1
|
Ali MU, Zafar A, Kallu KD, Masood H, Mannan MMN, Ibrahim MM, Kim S, Khan MA. Correlation-Filter-Based Channel and Feature Selection Framework for Hybrid EEG-fNIRS BCI Applications. IEEE J Biomed Health Inform 2024; 28:3361-3370. [PMID: 37436864 DOI: 10.1109/jbhi.2023.3294586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The proposed study is based on a feature and channel selection strategy that uses correlation filters for brain-computer interface (BCI) applications using electroencephalography (EEG)-functional near-infrared spectroscopy (fNIRS) brain imaging modalities. The proposed approach fuses the complementary information of the two modalities to train the classifier. The channels most closely correlated with brain activity are extracted using a correlation-based connectivity matrix for fNIRS and EEG separately. Furthermore, the training vector is formed through the identification and fusion of the statistical features of both modalities (i.e., slope, skewness, maximum, skewness, mean, and kurtosis). The constructed fused feature vector is passed through various filters (including ReliefF, minimum redundancy maximum relevance, chi-square test, analysis of variance, and Kruskal-Wallis filters) to remove redundant information before training. Traditional classifiers such as neural networks, support-vector machines, linear discriminant analysis, and ensembles were used for the purpose of training and testing. A publicly available dataset with motor imagery information was used for validation of the proposed approach. Our findings indicate that the proposed correlation-filter-based channel and feature selection framework significantly enhances the classification accuracy of hybrid EEG-fNIRS. The ReliefF-based filter outperformed other filters with the ensemble classifier with a high accuracy of 94.77 ± 4.26%. The statistical analysis also validated the significance (p < 0.01) of the results. A comparison of the proposed framework with the prior findings was also presented. Our results show that the proposed approach can be used in future EEG-fNIRS-based hybrid BCI applications.
Collapse
|
2
|
Wang Z, Fang J, Zhang J. Rethinking Delayed Hemodynamic Responses for fNIRS Classification. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4528-4538. [PMID: 37934649 DOI: 10.1109/tnsre.2023.3330911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technology for monitoring cerebral hemodynamic responses. Enhancing fNIRS classification can improve the performance of brain-computer interfaces (BCIs). Currently, deep neural networks (DNNs) do not consider the inherent delayed hemodynamic responses of fNIRS signals, which causes many optimization and application problems. Considering the kernel size and receptive field of convolutions, delayed hemodynamic responses as domain knowledge are introduced into fNIRS classification, and a concise and efficient model named fNIRSNet is proposed. We empirically summarize three design guidelines for fNIRSNet. In subject-specific and subject-independent experiments, fNIRSNet outperforms other DNNs on open-access datasets. Specifically, fNIRSNet with only 498 parameters is 6.58% higher than convolutional neural network (CNN) with millions of parameters on mental arithmetic tasks and the floating-point operations (FLOPs) of fNIRSNet are much lower than CNN. Therefore, fNIRSNet is friendly to practical applications and reduces the hardware cost of BCI systems. It may inspire more research on knowledge-driven models for fNIRS BCIs. Code is available at https://github.com/wzhlearning/fNIRSNet.
Collapse
|
3
|
Ali MU, Zafar A, Kallu KD, Yaqub MA, Masood H, Hong KS, Bhutta MR. An Isolated CNN Architecture for Classification of Finger-Tapping Tasks Using Initial Dip Images: A Functional Near-Infrared Spectroscopy Study. Bioengineering (Basel) 2023; 10:810. [PMID: 37508837 PMCID: PMC10376657 DOI: 10.3390/bioengineering10070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
This work investigates the classification of finger-tapping task images constructed for the initial dip duration of hemodynamics (HR) associated with the small brain area of the left motor cortex using functional near-infrared spectroscopy (fNIRS). Different layers (i.e., 16-layers, 19-layers, 22-layers, and 25-layers) of isolated convolutional neural network (CNN) designed from scratch are tested to classify the right-hand thumb and little finger-tapping tasks. Functional t-maps of finger-tapping tasks (thumb, little) were constructed for various durations (0.5 to 4 s with a uniform interval of 0.5 s) for the initial dip duration using a three gamma functions-based designed HR function. The results show that the 22-layered isolated CNN model yielded the highest classification accuracy of 89.2% with less complexity in classifying the functional t-maps of thumb and little fingers associated with the same small brain area using the initial dip. The results further demonstrated that the active brain area of the two tapping tasks from the same small brain area are highly different and well classified using functional t-maps of the initial dip (0.5 to 4 s) compared to functional t-maps generated for delayed HR (14 s). This study shows that the images constructed for initial dip duration can be helpful in the future for fNIRS-based diagnosis or cortical analysis of abnormal cerebral oxygen exchange in patients.
