
Affiliation(s)
- Geqing Yang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Wang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Vallortigara G. Core knowledge as a neuro-ethologist views it. Behav Brain Sci 2024; 47:e144. [PMID: 38934426 DOI: 10.1017/s0140525x23003035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Innateness of core knowledge mechanisms (in the form of "cognitive priors") can be revealed by proper comparisons of altricial and precocial species. Cognitive priors and sensitive periods in their expression may also provide clues for the development of plausible artificial intelligence systems.
Collapse
Affiliation(s)
- Giorgio Vallortigara
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, TN, Italy ://r.unitn.it/en/cimec/abc
| |
Collapse
|
5
|
Matsushima T, Izumi T, Vallortigara G. The domestic chick as an animal model of autism spectrum disorder: building adaptive social perceptions through prenatally formed predispositions. Front Neurosci 2024; 18:1279947. [PMID: 38356650 PMCID: PMC10864568 DOI: 10.3389/fnins.2024.1279947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Equipped with an early social predisposition immediately post-birth, humans typically form associations with mothers and other family members through exposure learning, canalized by a prenatally formed predisposition of visual preference to biological motion, face configuration, and other cues of animacy. If impaired, reduced preferences can lead to social interaction impairments such as autism spectrum disorder (ASD) via misguided canalization. Despite being taxonomically distant, domestic chicks could also follow a homologous developmental trajectory toward adaptive socialization through imprinting, which is guided via predisposed preferences similar to those of humans, thereby suggesting that chicks are a valid animal model of ASD. In addition to the phenotypic similarities in predisposition with human newborns, accumulating evidence on the responsible molecular mechanisms suggests the construct validity of the chick model. Considering the recent progress in the evo-devo studies in vertebrates, we reviewed the advantages and limitations of the chick model of developmental mental diseases in humans.
Collapse
Affiliation(s)
- Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
- Centre for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Takeshi Izumi
- Faculty of Pharmaceutical Science, Health Science University of Hokkaido, Tobetsu, Japan
| | | |
Collapse
|
6
|
Han Y, Han W, Li L, Zhang T, Wang Y. Identifying critical kinematic features of animate motion and contribution to animacy perception. iScience 2023; 26:107658. [PMID: 37664633 PMCID: PMC10472316 DOI: 10.1016/j.isci.2023.107658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/30/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Humans can distinguish flying birds from drones based solely on motion features when no image information is available. However, it remains unclear which motion features of animate motion induce our animacy perception. To address this, we first analyzed the differences in centroid motion between birds and drones, and discovered that birds exhibit greater acceleration, angular speed, and trajectory fluctuations. We further determined the order of their importance in evoking animacy perception was trajectory fluctuations, acceleration, and speed. More interestingly, people judge whether a moving object is alive using a feature-matching strategy, implying that animacy perception is induced in a key feature-triggered way rather than relying on the accumulation of evidence. Our findings not only shed light on the critical motion features that induce animacy perception and their relative contributions but also have important implications for developing target classification algorithms based on motion features.
Collapse
Affiliation(s)
- Yifei Han
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing 100049, China
| | - Wenhao Han
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing 100049, China
| | - Liang Li
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Tao Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing 100049, China
| | - Yizheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Torabian S, Grossman ED. When shapes are more than shapes: perceptual, developmental, and neurophysiological basis for attributions of animacy and theory of mind. Front Psychol 2023; 14:1168739. [PMID: 37744598 PMCID: PMC10513434 DOI: 10.3389/fpsyg.2023.1168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023] Open
Abstract
Among a variety of entities in their environment, what do humans consider alive or animate and how does this attribution of animacy promote development of more abstract levels of mentalizing? By decontextualizing the environment of bodily features, we review how physical movements give rise to perceived animacy in Heider-Simmel style animations. We discuss the developmental course of how perceived animacy shapes our interpretation of the social world, and specifically discuss when and how children transition from perceiving actions as goal-directed to attributing behaviors to unobservable mental states. This transition from a teleological stance, asserting a goal-oriented interpretation to an agent's actions, to a mentalistic stance allows older children to reason about more complex actions guided by hidden beliefs. The acquisition of these more complex cognitive behaviors happens developmentally at the same time neural systems for social cognition are coming online in young children. We review perceptual, developmental, and neural evidence to identify the joint cognitive and neural changes associated with when children begin to mentalize and how this ability is instantiated in the brain.
