1
|
Capilla-López J, Hernández RG, Carrero-Rojas G, Calvo PM, Alvarez FJ, de la Cruz RR, Pastor AM. VEGF, but Not BDNF, Prevents the Downregulation of KCC2 Induced by Axotomy in Extraocular Motoneurons. Int J Mol Sci 2024; 25:9942. [PMID: 39337430 PMCID: PMC11432591 DOI: 10.3390/ijms25189942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The potassium-chloride cotransporter KCC2 is the main extruder of Cl- in neurons. It plays a fundamental role in the activity of the inhibitory neurotransmitters (GABA and glycine) since low levels of KCC2 promote intracellular Cl- accumulation, leading to the depolarizing activity of GABA and glycine. The downregulation of this cotransporter occurs in neurological disorders characterized by hyperexcitability, such as epilepsy, neuropathic pain, and spasticity. KCC2 is also downregulated after axotomy. If muscle reinnervation is allowed, the KCC2 levels recover in motoneurons. Therefore, we argued that target-derived neurotrophic factors might be involved in the regulation of KCC2 expression. For this purpose, we performed the axotomy of extraocular motoneurons via the monocular enucleation of adult rats, and a pellet containing either VEGF or BDNF was chronically implanted in the orbit. Double confocal immunofluorescence of choline acetyl-transferase (ChAT) and KCC2 was carried out in the brainstem sections. Axotomy led to a KCC2 decrease in the neuropil and somata of extraocular motoneurons, peaking at 15 days post-lesion, with the exception of the abducens motoneuron somata. VEGF administration prevented the axotomy-induced KCC2 downregulation. By contrast, BDNF either maintained or reduced the KCC2 levels following axotomy, suggesting that BDNF is involved in the axotomy-induced KCC2 downregulation in extraocular motoneurons. The finding that VEGF prevents KCC2 decrease opens up new possibilities for the treatment of neurological disorders coursing with neuronal hyperactivity due to KCC2 downregulation.
Collapse
Affiliation(s)
- Jaime Capilla-López
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Rosendo G Hernández
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Génova Carrero-Rojas
- Center for Anatomy and Cell Biology, Division of Anatomy, Medical University Vienna, 1090 Vienna, Austria
| | - Paula M Calvo
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
2
|
Silva-Hucha S, Fernández de Sevilla ME, Humphreys KM, Benson FE, Franco JM, Pozo D, Pastor AM, Morcuende S. VEGF expression disparities in brainstem motor neurons of the SOD1 G93A ALS model: Correlations with neuronal vulnerability. Neurotherapeutics 2024; 21:e00340. [PMID: 38472048 PMCID: PMC11070718 DOI: 10.1016/j.neurot.2024.e00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neuromuscular disease characterized by severe muscle weakness mainly due to degeneration and death of motor neurons. A peculiarity of the neurodegenerative processes is the variable susceptibility among distinct neuronal populations, exemplified by the contrasting resilience of motor neurons innervating the ocular motor system and the more vulnerable facial and hypoglossal motor neurons. The crucial role of vascular endothelial growth factor (VEGF) as a neuroprotective factor in the nervous system is well-established since a deficit of VEGF has been related to motoneuronal degeneration. In this study, we investigated the survival of ocular, facial, and hypoglossal motor neurons utilizing the murine SOD1G93A ALS model at various stages of the disease. Our primary objective was to determine whether the survival of the different brainstem motor neurons was linked to disparate VEGF expression levels in resilient and susceptible motor neurons throughout neurodegeneration. Our findings revealed a selective loss of motor neurons exclusively within the vulnerable nuclei. Furthermore, a significantly higher level of VEGF was detected in the more resistant motor neurons, the extraocular ones. We also examined whether TDP-43 dynamics in the brainstem motor neuron of SOD mice was altered. Our data suggests that the increased VEGF levels observed in extraocular motor neurons may potentially underlie their resistance during the neurodegenerative processes in ALS in a TDP-43-independent manner. Our work might help to better understand the underlying mechanisms of selective vulnerability of motor neurons in ALS.