Collapse
Affiliation(s)
- Muhammad Umair Ali
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Amad Zafar
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Karam Dad Kallu
- Department of Robotics and Intelligent Machine Engineering (RIME), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - M Atif Yaqub
- ICFO-Institut de Ciències Fotòniques the Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
| | - Haris Masood
- Electrical Engineering Department, Wah Engineering College, University of Wah, Wah Cantt 47040, Pakistan
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea
- Institute for Future, School of Automation, Qingdao University, Qingdao 266071, China
| | - Muhammad Raheel Bhutta
- Department of Electrical and Computer Engineering, University of UTAH Asia Campus, Incheon 21985, Republic of Korea
| |
Collapse
|
4
|
Ali MU, Kim KS, Kallu KD, Zafar A, Lee SW. OptEF-BCI: An Optimization-Based Hybrid EEG and fNIRS-Brain Computer Interface. Bioengineering (Basel) 2023; 10:608. [PMID: 37237678 PMCID: PMC10215946 DOI: 10.3390/bioengineering10050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Multimodal data fusion (electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS)) has been developed as an important neuroimaging research field in order to circumvent the inherent limitations of individual modalities by combining complementary information from other modalities. This study employed an optimization-based feature selection algorithm to systematically investigate the complementary nature of multimodal fused features. After preprocessing the acquired data of both modalities (i.e., EEG and fNIRS), the temporal statistical features were computed separately with a 10 s interval for each modality. The computed features were fused to create a training vector. A wrapper-based binary enhanced whale optimization algorithm (E-WOA) was used to select the optimal/efficient fused feature subset using the support-vector-machine-based cost function. An online dataset of 29 healthy individuals was used to evaluate the performance of the proposed methodology. The findings suggest that the proposed approach enhances the classification performance by evaluating the degree of complementarity between characteristics and selecting the most efficient fused subset. The binary E-WOA feature selection approach showed a high classification rate (94.22 ± 5.39%). The classification performance exhibited a 3.85% increase compared with the conventional whale optimization algorithm. The proposed hybrid classification framework outperformed both the individual modalities and traditional feature selection classification (p < 0.01). These findings indicate the potential efficacy of the proposed framework for several neuroclinical applications.
Collapse
Affiliation(s)
- Muhammad Umair Ali
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea;
| | - Kwang Su Kim
- Department of Scientific Computing, Pukyong National University, Busan 48513, Republic of Korea;
- Interdisciplinary Biology Laboratory (iBLab), Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Karam Dad Kallu
- Department of Robotics & Artificial Intelligence (R&AI), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST) H-12, Islamabad 44000, Pakistan;
| | - Amad Zafar
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea;
| | - Seung Won Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Zafar A, Hussain SJ, Ali MU, Lee SW. Metaheuristic Optimization-Based Feature Selection for Imagery and Arithmetic Tasks: An fNIRS Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23073714. [PMID: 37050774 PMCID: PMC10098559 DOI: 10.3390/s23073714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 06/01/2023]
Abstract
In recent decades, the brain-computer interface (BCI) has emerged as a leading area of research. The feature selection is vital to reduce the dataset's dimensionality, increase the computing effectiveness, and enhance the BCI's performance. Using activity-related features leads to a high classification rate among the desired tasks. This study presents a wrapper-based metaheuristic feature selection framework for BCI applications using functional near-infrared spectroscopy (fNIRS). Here, the temporal statistical features (i.e., the mean, slope, maximum, skewness, and kurtosis) were computed from all the available channels to form a training vector. Seven metaheuristic optimization algorithms were tested for their classification performance using a k-nearest neighbor-based cost function: particle swarm optimization, cuckoo search optimization, the firefly algorithm, the bat algorithm, flower pollination optimization, whale optimization, and grey wolf optimization (GWO). The presented approach was validated based on an available online dataset of motor imagery (MI) and mental arithmetic (MA) tasks from 29 healthy subjects. The results showed that the classification accuracy was significantly improved by utilizing the features selected from the metaheuristic optimization algorithms relative to those obtained from the full set of features. All of the abovementioned metaheuristic algorithms improved the classification accuracy and reduced the feature vector size. The GWO yielded the highest average classification rates (p < 0.01) of 94.83 ± 5.5%, 92.57 ± 6.9%, and 85.66 ± 7.3% for the MA, MI, and four-class (left- and right-hand MI, MA, and baseline) tasks, respectively. The presented framework may be helpful in the training phase for selecting the appropriate features for robust fNIRS-based BCI applications.
