1
|
Yin Q, Chen T, Long Y, Zhai J, Liu X, Liu W, Zhao M, Du J. Neurophysiological correlates of trait and behavioral impulsivity across methamphetamine and gambling Addiction. Heliyon 2024; 10:e40212. [PMID: 39687187 PMCID: PMC11647805 DOI: 10.1016/j.heliyon.2024.e40212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024] Open
Abstract
Investigating neurophysiological markers linked to impulsivity in individuals with gambling and methamphetamine addiction using resting-state EEG data offers valuable insights into the underlying neurophysiological mechanisms associated with impulsivity in individuals with addiction. This study aims to use resting-state EEG to explore the connection between various types of addiction and different aspects of impulsivity. Participants from the methamphetamine, gambling, and healthy control groups (abbreviation: MA, GB, HC) underwent EEG recordings and completed measures of impulsivity. Group differences in trait scores and behavioral tendencies were analyzed. Abnormal connections with node linkage and importance changes were analyzed through the resting-state EEG power spectral and network analyses. Further, relationships between impulsivity scores and connectivity differences in groups were explored through correlation analysis. Finally, these abnormal connections related to impulsivity were tested for their effect of distinguishing individuals with addiction from healthy controls through the ROC analysis. Results revealed that GB displayed the highest trait impulsivity on the overall score, while MA exhibited greater attentional impulsivity. Variations in behavioral impulsivity were reflected in response times. Resting-state EEG analysis showed higher beta power in GB. Specific channel pairs demonstrated abnormal connections and altered connectivity patterns in the beta band, with MA displaying a less efficient network compared to GB. Correlation analyses uncovered associations between impulsivity scores and connectivity, which were influenced by group differences. Furthermore, resting-state EEG connections effectively differentiated individuals with addiction from healthy controls. Overall, this study contributes valuable insights into the neural mechanisms of addiction-related impulsivity, emphasizing the potential of resting-state EEG connections as an important neurophysiological correlate.
Collapse
Affiliation(s)
- Qianlan Yin
- Department of Naval Aviation & Operational Psychology, Navy Medical University, Shanghai, China
| | - Tianzhen Chen
- Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Mental Health Center Shanghai, China
| | - Yan Long
- Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Mental Health Center Shanghai, China
| | - Jing Zhai
- Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Mental Health Center Shanghai, China
| | - Xinru Liu
- University of Shanghai for Science and Technology School of Health Science and Engineering, Shanghai, China
| | - Weizhi Liu
- Department of Naval Aviation & Operational Psychology, Navy Medical University, Shanghai, China
| | - Min Zhao
- Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Mental Health Center Shanghai, China
| | - Jiang Du
- Shanghai Jiao Tong University School of Medicine Affiliated Shanghai Mental Health Center Shanghai, China
| |
Collapse
|
2
|
Shintaki R, Tanaka D, Suzuki S, Yoshimoto T, Sadato N, Chikazoe J, Jimura K. Continuous decision to wait for a future reward is guided by fronto-hippocampal anticipatory dynamics. Cereb Cortex 2024; 34:bhae217. [PMID: 38798003 DOI: 10.1093/cercor/bhae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
Deciding whether to wait for a future reward is crucial for surviving in an uncertain world. While seeking rewards, agents anticipate a reward in the present environment and constantly face a trade-off between staying in their environment or leaving it. It remains unclear, however, how humans make continuous decisions in such situations. Here, we show that anticipatory activity in the anterior prefrontal cortex, ventrolateral prefrontal cortex, and hippocampus underpins continuous stay-leave decision-making. Participants awaited real liquid rewards available after tens of seconds, and their continuous decision was tracked by dynamic brain activity associated with the anticipation of a reward. Participants stopped waiting more frequently and sooner after they experienced longer delays and received smaller rewards. When the dynamic anticipatory brain activity was enhanced in the anterior prefrontal cortex, participants remained in their current environment, but when this activity diminished, they left the environment. Moreover, while experiencing a delayed reward in a novel environment, the ventrolateral prefrontal cortex and hippocampus showed anticipatory activity. Finally, the activity in the anterior prefrontal cortex and ventrolateral prefrontal cortex was enhanced in participants adopting a leave strategy, whereas those remaining stationary showed enhanced hippocampal activity. Our results suggest that fronto-hippocampal anticipatory dynamics underlie continuous decision-making while anticipating a future reward.
Collapse
Affiliation(s)
- Reiko Shintaki
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Daiki Tanaka
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Shinsuke Suzuki
- Centre for Brain, Mind and Markets, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
- Faculty of Social Data Science and HIAS Brain Research Center, Hitotsubashi University, 2-1 Naka, Kunitachi, 186-8601, Japan
| | - Takaaki Yoshimoto
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, 525-8577, Japan
- Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | - Norihiro Sadato
- Research Organization of Science and Technology, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, 525-8577, Japan
- Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | - Junichi Chikazoe
- Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
- Araya, Inc., 1-11 Kanda Sakuma-cho, Chiyoda, Tokyo, 101-0025, Japan
| | - Koji Jimura
- Department of Informatics, Gunma University, 4-2 Aramaki-machi, Maebashi, 371-8510, Japan
| |
Collapse
|
3
|
Executive control by fronto-parietal activity explains counterintuitive decision behavior in complex value-based decision-making. Neuroimage 2022; 249:118892. [PMID: 35007716 DOI: 10.1016/j.neuroimage.2022.118892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 01/22/2023] Open
Abstract
In real life, humans make decisions by taking into account multiple independent factors, such as delay and probability. Cognitive psychology suggests that cognitive control mechanisms play a key role when facing such complex task conditions. However, in value-based decision-making, it still remains unclear to what extent cognitive control mechanisms become essential when the task condition is complex. In this study, we investigated decision-making behaviors and underlying neural mechanisms using a multifactor gambling task where participants simultaneously considered probability and delay. Decision-making behavior in the multifactor task was modulated by both probability and delay. The behavioral effect of probability was stronger than delay, consistent with previous studies. Furthermore, in a subset of conditions that recruited fronto-parietal activations, reaction times were paradoxically elongated despite lower probabilistic uncertainty. Notably, such a reaction time elongation did not occur in control tasks involving single factors. Meta-analysis of brain activations suggested an interpretation that the paradoxical increase of reaction time may be associated with strategy switching. Consistent with this interpretation, logistic regression analysis of the behavioral data suggested a presence of multiple decision strategies. Taken together, we found that a novel complex value-based decision-making task cause prominent activations in fronto-parietal cortex. Furthermore, we propose that these activations can be interpreted as recruitment of cognitive control system in complex situations.
Collapse
|