1
|
Engström J, Wei R, McDonald AD, Garcia A, O'Kelly M, Johnson L. Resolving uncertainty on the fly: modeling adaptive driving behavior as active inference. Front Neurorobot 2024; 18:1341750. [PMID: 38576893 PMCID: PMC10991681 DOI: 10.3389/fnbot.2024.1341750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Understanding adaptive human driving behavior, in particular how drivers manage uncertainty, is of key importance for developing simulated human driver models that can be used in the evaluation and development of autonomous vehicles. However, existing traffic psychology models of adaptive driving behavior either lack computational rigor or only address specific scenarios and/or behavioral phenomena. While models developed in the fields of machine learning and robotics can effectively learn adaptive driving behavior from data, due to their black box nature, they offer little or no explanation of the mechanisms underlying the adaptive behavior. Thus, generalizable, interpretable, computational models of adaptive human driving behavior are still rare. This paper proposes such a model based on active inference, a behavioral modeling framework originating in computational neuroscience. The model offers a principled solution to how humans trade progress against caution through policy selection based on the single mandate to minimize expected free energy. This casts goal-seeking and information-seeking (uncertainty-resolving) behavior under a single objective function, allowing the model to seamlessly resolve uncertainty as a means to obtain its goals. We apply the model in two apparently disparate driving scenarios that require managing uncertainty, (1) driving past an occluding object and (2) visual time-sharing between driving and a secondary task, and show how human-like adaptive driving behavior emerges from the single principle of expected free energy minimization.
Collapse
Affiliation(s)
| | - Ran Wei
- Department of Industrial and Systems Engineering, Texas A&M, College Station, TX, United States
| | - Anthony D. McDonald
- Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Alfredo Garcia
- Department of Industrial and Systems Engineering, Texas A&M, College Station, TX, United States
| | | | | |
Collapse
|
2
|
Stano P. Chemical Systems for Wetware Artificial Life: Selected Perspectives in Synthetic Cell Research. Int J Mol Sci 2023; 24:14138. [PMID: 37762444 PMCID: PMC10532297 DOI: 10.3390/ijms241814138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The recent and important advances in bottom-up synthetic biology (SB), in particular in the field of the so-called "synthetic cells" (SCs) (or "artificial cells", or "protocells"), lead us to consider the role of wetware technologies in the "Sciences of Artificial", where they constitute the third pillar, alongside the more well-known pillars hardware (robotics) and software (Artificial Intelligence, AI). In this article, it will be highlighted how wetware approaches can help to model life and cognition from a unique perspective, complementary to robotics and AI. It is suggested that, through SB, it is possible to explore novel forms of bio-inspired technologies and systems, in particular chemical AI. Furthermore, attention is paid to the concept of semantic information and its quantification, following the strategy recently introduced by Kolchinsky and Wolpert. Semantic information, in turn, is linked to the processes of generation of "meaning", interpreted here through the lens of autonomy and cognition in artificial systems, emphasizing its role in chemical ones.
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy
| |
Collapse
|
3
|
Froese T. Irruption Theory: A Novel Conceptualization of the Enactive Account of Motivated Activity. ENTROPY (BASEL, SWITZERLAND) 2023; 25:748. [PMID: 37238503 PMCID: PMC10217218 DOI: 10.3390/e25050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Cognitive science is lacking conceptual tools to describe how an agent's motivations, as such, can play a role in the generation of its behavior. The enactive approach has made progress by developing a relaxed naturalism, and by placing normativity at the core of life and mind; all cognitive activity is a kind of motivated activity. It has rejected representational architectures, especially their reification of the role of normativity into localized "value" functions, in favor of accounts that appeal to system-level properties of the organism. However, these accounts push the problem of reification to a higher level of description, given that the efficacy of agent-level normativity is completely identified with the efficacy of non-normative system-level activity, while assuming operational equivalency. To allow normativity to have its own efficacy, a new kind of nonreductive theory is proposed: irruption theory. The concept of irruption is introduced to indirectly operationalize an agent's motivated involvement in its activity, specifically in terms of a corresponding underdetermination of its states by their material basis. This implies that irruptions are associated with increased unpredictability of (neuro)physiological activity, and they should, hence, be quantifiable in terms of information-theoretic entropy. Accordingly, evidence that action, cognition, and consciousness are linked to higher levels of neural entropy can be interpreted as indicating higher levels of motivated agential involvement. Counterintuitively, irruptions do not stand in contrast to adaptive behavior. Rather, as indicated by artificial life models of complex adaptive systems, bursts of arbitrary changes in neural activity can facilitate the self-organization of adaptivity. Irruption theory therefore, makes it intelligible how an agent's motivations, as such, can make effective differences to their behavior, without requiring the agent to be able to directly control their body's neurophysiological processes.