Collapse
Affiliation(s)
- Amad Zafar
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Shaik Javeed Hussain
- Department of Electrical and Electronics, Global College of Engineering and Technology, Muscat 112, Oman
| | - Muhammad Umair Ali
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Seung Won Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Zafar A, Dad Kallu K, Atif Yaqub M, Ali MU, Hyuk Byun J, Yoon M, Su Kim K. A Hybrid GCN and Filter-Based Framework for Channel and Feature Selection: An fNIRS-BCI Study. INT J INTELL SYST 2023. [DOI: 10.1155/2023/8812844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
In this study, a channel and feature selection methodology is devised for brain-computer interface (BCI) applications using functional near-infrared spectroscopy (fNIRS). A graph convolutional network (GCN) is employed to select the appropriate and correlated fNIRS channels. Furthermore, in the feature extraction phase, the performance of two filter-based feature selection algorithms, (i) the minimum redundancy maximum relevance (mRMR) and (ii) ReliefF, is investigated. The five most commonly used temporal statistical features (i.e., mean, slope, maximum, skewness, and kurtosis) are used, whereas the conventional support vector machine (SVM) is utilized as a classifier for training and testing. The proposed methodology is validated using an available online dataset of motor imagery (left- and right-hand), mental arithmetic, and baseline tasks. First, the efficacy of the proposed methodology is shown for two-class BCI applications (i.e., left- vs. right-hand motor imagery and mental arithmetic vs. baseline). Second, the proposed framework is applied to four-class BCI applications (i.e., left- vs. right-hand motor imagery vs. mental arithmetic vs. baseline). The results show that the number of appropriate channels and features was significantly reduced, resulting in a significant increase in classification accuracy for both two-class and four-class BCI applications, respectively. Furthermore, both mRMR (i.e., 87.8% for motor imagery, 87.1% for mental arithmetic, and 78.7% for four-class) and ReliefF (i.e., 90.7% for motor imagery, 93.7% for mental arithmetic, and 81.6% for four-class) yielded high average classification accuracy
. However, the results of the ReliefF algorithm are more stable and significant.
Collapse
|
7
|
Hong KS, Khan MNA, Ghafoor U. Non-invasive transcranial electrical brain stimulation guided by functional near-infrared spectroscopy for targeted neuromodulation: A review. J Neural Eng 2022; 19. [PMID: 35905708 DOI: 10.1088/1741-2552/ac857d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/29/2022] [Indexed: 11/12/2022]
Abstract
One of the primary goals in cognitive neuroscience is to understand the neural mechanisms on which cognition is based. Researchers are trying to find how cognitive mechanisms are related to oscillations generated due to brain activity. The research focused on this topic has been considerably aided by developing non-invasive brain stimulation techniques. The dynamics of brain networks and the resultant behavior can be affected by non-invasive brain stimulation techniques, which make their use a focus of interest in many experiments and clinical fields. One essential non-invasive brain stimulation technique is transcranial electrical stimulation (tES), subdivided into transcranial direct and alternating current stimulation. tES has recently become more well-known because of the effective results achieved in treating chronic conditions. In addition, there has been exceptional progress in the interpretation and feasibility of tES techniques. Summarizing the beneficial effects of tES, this article provides an updated depiction of what has been accomplished to date, brief history, and the open questions that need to be addressed in the future. An essential issue in the field of tES is stimulation duration. This review briefly covers the stimulation durations that have been utilized in the field while monitoring the brain using functional-near infrared spectroscopy-based brain imaging.