Collapse
Affiliation(s)
- Silvia Silva-Hucha
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain; Cell and Developmental Biology, University College London, Medawar Building, Gower Street, London WC1E 6BT, UK
| | | | - Kirsty M Humphreys
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Fiona E Benson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jaime M Franco
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-Universidad Pablo de Olavide-Universidad de Sevilla-CSIC, 41092, Seville, Spain
| | - David Pozo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-Universidad Pablo de Olavide-Universidad de Sevilla-CSIC, 41092, Seville, Spain; Department of Medical Biochemistry, Molecular Biology and Immunology, Universidad de Sevilla Medical School, 41009 Seville, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| | - Sara Morcuende
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
3
|
Abstract
Vascular endothelial growth factor (VEGF) is well known for its angiogenic activity, but recent evidence has revealed a neuroprotective action of this factor on injured or diseased neurons. In the present review, we summarize the most relevant findings that have contributed to establish a link between VEGF deficiency and neuronal degeneration. At issue, 1) mutant mice with reduced levels of VEGF show adult-onset muscle weakness and motoneuron degeneration resembling amyotrophic lateral sclerosis (ALS), 2) administration of VEGF to different animal models of motoneuron degeneration improves motor performance and ameliorates motoneuronal degeneration, and 3) there is an association between low plasmatic levels of VEGF and human ALS. Altogether, the results presented in this review highlight VEGF as an essential motoneuron neurotrophic factor endowed with promising therapeutic potential for the treatment of motoneuron disorders.
Collapse
Affiliation(s)
- Paula M Calvo
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rosendo G Hernández
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
4
|
Kalashnikova I, Cambell H, Kolpek D, Park J. Optimization and characterization of miRNA-129-5p-encapsulated poly (lactic- co-glycolic acid) nanoparticles to reprogram activated microglia. NANOSCALE ADVANCES 2023; 5:3439-3452. [PMID: 37383067 PMCID: PMC10295030 DOI: 10.1039/d3na00149k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/05/2023] [Indexed: 06/30/2023]
Abstract
Microglia have become a therapeutic target of many inflammation-mediated diseases in the central nervous system (CNS). Recently, microRNA (miRNA) has been proposed as an important regulator of immune responses. Specifically, miRNA-129-5p has been shown to play critical roles in the regulation of microglia activation. We have demonstrated that biodegradable poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) modulated innate immune cells and limited neuroinflammation after injury to the CNS. In this study, we optimized and characterized PLGA-based NPs for miRNA-129-5p delivery to utilize their synergistic immunomodulatory features for activated microglia modulation. A series of nanoformulations employing multiple excipients including epigallocatechin gallate (EGCG), spermidine (Sp), or polyethyleneimine (PEI) for miRNA-129-5p complexation and miRNA-129-5p conjugation to PLGA (PLGA-miR) were utilized. We characterized a total of six nanoformulations through physicochemical, biochemical, and molecular biological methods. In addition, we investigated the immunomodulatory effects of multiple nanoformulations. The data indicated that the immunomodulatory effects of nanoformulation, PLGA-miR with the excipient Sp (PLGA-miR+Sp) and PEI (PLGA-miR+PEI) were significant compared to other nanoformulations including naked PLGA-based NP. These nanoformulations promoted a sustained release of miRNA-129-5p and polarization of activated microglia into a more pro-regenerative phenotype. Moreover, they enhanced the expression of multiple regeneration-associated factors, while alleviating the expression of pro-inflammatory factors. Collectively, the proposed nanoformulations in this study highlight the promising therapeutic tools for synergistic immunomodulatory effects between PLGA-based NPs and miRNA-129-5p to modulate activated microglia which will have numerous applications for inflammation-derived diseases.
Collapse
Affiliation(s)
- Irina Kalashnikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
| | - Heather Cambell
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
| | - Daniel Kolpek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky 789 S. Limestone Lexington KY 40506 USA +1-859-257-1850
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky Lexington KY USA
| |
Collapse
|
5
|
Abstract
VEGF was initially discovered due to its angiogenic activity and therefore named "vascular endothelial growth factor." However, its more recently discovered neurotrophic activity may be evolutionarily more ancient. Our previous work showed that all the changes produced by axotomy on the firing activity and synaptic inputs of abducens motoneurons were completely restored after VEGF administration. Therefore, we hypothesized that the lack of VEGF delivered by retrograde transport from the periphery should also affect the physiology of otherwise intact abducens motoneurons. For VEGF retrograde blockade, we chronically applied a neutralizing VEGF antibody to the lateral rectus muscle. Recordings of extracellular single-unit activity and eye movements were made in alert cats before and after the application of the neutralizing antibody. Our data revealed that intact, noninjured abducens motoneurons retrogradely deprived of VEGF exhibited noticeable changes in their firing pattern. There is a general decrease in firing rate and a significant reduction in eye position and eye velocity sensitivity (i.e., a decrease in the tonic and phasic components of their discharge, respectively). Moreover, by means of confocal immunocytochemistry, motoneurons under VEGF blockade showed a marked reduction in the density of afferent synaptic terminals contacting with their cell bodies. Altogether, the present findings demonstrate that the lack of retrogradely delivered VEGF renders abducens motoneurons into an axotomy-like state. This indicates that VEGF is an essential retrograde factor for motoneuronal synaptic drive and discharge activity.