Collapse
Affiliation(s)
- Sajjad Torabian
- Visual Perception and Neuroimaging Lab, Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
8
|
Mota-Rojas D, Marcet-Rius M, Domínguez-Oliva A, Buenhombre J, Daza-Cardona EA, Lezama-García K, Olmos-Hernández A, Verduzco-Mendoza A, Bienboire-Frosini C. Parental behavior and newborn attachment in birds: life history traits and endocrine responses. Front Psychol 2023; 14:1183554. [PMID: 37599744 PMCID: PMC10434784 DOI: 10.3389/fpsyg.2023.1183554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
In birds, parental care and attachment period differ widely depending on the species (altricial or precocial), developmental strategies, and life history traits. In most bird species, parental care can be provided by both female and male individuals and includes specific stages such as nesting, laying, and hatching. During said periods, a series of neuroendocrine responses are triggered to motivate parental care and attachment. These behaviors are vital for offspring survival, development, social bonding, intergenerational learning, reproductive success, and ultimately, the overall fitness and evolution of bird populations in a variety of environments. Thus, this review aims to describe and analyze the behavioral and endocrine systems of parental care and newborn attachment in birds during each stage of the post-hatching period.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Míriam Marcet-Rius
- Department of Animal Behaviour and Welfare, Research Institute in Semiochemistry and Applied Ethology, Apt, France
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Jhon Buenhombre
- Faculty of Veterinary Medicine, Antonio Nariño University, Bogotá, Colombia
| | | | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology, Apt, France
| |
Collapse
|
9
|
Lemaire BS, Vallortigara G. Life is in motion (through a chick's eye). Anim Cogn 2023; 26:129-140. [PMID: 36222937 PMCID: PMC9877072 DOI: 10.1007/s10071-022-01703-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 01/29/2023]
Abstract
Cognitive scientists, social psychologists, computer scientists, neuroscientists, ethologists and many others have all wondered how brains detect and interpret the motion of living organisms. It appears that specific cues, incorporated into our brains by natural selection, serve to signal the presence of living organisms. A simple geometric figure such as a triangle put in motion with specific kinematic rules can look alive, and it can even seem to have intentions and goals. In this article, we survey decades of parallel investigations on the motion cues that drive animacy perception-the sensation that something is alive-in non-human animals, especially in precocial species, such as the domestic chick, to identify inborn biological predispositions. At the same time, we highlight the relevance of these studies for an understanding of human typical and atypical cognitive development.
Collapse
Affiliation(s)
- Bastien S Lemaire
- Center for Mind and Brain Sciences, University of Trento, Trento, Italy.
| | | |
Collapse
|
10
|
Lemaire BS, Rosa-Salva O, Fraja M, Lorenzi E, Vallortigara G. Spontaneous preference for unpredictability in the temporal contingencies between agents' motion in naive domestic chicks. Proc Biol Sci 2022; 289:20221622. [PMID: 36350221 PMCID: PMC9653227 DOI: 10.1098/rspb.2022.1622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/12/2022] [Indexed: 08/24/2023] Open
Abstract
The ability to recognize animate agents based on their motion has been investigated in humans and animals alike. When the movements of multiple objects are interdependent, humans perceive the presence of social interactions and goal-directed behaviours. Here, we investigated how visually naive domestic chicks respond to agents whose motion was reciprocally contingent in space and time (i.e. the time and direction of motion of one object can be predicted from the time and direction of motion of another object). We presented a 'social aggregation' stimulus, in which three smaller discs repeatedly converged towards a bigger disc, moving in a manner resembling a mother hen and chicks (versus a control stimulus lacking such interactions). Remarkably, chicks preferred stimuli in which the timing of the motion of one object could not be predicted by that of other objects. This is the first demonstration of a sensitivity to the temporal relationships between the motion of different objects in naive animals, a trait that could be at the basis of the development of the perception of social interaction and goal-directed behaviours.