Collapse
Affiliation(s)
- Keum-Shik Hong
- Department of Cogno-mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumgeong-gu, Busan, Busan, 609735, Korea (the Republic of)
| | - M N Afzal Khan
- Pusan National University, Department of Mechanical Engineering, Busan, 46241, Korea (the Republic of)
| | - Usman Ghafoor
- School of Mechanical Engineering, Pusan National University College of Engineering, room 204, Busan, 46241, Korea (the Republic of)
| |
Collapse
|
8
|
Khan H, Noori FM, Yazidi A, Uddin MZ, Khan MNA, Mirtaheri P. Classification of Individual Finger Movements from Right Hand Using fNIRS Signals. SENSORS (BASEL, SWITZERLAND) 2021; 21:7943. [PMID: 34883949 PMCID: PMC8659988 DOI: 10.3390/s21237943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a comparatively new noninvasive, portable, and easy-to-use brain imaging modality. However, complicated dexterous tasks such as individual finger-tapping, particularly using one hand, have been not investigated using fNIRS technology. Twenty-four healthy volunteers participated in the individual finger-tapping experiment. Data were acquired from the motor cortex using sixteen sources and sixteen detectors. In this preliminary study, we applied standard fNIRS data processing pipeline, i.e., optical densities conversation, signal processing, feature extraction, and classification algorithm implementation. Physiological and non-physiological noise is removed using 4th order band-pass Butter-worth and 3rd order Savitzky-Golay filters. Eight spatial statistical features were selected: signal-mean, peak, minimum, Skewness, Kurtosis, variance, median, and peak-to-peak form data of oxygenated haemoglobin changes. Sophisticated machine learning algorithms were applied, such as support vector machine (SVM), random forests (RF), decision trees (DT), AdaBoost, quadratic discriminant analysis (QDA), Artificial neural networks (ANN), k-nearest neighbors (kNN), and extreme gradient boosting (XGBoost). The average classification accuracies achieved were 0.75±0.04, 0.75±0.05, and 0.77±0.06 using k-nearest neighbors (kNN), Random forest (RF) and XGBoost, respectively. KNN, RF and XGBoost classifiers performed exceptionally well on such a high-class problem. The results need to be further investigated. In the future, a more in-depth analysis of the signal in both temporal and spatial domains will be conducted to investigate the underlying facts. The accuracies achieved are promising results and could open up a new research direction leading to enrichment of control commands generation for fNIRS-based brain-computer interface applications.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway;
| | - Farzan M. Noori
- Department of Informatics, University of Oslo, 0315 Oslo, Norway;
| | - Anis Yazidi
- Department of Computer Science, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway;
- Department of Neurosurgery, Oslo University Hospital, 0450 Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Md Zia Uddin
- Software and Service Innovation, SINTEF Digital, 0373 Oslo, Norway;
| | - M. N. Afzal Khan
- School of Mechanical Engineering, Pusan National University, Busan 46241, Korea;
| | - Peyman Mirtaheri
- Department of Mechanical, Electronics and Chemical Engineering, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway;
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
9
|
Afzal Khan MN, Hong KS. Most favorable stimulation duration in the sensorimotor cortex for fNIRS-based BCI. BIOMEDICAL OPTICS EXPRESS 2021; 12:5939-5954. [PMID: 34745714 PMCID: PMC8547991 DOI: 10.1364/boe.434936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 05/13/2023]
Abstract
One of the primary objectives of the brain-computer interface (BCI) is to obtain a command with higher classification accuracy within the shortest possible time duration. Therefore, this study evaluates several stimulation durations to propose a duration that can yield the highest classification accuracy. Furthermore, this study aims to address the inherent delay in the hemodynamic responses (HRs) for the command generation time. To this end, HRs in the sensorimotor cortex were evaluated for the functional near-infrared spectroscopy (fNIRS)-based BCI. To evoke brain activity, right-hand-index finger poking and tapping tasks were used. In this study, six different stimulation durations (i.e., 1, 3, 5, 7, 10, and 15 s) were tested on 10 healthy male