Collapse
|
6
|
Hu W, Song M, Wang C, Guo Z, Li Y, Wang D. Structural characterization of polysaccharide purified from Hericium erinaceus fermented mycelium and its pharmacological basis for application in Alzheimer's disease: Oxidative stress related calcium homeostasis. Int J Biol Macromol 2021; 193:358-369. [PMID: 34688684 DOI: 10.1016/j.ijbiomac.2021.10.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/03/2021] [Accepted: 10/17/2021] [Indexed: 11/16/2022]
Abstract
The purified polysaccharides from Hericium erinaceus fermented mycelium entitled with PHEB was analyzed and it was mainly composed of six glycosidic bonds. It has been confirmed to show the relieving activity against Alzheimer's Disease (AD)- just as behaviors of B6C3-Tg (APPswePSEN1d E9)/Nju double transgenic [Genotype: (Appswe)T, (Psen1) T] (APP/PS1) mice. Six-week PHEB administration significantly improved the cognitive behavior of mice. Brain injury, amyloid beta deposition and tau hyperphosphorylation were alleviated in PHEB-treated AD mice without changes in other tissues. PHEB alleviated the oxidative stress in brains of AD mice via regulation the Nrf2 and its downstream kinase, which further improved the cholinergic system function. Proteomics and bioinformatics analysis showed that the therapeutic effect of PHEB is achieved by regulating calcium homeostasis mediated by oxidative stress. Furthermore, PHEB regulated the CaMK II/IV to achieve the calcium homeostasis in brains; and ultimately to show the anti-AD property.
Collapse
Affiliation(s)
- Wenji Hu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Minkai Song
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Ziang Guo
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Shah JS, Pedraza O, Festic E, Oskarsson B. The relationship between ventilatory function and cognitive and behavioral impairment in ALS. Amyotroph Lateral Scler Frontotemporal Degener 2021; 22:62-67. [PMID: 34348534 DOI: 10.1080/21678421.2021.1924206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective: To study the association between ventilatory function and cognitive and behavioral impairment in ALS patients accounting for the effects of pertinent covariates. Methods: Four hundred and eighty-one patients were identified from the Mayo Clinic Florida ALS registry who had concurrent forced vital capacity (FVC) and cognitive and behavioral testing using the ALS Cognitive Behavioral Screen (ALS-CBS). Multiple linear regression analysis was used to study the effects of FVC and relevant covariates on the ALS-CBS cognition score, subscores, and caregiver behavioral inventory. Results: FVC was positively correlated to the cognitive and behavioral subscores on the ALS-CBS (p < 0.001), and the correlation was independent of the effects of site of ALS onset, age, and years of education. Conclusion: Cognitive and behavioral function may be adversely affected by ventilatory impairment in ALS. The presence of cognitive and behavioral impairment warrants a detailed assessment of ventilatory function.
Collapse
Affiliation(s)
| | - Otto Pedraza
- Psychiatry & Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Emir Festic
- Allergy and Pulmonary Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
8
|
Ciervo Y, Gatto N, Allen C, Grierson A, Ferraiuolo L, Mead RJ, Shaw PJ. Adipose-derived stem cells protect motor neurons and reduce glial activation in both in vitro and in vivo models of ALS. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:413-433. [PMID: 33869658 PMCID: PMC8044387 DOI: 10.1016/j.omtm.2021.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative condition for which new therapeutic options are urgently needed. We injected GFP+ adipose-derived stem cells (EGFP-ADSCs) directly into the cerebrospinal fluid (CSF) of transgenic SOD1G93A mice, a well-characterized model of familial ALS. Despite short-term survival of the injected cells and limited engraftment efficiency, EGFP-ADSCs improved motor function and delayed disease onset by promoting motor neuron (MN) survival and reducing glial activation. We then tested the in vitro neuroprotective potential of mouse ADSCs in astrocyte/MN co-cultures where ALS astrocytes show neurotoxicity. ADSCs were able to rescue MN death caused by ALS astrocytes derived from symptomatic SOD1G93A mice. Further, ADSCs were found to reduce the inflammatory signature of ALS astrocytes by inhibiting the release of pro-inflammatory mediators and inducing the secretion of neuroprotective factors. Finally, mouse ADSCs were able to protect MNs from the neurotoxicity mediated by human induced astrocytes (iAstrocytes) derived from patients with either sporadic or familial ALS, thus for the first time showing the potential therapeutic translation of ADSCs across the spectrum of human ALS. These data in two translational models of ALS show that, through paracrine mechanisms, ADSCs support MN survival and modulate the toxic microenvironment that contributes to neurodegeneration in ALS.
Collapse
Affiliation(s)
- Yuri Ciervo
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK
| | - Noemi Gatto
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK
| | - Chloe Allen
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK
| | - Andrew Grierson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK
| | - Richard J. Mead
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK
- Corresponding author: Richard J. Mead, PhD, Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK.