Collapse
Affiliation(s)
- Bastien S. Lemaire
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Margherita Fraja
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Elena Lorenzi
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura, 1, 38068 Rovereto, TN, Italy
| |
Collapse
|
11
|
Light-induced asymmetries in embryonic retinal gene expression are mediated by the vascular system and extracellular matrix. Sci Rep 2022; 12:12086. [PMID: 35840576 PMCID: PMC9287303 DOI: 10.1038/s41598-022-14963-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Left–right asymmetries in the nervous system (lateralisation) influence a broad range of behaviours, from social responses to navigation and language. The role and pathways of endogenous and environmental mechanisms in the ontogeny of lateralisation remains to be established. The domestic chick is a model of both endogenous and experience-induced lateralisation driven by light exposure. Following the endogenous rightward rotation of the embryo, the asymmetrical position in the egg results in a greater exposure of the right eye to environmental light. To identify the genetic pathways activated by asymmetric light stimulation, and their time course, we exposed embryos to different light regimes: darkness, 6 h of light and 24 h of light. We used RNA-seq to compare gene expression in the right and left retinas and telencephalon. We detected differential gene expression in right vs left retina after 6 h of light exposure. This difference was absent in the darkness condition and had already disappeared by 24 h of light exposure, suggesting that light-induced activation is a self-terminating phenomenon. This transient effect of light exposure was associated with a downregulation of the sensitive-period mediator gene DIO2 (iodothyronine deiodinase 2) in the right retina. No differences between genes expressed in the right vs. left telencephalon were detected. Gene networks associated with lateralisation were connected to vascularisation, cell motility, and the extracellular matrix. Interestingly, we know that the extracellular matrix—including the differentially expressed PDGFRB gene—is involved in morphogenesis, sensitive periods, and in the endogenous chiral mechanism of primary cilia, that drives lateralisation. Our data show a similarity between endogenous and experience-driven lateralisation, identifying functional gene networks that affect lateralisation in a specific time window.
Collapse
|
12
|
Saheki Y, Aoki N, Homma KJ, Matsushima T. Suppressive Modulation of the Chick Forebrain Network for Imprinting by Thyroid Hormone: An in Vitro Study. Front Physiol 2022; 13:881947. [PMID: 35514358 PMCID: PMC9065254 DOI: 10.3389/fphys.2022.881947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
The thyroid hormone 3,5,3'-triiodothyronine (T3) is considered to act acutely in the chick forebrain because focal infusion of T3 to the intermediate medial mesopallium (IMM) causes 4 to 6-day-old hatchlings to become imprintable approximately 30 min after the infusion. To understand the mechanism of this acute T3 action, we examined synaptic responses of IMM neurons in slice preparations in vitro. Extracellular field potential responses to local electrical stimulation were pharmacologically dissociated to synaptic components mediated by AMPA and NMDA receptors, as well as GABA-A and -B receptors. Bath-applied T3 (20-40 μM) enhanced the positive peak amplitude of the field potential, which represented the GABA-A component. Bicuculline induced spontaneous epileptic bursts by NMDA receptor activation, and subsequent application of T3 suppressed the bursting frequency. Pretreatment of slices with T3 failed to influence the synaptic potentiation caused by tetanic stimulation. Intracellular whole-cell recording using a patch electrode confirmed the T3 actions on the GABA-A and NMDA components. T3 enhanced the GABA-A response and suppressed the NMDA plateau potential without changes in the resting membrane potential or the threshold of action potentials. Contrary to our initial expectation, T3 suppressed the synaptic drives of IMM neurons, and did not influence activity-dependent synaptic potentiation. Imprinting-associated T3 influx may act as an acute suppressor of the IMM network.
Collapse
Affiliation(s)
- Yuriko Saheki
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Mori C, Aoki N, Fujita T, Yamaguchi S, Matsushima T, Homma KJ. Gene expression profiles of the muscarinic acetylcholine receptors in brain regions relating to filial imprinting of newly-hatched domestic chicks. Behav Brain Res 2021; 420:113708. [PMID: 34902480 DOI: 10.1016/j.bbr.2021.113708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 12/01/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) in the central nervous system play an important role in regulating complex functions such as learning, memory, and selective attention. Five subtypes of the mAChRs (M1-M5) have been identified in mammals, and are classified into two subfamilies: excitatory (M1, M3, and M5) and inhibitory (M2 and M4) subfamilies. Filial imprinting of domestic chicks is a useful model in the laboratory to investigate the mechanisms of memory formation in early learning. We recently found that mAChRs in the intermediate medial mesopallium (IMM) are involved in the memory formation of imprinting. However, expression profiles of each mAChR subtype in the brain regions including the IMM remain unexplored. Here we show the unique gene expression of each mAChR subtype in the pallial regions involved in imprinting. In terms of the excitatory mAChRs, M5 was expressed in the IMM region and other parts of the pallium, whereas M3 was less expressed in the IMM but highly expressed in the hyperpallium and nidopallium. Regarding the inhibitory mAChRs, M2 was sparsely distributed but clearly in some cells throughout the pallial regions. M4 was highly expressed in the IMM region and other parts of the pallium. These expression profiles can be used as a basis for understanding cholinergic modulation in the memory formation of imprinting and other learning processes in birds, and compared to those of mammals.
Collapse
Affiliation(s)
- Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Hokkaido 060-0810, Japan
| | - Koichi J Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|