subjects. Upon stimulation, different temporal features and multiple time windows were utilized to extract temporal features. The extracted features were then classified using linear discriminant analysis. The classification results using the main HR showed that a 5 s stimulation duration could yield the highest classification accuracy, i.e., 74%, with a combination of the mean and maximum value features. However, the results were not significantly different from the classification accuracy obtained using the 15 s stimulation. To further validate the results, a classification using the initial dip was performed. The results obtained endorsed the finding with an average classification accuracy of 73.5% using the features of minimum peak and skewness in the 5 s window. The results based on classification using the initial dip for 5 s were significantly different from all other tested stimulation durations (p < 0.05) for all feature combinations. Moreover, from the visual inspection of the HRs, it is observed that the initial dip occurred as soon as the task started, but the main HR had a delay of more than 2 s. Another interesting finding is that impulsive stimulation in the sensorimotor cortex can result in the generation of a clearer initial dip phenomenon. The results reveal that the command for the fNIRS-based BCI can be generated using the 5 s stimulation duration. In conclusion, the use of the initial dip can reduce the time taken for the generation of commands and can be used to achieve a higher classification accuracy for the fNIRS-BCI within a 5 s task duration rather than relying on longer durations.
Collapse
Affiliation(s)
- M. N. Afzal Khan
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
10
|
AL-Quraishi MS, Elamvazuthi I, Tang TB, Al-Qurishi M, Adil SH, Ebrahim M. Bimodal Data Fusion of Simultaneous Measurements of EEG and fNIRS during Lower Limb Movements. Brain Sci 2021; 11:brainsci11060713. [PMID: 34071982 PMCID: PMC8227788 DOI: 10.3390/brainsci11060713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/24/2023] Open
Abstract
Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) have temporal and spatial characteristics that may complement each other and, therefore, pose an intriguing approach for brain-computer interaction (BCI). In this work, the relationship between the hemodynamic response and brain oscillation activity was investigated using the concurrent recording of fNIRS and EEG during ankle joint movements. Twenty subjects participated in this experiment. The EEG was recorded using 20 electrodes and hemodynamic responses were recorded using 32 optodes positioned over the motor cortex areas. The event-related desynchronization (ERD) feature was extracted from the EEG signal in the alpha band (8-11) Hz, and the concentration change of the oxy-hemoglobin (oxyHb) was evaluated from the hemodynamics response. During the motor execution of the ankle joint movements, a decrease in the alpha (8-11) Hz amplitude (desynchronization) was found to be correlated with an increase of the oxyHb (r = -0.64061, p < 0.00001) observed on the Cz electrode and the average of the fNIRS channels (ch28, ch25, ch32, ch35) close to the foot area representation. Then, the correlated channels in both modalities were used for ankle joint movement classification. The result demonstrates that the integrated modality based on the correlated channels provides a substantial enhancement in ankle joint classification accuracy of 93.01 ± 5.60% (p < 0.01) compared with single modality. These results highlight the potential of the bimodal fNIR-EEG approach for the development of future BCI for lower limb rehabilitation.
Collapse
Affiliation(s)
- Maged S. AL-Quraishi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (M.S.A.-Q.); (I.E.)
- Faculty of Engineering, Thamar University, Dhamar 87246, Yemen
| | - Irraivan Elamvazuthi
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia; (M.S.A.-Q.); (I.E.)
| | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
- Correspondence: ; Tel.: +60-5-368-7801
| | - Muhammad Al-Qurishi
- Faculty of information and Computer Science, Thamar University, Dhamar 87246, Yemen;
| | - Syed Hasan Adil
- Faculty of Engineering, Sciences and Technology, Iqra University, Karachi 75500, Pakistan; (S.H.A.); (M.E.)
| | - Mansoor Ebrahim
- Faculty of Engineering, Sciences and Technology, Iqra University, Karachi 75500, Pakistan; (S.H.A.); (M.E.)