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK
- Corresponding author: Pamela J. Shaw, Professor, Dame, Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, The University of Sheffield, 385 Glossop Rd., Sheffield S10 2HQ, UK.
| |
Collapse
|
9
|
Neuroprotective Effect of Vascular Endothelial Growth Factor on Motoneurons of the Oculomotor System. Int J Mol Sci 2021; 22:ijms22020814. [PMID: 33467517 PMCID: PMC7830098 DOI: 10.3390/ijms22020814] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/04/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) was initially characterized as a potent angiogenic factor based on its activity on the vascular system. However, it is now well established that VEGF also plays a crucial role as a neuroprotective factor in the nervous system. A deficit of VEGF has been related to motoneuronal degeneration, such as that occurring in amyotrophic lateral sclerosis (ALS). Strikingly, motoneurons of the oculomotor system show lesser vulnerability to neurodegeneration in ALS compared to other motoneurons. These motoneurons presented higher amounts of VEGF and its receptor Flk-1 than other brainstem pools. That higher VEGF level could be due to an enhanced retrograde input from their target muscles, but it can also be produced by the motoneurons themselves and act in an autocrine way. By contrast, VEGF’s paracrine supply from the vicinity cells, such as glial cells, seems to represent a minor source of VEGF for brainstem motoneurons. In addition, ocular motoneurons experiment an increase in VEGF and Flk-1 level in response to axotomy, not observed in facial or hypoglossal motoneurons. Therefore, in this review, we summarize the differences in VEGF availability that could contribute to the higher resistance of extraocular motoneurons to injury and neurodegenerative diseases.
Collapse
|
10
|
Li Q, Haney MS. The role of glia in protein aggregation. Neurobiol Dis 2020; 143:105015. [PMID: 32663608 DOI: 10.1016/j.nbd.2020.105015] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/01/2020] [Accepted: 07/07/2020] [Indexed: 01/20/2023] Open
Abstract
Protein aggregation diseases involve intracellular accumulation or extracellular deposition of certain protein species in neuronal or glial cells, leading to neurodegeneration and shortened lifespan. Prime examples include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), which are affected by overlapping or specific aggregation-prone proteins. Mounting evidence suggests that dysfunctional glial cells may be major drivers for some diseases, and when they are not causal factors, they could still significantly exacerbate or alleviate disease progression by playing a plethora of detrimental or beneficial roles. Here we review the diverse functions performed by glial cells in a variety of protein aggregation diseases, highlighting the complexity of the issue and the interconnected relationships between these multifaceted effects.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Michael S Haney
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Calvo PM, de la Cruz RR, Pastor AM. A Single Intraventricular Injection of VEGF Leads to Long-Term Neurotrophic Effects in Axotomized Motoneurons. eNeuro 2020; 7:ENEURO.0467-19.2020. [PMID: 32371476 PMCID: PMC7266142 DOI: 10.1523/eneuro.0467-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/21/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) has been recently demonstrated to induce neuroprotective and synaptotrophic effects on lesioned neurons. Hitherto, the administration of VEGF in different animal models of lesion or disease has been conducted following a chronic protocol of administration. We questioned whether a single dose of VEGF, administered intraventricularly, could induce long-term neurotrophic effects on injured motoneurons. For this purpose, we performed in cats the axotomy of abducens motoneurons and the injection of VEGF into the fourth ventricle in the same surgical session and investigated the discharge characteristics of axotomized and treated motoneurons by single-unit extracellular recordings in the chronic alert preparation. We found that injured motoneurons treated with a single VEGF application discharged with normal characteristics, showing neuronal eye position (EP) and velocity sensitivities similar to control, thereby preventing the axotomy-induced alterations. These effects were present for a prolonged period of time (50 d) after VEGF administration. By confocal immunofluorescence we also showed that the synaptic stripping that ensues lesion was not present, rather motoneurons showed a normal synaptic coverage. Moreover, we demonstrated that VEGF did not lead to any angiogenic response pointing to a direct action of the factor on neurons. In summary, a single dose of VEFG administered just after motoneuron axotomy is able to prevent for a long time the axotomy-induced firing and synaptic alterations without any associated vascular sprouting. We consider that these data are of great relevance due to the potentiality of VEGF as a therapeutic agent in neuronal lesions and diseases.