Collapse
Affiliation(s)
- Tom Froese
- Embodied Cognitive Science Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son 904-0495, Okinawa, Japan
| |
Collapse
|
4
|
Bolis D, Dumas G, Schilbach L. Interpersonal attunement in social interactions: from collective psychophysiology to inter-personalized psychiatry and beyond. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210365. [PMID: 36571122 PMCID: PMC9791489 DOI: 10.1098/rstb.2021.0365] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this article, we analyse social interactions, drawing on diverse points of views, ranging from dialectics, second-person neuroscience and enactivism to dynamical systems, active inference and machine learning. To this end, we define interpersonal attunement as a set of multi-scale processes of building up and materializing social expectations-put simply, anticipating and interacting with others and ourselves. While cultivating and negotiating common ground, via communication and culture-building activities, are indispensable for the survival of the individual, the relevant multi-scale mechanisms have been largely considered in isolation. Here, collective psychophysiology, we argue, can lend itself to the fine-tuned analysis of social interactions, without neglecting the individual. On the other hand, an interpersonal mismatch of expectations can lead to a breakdown of communication and social isolation known to negatively affect mental health. In this regard, we review psychopathology in terms of interpersonal misattunement, conceptualizing psychiatric disorders as disorders of social interaction, to describe how individual mental health is inextricably linked to social interaction. By doing so, we foresee avenues for an inter-personalized psychiatry, which moves from a static spectrum of disorders to a dynamic relational space, focusing on how the multi-faceted processes of social interaction can help to promote mental health. This article is part of the theme issue 'Concepts in interaction: social engagement and inner experiences'.
Collapse
Affiliation(s)
- Dimitris Bolis
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Kraepelinstrasse 2–10, Muenchen-Schwabing 80804, Germany,Centre for Philosophy of Science, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal,Department of System Neuroscience, National Institute for Physiological Sciences (NIPS), Okazaki 444-0867, Japan
| | - Guillaume Dumas
- Precision Psychiatry and Social Physiology Laboratory, CHU Ste-Justine Research Center, Department of Psychiatry, University of Montreal, Quebec, Canada H3T 1J4,Mila - Quebec AI Institute, University of Montreal, Quebec, Canada H2S 3H1,Culture Mind and Brain Program, Department of Psychiatry, McGill University, Montreal, Quebec, Canada H3A 1A1
| | - Leonhard Schilbach
- Independent Max Planck Research Group for Social Neuroscience, Max Planck Institute of Psychiatry, Kraepelinstrasse 2–10, Muenchen-Schwabing 80804, Germany,Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilians Universität, Munich 40629, Germany,Department of General Psychiatry 2, LVR-Klinikum Düsseldorf, Düsseldorf 80336, Germany
| |
Collapse
|
5
|
Stano P. A four-track perspective for bottom-up synthetic cells. Front Bioeng Biotechnol 2022; 10:1029446. [PMID: 36246382 PMCID: PMC9563707 DOI: 10.3389/fbioe.2022.1029446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
|