| |
Collapse
|
11
|
Dans PW, Foglia SD, Nelson AJ. Data Processing in Functional Near-Infrared Spectroscopy (fNIRS) Motor Control Research. Brain Sci 2021; 11:606. [PMID: 34065136 PMCID: PMC8151801 DOI: 10.3390/brainsci11050606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
FNIRS pre-processing and processing methodologies are very important-how a researcher chooses to process their data can change the outcome of an experiment. The purpose of this review is to provide a guide on fNIRS pre-processing and processing techniques pertinent to the field of human motor control research. One hundred and twenty-three articles were selected from the motor control field and were examined on the basis of their fNIRS pre-processing and processing methodologies. Information was gathered about the most frequently used techniques in the field, which included frequency cutoff filters, wavelet filters, smoothing filters, and the general linear model (GLM). We discuss the methodologies of and considerations for these frequently used techniques, as well as those for some alternative techniques. Additionally, general considerations for processing are discussed.
Collapse
Affiliation(s)
- Patrick W. Dans
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Stevie D. Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada;
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada;
| |
Collapse
|
12
|
Houhou R, Bocklitz T. Trends in artificial intelligence, machine learning, and chemometrics applied to chemical data. ANALYTICAL SCIENCE ADVANCES 2021; 2:128-141. [PMID: 38716450 PMCID: PMC10989568 DOI: 10.1002/ansa.202000162] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2024]
Abstract
Artificial intelligence-based methods such as chemometrics, machine learning, and deep learning are promising tools that lead to a clearer and better understanding of data. Only with these tools, data can be used to its full extent, and the gained knowledge on processes, interactions, and characteristics of the sample is maximized. Therefore, scientists are developing data science tools mentioned above to automatically and accurately extract information from data and increase the application possibilities of the respective data in various fields. Accordingly, AI-based techniques were utilized for chemical data since the 1970s and this review paper focuses on the recent trends of chemometrics, machine learning, and deep learning for chemical and spectroscopic data in 2020. In this regard, inverse modeling, preprocessing methods, and data modeling applied to spectra and image data for various measurement techniques are discussed.
Collapse
Affiliation(s)
- Rola Houhou
- Institute of Physical ChemistryFriedrich‐Schiller‐University JenaJenaGermany
- Department of Photonic Data ScienceMember of Leibniz Research Alliance “Leibniz‐Health Technologies”Leibniz Institute of Photonic TechnologiesJenaGermany
| | - Thomas Bocklitz
- Institute of Physical ChemistryFriedrich‐Schiller‐University JenaJenaGermany
- Department of Photonic Data ScienceMember of Leibniz Research Alliance “Leibniz‐Health Technologies”Leibniz Institute of Photonic TechnologiesJenaGermany
| |
Collapse
|
13
|
Decoding of Walking Imagery and Idle State Using Sparse Representation Based on fNIRS. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:6614112. [PMID: 33688336 PMCID: PMC7920718 DOI: 10.1155/2021/6614112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 11/18/2022]
Abstract
Objectives Brain-computer interface (BCI) based on functional near-infrared spectroscopy (fNIRS) is expected to provide an optional active rehabilitation training method for patients with walking dysfunction, which will affect their quality of life seriously. Sparse representation classification (SRC) oxyhemoglobin (HbO) concentration was used to decode walking imagery and idle state to construct fNIRS-BCI based on walking imagery. Methods 15 subjects were recruited and fNIRS signals were collected during walking imagery and idle state. Firstly, band-pass filtering and baseline drift correction for HbO signal were carried out, and then the mean value, peak value, and root mean square (RMS) of HbO and their combinations were extracted as classification features; SRC was used to identify the extracted features and the result of SRC was compared with those of support vector machine (SVM), K-Nearest Neighbor (KNN), linear discriminant analysis (LDA), and logistic regression (LR). Results The experimental results showed that the average classification accuracy for walking imagery and idle state by SRC using three features combination was 91.55±3.30%, which was significantly higher than those of SVM, KNN, LDA, and LR (86.37±4.42%, 85.65±5.01%, 86.43±4.41%, and 76.14±5.32%, respectively), and the classification accuracy of other combined features was higher than that of single feature. Conclusions The study showed that introducing SRC into fNIRS-BCI can effectively identify walking imagery and idle state. It also showed that different time windows for feature extraction have an impact on the classification results, and the time window of 2–8 s achieved a better classification accuracy (94.33±2.60%) than other time windows. Significance. The study was expected to provide a new and optional active rehabilitation training method for patients with walking dysfunction. In addition, the experiment was also a rare study based on fNIRS-BCI using SRC to decode walking imagery and idle state.