Collapse
Affiliation(s)
- Paula M Calvo
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla 41012, Spain
| |
Collapse
|
12
|
Silva-Hucha S, Carrero-Rojas G, Fernández de Sevilla ME, Benítez-Temiño B, Davis-López de Carrizosa MA, Pastor AM, Morcuende S. Sources and lesion-induced changes of VEGF expression in brainstem motoneurons. Brain Struct Funct 2020; 225:1033-1053. [PMID: 32189115 DOI: 10.1007/s00429-020-02057-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/06/2020] [Indexed: 12/31/2022]
Abstract
Motoneurons of the oculomotor system show lesser vulnerability to neurodegeneration compared to other cranial motoneurons, as seen in amyotrophic lateral sclerosis (ALS). The overexpression of vascular endothelial growth factor (VEGF) is involved in motoneuronal protection. As previously shown, motoneurons innervating extraocular muscles present a higher amount of VEGF and its receptor Flk-1 compared to facial or hypoglossal motoneurons. Therefore, we aimed to study the possible sources of VEGF to brainstem motoneurons, such as glial cells and target muscles. We also studied the regulation of VEGF in response to axotomy in ocular, facial, and hypoglossal motor nuclei. Basal VEGF expression in astrocytes and microglial cells of the cranial motor nuclei was low. Although the presence of VEGF in the different target muscles for brainstem motoneurons was similar, the presynaptic element of the ocular neuromuscular junction showed higher amounts of Flk-1, which could result in greater efficiency in the capture of the factor by oculomotor neurons. Seven days after axotomy, a clear glial reaction was observed in all the brainstem nuclei, but the levels of the neurotrophic factor remained low in glial cells. Only the injured motoneurons of the oculomotor system showed an increase in VEGF and Flk-1, but such an increase was not detected in axotomized facial or hypoglossal motoneurons. Taken together, our findings suggest that the ocular motoneurons themselves upregulate VEGF expression in response to lesion. In conclusion, the low VEGF expression observed in glial cells suggests that these cells are not the main source of VEGF for brainstem motoneurons. Therefore, the higher VEGF expression observed in motoneurons innervating extraocular muscles is likely due either to the fact that this factor is more avidly taken up from the target muscles, in basal conditions, or is produced by these motoneurons themselves, and acts in an autocrine manner after axotomy.
Collapse
Affiliation(s)
- Silvia Silva-Hucha
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Génova Carrero-Rojas
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Beatriz Benítez-Temiño
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sara Morcuende
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
13
|
Kaur G, Gauthier SA, Perez-Gonzalez R, Pawlik M, Singh AB, Cosby B, Mohan PS, Smiley JF, Levy E. Cystatin C prevents neuronal loss and behavioral deficits via the endosomal pathway in a mouse model of down syndrome. Neurobiol Dis 2018; 120:165-173. [PMID: 30176349 DOI: 10.1016/j.nbd.2018.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/14/2018] [Accepted: 08/30/2018] [Indexed: 01/18/2023] Open
Abstract
Cystatin C (CysC) plays diverse protective roles under conditions of neuronal challenge. We investigated whether CysC protects from trisomy-induced pathologies in a mouse model of Down syndrome (DS), the most common cause of developmental cognitive and behavioral impairments in humans. We have previously shown that the segmental trisomy mouse model, Ts[Rb(12.1716)]2Cje (Ts2) has DS-like neuronal and behavioral deficiencies. The current study reveals that transgene-mediated low levels of human CysC overexpression has a preventive effect on numerous neuropathologies in the brains of Ts2 mice, including reducing early and late endosome enlargement in cortical neurons and decreasing loss of basal forebrain cholinergic neurons (BFCNs). Consistent with these cellular benefits, behavioral dysfunctions were also prevented, including deficits in nesting behavior and spatial memory. We determined that the CysC-induced neuroprotective mechanism involves activation of the phosphotidylinositol kinase (PI3K)/AKT pathway. Activating this pathway leads to enhanced clearance of accumulated endosomal substrates, protecting cells from DS-mediated dysfunctions in the endosomal system and, for BFCNs, from neurodegeneration. Our findings suggest that modulation of the PI3/AKT pathway offers novel therapeutic interventions for patients with DS.
Collapse
Affiliation(s)
| | | | | | - Monika Pawlik
- Nathan S. Kline Institute, Orangeburg, NY, USA 10962
| | | | | | | | - John F Smiley
- Nathan S. Kline Institute, Orangeburg, NY, USA 10962; Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA 10016
| | - Efrat Levy
- Nathan S. Kline Institute, Orangeburg, NY, USA 10962; Department of Psychiatry, NYU Langone School of Medicine, New York, NY, USA 10016; Department of Biochemistry and Molecular Pharmacology, NYU Langone School of Medicine, New York, NY, USA 10016; Neuroscience Institute, NYU Langone School of Medicine, New York, NY, USA 10016.
| |
Collapse
|
14
|
Acosta L, Morcuende S, Silva-Hucha S, Pastor AM, de la Cruz RR. Vascular Endothelial Growth Factor (VEGF) Prevents the Downregulation of the Cholinergic Phenotype in Axotomized Motoneurons of the Adult Rat. Front Mol Neurosci 2018; 11:241. [PMID: 30050409 PMCID: PMC6052088 DOI: 10.3389/fnmol.2018.00241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) was initially characterized by its activity on the vascular system. However, there is growing evidence indicating that VEGF also acts as a neuroprotective factor, and that its administration to neurons suffering from trauma or disease is able to rescue them from cell death. We questioned whether VEGF could also maintain damaged neurons in a neurotransmissive mode by evaluating the synthesis of their neurotransmitter, and whether its action would be direct or through its well-known angiogenic activity. Adult rat extraocular motoneurons were chosen as the experimental model. Lesion was performed by monocular enucleation and immediately a gelatine sponge soaked in VEGF was implanted intraorbitally. After 7 days, abducens, trochlear, and oculomotor nuclei were examined by immunohistochemistry against choline acetyltransferase (ChAT), the biosynthetic enzyme of the motoneuronal neurotransmitter acetylcholine. Lesioned motoneurons exhibited a noticeable ChAT downregulation which was prevented by VEGF administration. To explore whether this action was mediated via an increase in blood vessels or in their permeability, we performed immunohistochemistry against laminin, glucose transporter-1 and the plasmatic protein albumin. The quantification of the immunolabeling intensity against these three proteins showed no significant differences between VEGF-treated, axotomized and control animals. Therefore, the present data indicate that VEGF is able to sustain the cholinergic phenotype in damaged motoneurons, which is a first step for adequate neuromuscular neurotransmission, and that this action seems to be mediated directly on neurons since no sign of angiogenic activity was evident. These data reinforces the therapeutical potential of VEGF in motoneuronal diseases.
Collapse
Affiliation(s)
- Lourdes Acosta
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Sara Morcuende
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Silvia Silva-Hucha
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
15
|
Izrael M, Slutsky SG, Admoni T, Cohen L, Granit A, Hasson A, Itskovitz-Eldor J, Krush Paker L, Kuperstein G, Lavon N, Yehezkel Ionescu S, Solmesky LJ, Zaguri R, Zhuravlev A, Volman E, Chebath J, Revel M. Safety and efficacy of human embryonic stem cell-derived astrocytes following intrathecal transplantation in SOD1 G93A and NSG animal models. Stem Cell Res Ther 2018; 9:152. [PMID: 29871694 PMCID: PMC5989413 DOI: 10.1186/s13287-018-0890-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a motor neuron (MN) disease characterized by the loss of MNs in the central nervous system. As MNs die, patients progressively lose their ability to control voluntary movements, become paralyzed and eventually die from respiratory/deglutition failure. Despite the selective MN death in ALS, there is growing evidence that malfunctional astrocytes play a crucial role in disease progression. Thus, transplantation of healthy astrocytes may compensate for the diseased astrocytes. METHODS We developed a good manufacturing practice-grade protocol for generation of astrocytes from human embryonic stem cells (hESCs). The first stage of our protocol is derivation of astrocyte progenitor cells (APCs) from hESCs. These APCs can be expanded in large quantities and stored frozen as cell banks. Further differentiation of the APCs yields an enriched population of astrocytes with more than 90% GFAP expression (hES-AS). hES-AS were injected intrathecally into hSOD1G93A transgenic mice and rats to evaluate their therapeutic potential. The safety and biodistribution of hES-AS were evaluated in a 9-month study conducted in immunodeficient NSG mice under good laboratory practice conditions. RESULTS In vitro, hES-AS possess the activities of functional healthy astrocytes, including glutamate uptake, promotion of axon outgrowth and protection of MNs from oxidative stress. A secretome analysis shows that these hES-AS also secrete several inhibitors of metalloproteases as well as a variety of neuroprotective factors (e.g. TIMP-1, TIMP-2, OPN, MIF and Midkine). Intrathecal injections of the hES-AS into transgenic hSOD1G93A mice and rats significantly delayed disease onset and improved motor performance compared to sham-injected animals. A safety study in immunodeficient mice showed that intrathecal transplantation of hES-AS is safe. Transplanted hES-AS attached to the meninges along the neuroaxis and survived for the entire duration of the study without formation of tumors or teratomas. Cell-injected mice gained similar body weight to the sham-injected group and did not exhibit clinical signs that could be related to the treatment. No differences from the vehicle control were observed in hematological parameters or blood chemistry. CONCLUSION Our findings demonstrate the safety and potential therapeutic benefits of intrathecal injection of hES-AS for the treatment of ALS.