Collapse
|
14
|
Lim LG, Ung WC, Chan YL, Lu CK, Sutoko S, Funane T, Kiguchi M, Tang TB. A Unified Analytical Framework With Multiple fNIRS Features for Mental Workload Assessment in the Prefrontal Cortex. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2367-2376. [PMID: 32986555 DOI: 10.1109/tnsre.2020.3026991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Knowing the actual level of mental workload is important to ensure the efficacy of brain-computer interface (BCI) based cognitive training. Extracting signals from limited area of a brain region might not reveal the actual information. In this study, a functional near-infrared spectroscopy (fNIRS) device equipped with multi-channel and multi-distance measurement capability was employed for the development of an analytical framework to assess mental workload in the prefrontal cortex (PFC). In addition to the conventional features, e.g. hemodynamic slope, we introduced a new feature - deep contribution ratio which is the proportion of cerebral hemodynamics to the fNIRS signals. Multiple sets of features were examined by a simple logical operator to suppress the false detection rate in identifying the activated channels. Using the number of activated channels as input to a linear support vector machine (SVM), the performance of the proposed analytical framework was assessed in classifying three levels of mental workload. The best set of features involves the combination of hemodynamic slope and deep contribution ratio, where the identified number of activated channels returned an average accuracy of 80.6% in predicting mental workload, compared to a single conventional feature (accuracy: 59.8%). This suggests the feasibility of the proposed analytical framework with multiple features as a means towards a more accurate assessment of mental workload in fNIRS-based BCI applications.
Collapse
|
15
|
Yang D, Huang R, Yoo SH, Shin MJ, Yoon JA, Shin YI, Hong KS. Detection of Mild Cognitive Impairment Using Convolutional Neural Network: Temporal-Feature Maps of Functional Near-Infrared Spectroscopy. Front Aging Neurosci 2020; 12:141. [PMID: 32508627 PMCID: PMC7253632 DOI: 10.3389/fnagi.2020.00141] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Mild cognitive impairment (MCI) is the clinical precursor of Alzheimer's disease (AD), which is considered the most common neurodegenerative disease in the elderly. Some MCI patients tend to remain stable over time and do not evolve to AD. It is essential to diagnose MCI in its early stages and provide timely treatment to the patient. In this study, we propose a neuroimaging approach to identify MCI using a deep learning method and functional near-infrared spectroscopy (fNIRS). For this purpose, fifteen MCI subjects and nine healthy controls (HCs) were asked to perform three mental tasks: N-back, Stroop, and verbal fluency (VF) tasks. Besides examining the oxygenated hemoglobin changes (ΔHbO) in the region of interest, ΔHbO maps at 13 specific time points (i.e., 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, and 65 s) during the tasks and seven temporal feature maps (i.e., two types of mean, three types of slope, kurtosis, and skewness) in the prefrontal cortex were investigated. A four-layer convolutional neural network (CNN) was applied to identify the subjects into either MCI or HC, individually, after training the CNN model with ΔHbO maps and temporal feature maps above. Finally, we used the 5-fold cross-validation approach to evaluate the performance of the CNN. The results of temporal feature maps exhibited high classification accuracies: The average accuracies for the N-back task, Stroop task, and VFT, respectively, were 89.46, 87.80, and 90.37%. Notably, the highest accuracy of 98.61% was achieved from the ΔHbO slope map during 20-60 s interval of N-back tasks. Our results indicate that the fNIRS imaging approach based on temporal feature maps is a promising diagnostic method for early detection of MCI and can be used as a tool for clinical doctors to identify MCI from their patients.
Collapse
Affiliation(s)
- Dalin Yang
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Ruisen Huang
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - So-Hyeon Yoo
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - Myung-Jun Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Jin A Yoon
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan-si, South Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| |
Collapse
|