Collapse
Affiliation(s)
- Michal Izrael
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Shalom Guy Slutsky
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Tamar Admoni
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Louisa Cohen
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Avital Granit
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Arik Hasson
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Joseph Itskovitz-Eldor
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Lena Krush Paker
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Graciela Kuperstein
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Neta Lavon
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Shiran Yehezkel Ionescu
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Leonardo Javier Solmesky
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Rachel Zaguri
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Alina Zhuravlev
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Ella Volman
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Judith Chebath
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michel Revel
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
16
|
Castañeda-Cabral JL, Beas-Zarate C, Gudiño-Cabrera G, Ureña-Guerrero ME. Glutamate Neonatal Excitotoxicity Modifies VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 Protein Expression Profiles During Postnatal Development of the Cerebral Cortex and Hippocampus of Male Rats. J Mol Neurosci 2017; 63:17-27. [PMID: 28755050 DOI: 10.1007/s12031-017-0952-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor (VEGF) exerts both neuroprotective and proinflammatory effects in the brain, depending on the VEGF (A-E) and VEGF receptor (VEGFR1-3) types involved. Neonatal monosodium glutamate (MSG) treatment triggers an excitotoxic degenerative process associated with several neuropathological conditions, and VEGF messenger RNA (mRNA) expression is increased at postnatal day (PD) 14 in rat hippocampus (Hp) following the treatment. The aim of this work was to establish the changes in immunoreactivity to VEGF-A, VEGF-B, VEGFR-1 and VEGFR-2 proteins induced by neonatal MSG treatment (4 g/kg, subcutaneous, at PD1, 3, 5 and 7) in the cerebral motor cortex (CMC) and Hp. Samples collected from PD2 to PD60 from control and MSG-treated male Wistar rats were assessed by western blotting for each protein. Considering that immunoreactivity measured by western blotting is related to the protein expression level, we found that each protein in each cerebral region has a specific expression profile throughout the studied ages, and all profiles were differentially modified by MSG. Specifically, neonatal MSG treatment significantly increased the immunoreactivity to the following: (1) VEGF-A at PD8-PD10 in the CMC and at PD6-PD8 in the Hp; (2) VEGF-B at PD2, PD6 and PD10 in the CMC and at PD8-PD9 in the Hp; and (3) VEGFR-2 at PD6-PD8 in the CMC and at PD21-PD60 in the Hp. Also, MSG significantly reduced the immunoreactivity to the following: (1) VEGF-B at PD8-PD9 and PD45-PD60 in the CMC; and (2) VEGFR-1 at PD4-PD6 and PD14-PD21 in the CMC and at PD4, PD9-PD10 and PD60 in the Hp. Our results indicate that VEGF-mediated signalling is involved in the excitotoxic process triggered by neonatal MSG treatment and should be further characterized.
Collapse
Affiliation(s)
- Jose Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Carlos Beas-Zarate
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico. .,Laboratorio de Regeneración y Desarrollo Neural, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, 45221, Zapopan, Jalisco, Mexico.
| | - Graciela Gudiño-Cabrera
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - Monica E Ureña-Guerrero
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Zapopan, Jalisco, Mexico. .,Laboratorio de Biología de la Neurotransmisión, Edificio de Posgrado, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Km 15.5 Carretera a Nogales, Camino Ing. Ramón Padilla Sánchez Km 2, 45221, Zapopan, Jalisco, Mexico.
| |
Collapse
|
17
|
Liu YJ, Tsai PY, Chern Y. Energy Homeostasis and Abnormal RNA Metabolism in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2017; 11:126. [PMID: 28522961 PMCID: PMC5415567 DOI: 10.3389/fncel.2017.00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/18/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease that is clinically characterized by progressive muscle weakness and impaired voluntary movement due to the loss of motor neurons in the brain, brain stem and spinal cord. To date, no effective treatment is available. Ample evidence suggests that impaired RNA homeostasis and abnormal energy status are two major pathogenesis pathways in ALS. In the present review article, we focus on recent studies that report molecular insights of both pathways, and discuss the possibility that energy dysfunction might negatively regulate RNA homeostasis via the impairment of cytoplasmic-nuclear shuttling in motor neurons and subsequently contribute to the development of ALS.
Collapse
Affiliation(s)
- Yu-Ju Liu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Po-Yi Tsai
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Yijuang Chern
- Division of Neuroscience, Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| |
Collapse
|
18
|
Passipieri JA, Christ GJ. The Potential of Combination Therapeutics for More Complete Repair of Volumetric Muscle Loss Injuries: The Role of Exogenous Growth Factors and/or Progenitor Cells in Implantable Skeletal Muscle Tissue Engineering Technologies. Cells Tissues Organs 2016; 202:202-213. [PMID: 27825153 DOI: 10.1159/000447323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Despite the robust regenerative capacity of skeletal muscle, there are a variety of congenital and acquired conditions in which the volume of skeletal muscle loss results in major permanent functional and cosmetic deficits. These latter injuries are referred to as volumetric muscle loss (VML) injuries or VML-like conditions, and they are characterized by the simultaneous absence of multiple tissue components (i.e., nerves, vessels, muscles, satellite cells, and matrix). There are currently no effective treatment options. Regenerative medicine/tissue engineering technologies hold great potential for repair of these otherwise irrecoverable VML injuries. In this regard, three-dimensional scaffolds have been used to deliver sustained amounts of growth factors into a variety of injury models, to modulate host cell recruitment and extracellular matrix remodeling. However, this is a nascent field of research, and more complete functional improvements require more precise control of the spatiotemporal distribution of critical growth factors over a physiologically relevant range. This is especially true for VML injuries where incorporation of a cellular component into the scaffolds might provide not only a source of new tissue formation but also additional signals for host cell migration, recruitment, and survival. To this end, we review the major features of muscle repair and regeneration for largely recoverable injuries, and then discuss recent cell- and/or growth factor-based approaches to repair the more profound and irreversible VML and VML-like injuries. The underlying supposition is that more rationale incorporation of exogenous growth factors and/or cellular components will be required to optimize the regenerative capacity of implantable therapeutics for VML repair.
Collapse
|
19
|
Herrando-Grabulosa M, Mulet R, Pujol A, Mas JM, Navarro X, Aloy P, Coma M, Casas C. Novel Neuroprotective Multicomponent Therapy for Amyotrophic Lateral Sclerosis Designed by Networked Systems. PLoS One 2016; 11:e0147626. [PMID: 26807587 PMCID: PMC4726541 DOI: 10.1371/journal.pone.0147626] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic Lateral Sclerosis is a fatal, progressive neurodegenerative disease characterized by loss of motor neuron function for which there is no effective treatment. One of the main difficulties in developing new therapies lies on the multiple events that contribute to motor neuron death in amyotrophic lateral sclerosis. Several pathological mechanisms have been identified as underlying events of the disease process, including excitotoxicity, mitochondrial dysfunction, oxidative stress, altered axonal transport, proteasome dysfunction, synaptic deficits, glial cell contribution, and disrupted clearance of misfolded proteins. Our approach in this study was based on a holistic vision of these mechanisms and the use of computational tools to identify polypharmacology for targeting multiple etiopathogenic pathways. By using a repositioning analysis based on systems biology approach (TPMS technology), we identified and validated the neuroprotective potential of two new drug combinations: Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine. In addition, we estimated their molecular mechanisms of action in silico and validated some of these results in a well-established in vitro model of amyotrophic lateral sclerosis based on cultured spinal cord slices. The results verified that Aliretinoin and Pranlukast, and Aliretinoin and Mefloquine promote neuroprotection of motor neurons and reduce microgliosis.
Collapse
Affiliation(s)
- Mireia Herrando-Grabulosa
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Roger Mulet
- Anaxomics Biotech SL, Barcelona, Catalonia, Spain
| | - Albert Pujol
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | | | - Xavier Navarro
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
| | - Patrick Aloy
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Mireia Coma
- Anaxomics Biotech SL, Barcelona, Catalonia, Spain
- * E-mail: (CC); (MC)
| | - Caty Casas
- Group of Neuroplasticity and Regeneration, Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Barcelona, Spain
- * E-mail: (CC); (MC)
| |
Collapse
|
20
|
Zhao F, Deng J, Yu X, Li D, Shi H, Zhao Y. Protective effects of vascular endothelial growth factor in cultured brain endothelial cells against hypoglycemia. Metab Brain Dis 2015; 30:999-1007. [PMID: 25761767 PMCID: PMC4491374 DOI: 10.1007/s11011-015-9659-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/16/2015] [Indexed: 12/21/2022]
Abstract
Hypoglycemia is a common and serious problem among patients with type 1 diabetes receiving treatment with insulin. Clinical studies have demonstrated that hypoglycemic edema is involved in the initiation of hypoglycemic brain damage. However, the mechanisms of this edema are poorly understood. Vascular endothelial growth factor (VEGF), a potent regulator of blood vessel function, has been observed an important candidate hormone induced by hypoglycemia to protect neurons by restoring plasma glucose. Whether VEGF has a protective effect against hypoglycemia-induced damage in brain endothelial cells is still unknown. To investigate the effects of hypoglycemia on cerebral microvascular endothelial cells and assess the protective effect of exogenous VEGF on endothelial cells during hypoglycemia, confluent monolayers of the brain endothelial cell line bEnd.3 were treated with normal (5.5 mM glucose), hypoglycemic (0, 0.5, 1 mM glucose) medium or hypoglycemic medium in the presence of VEGF. The results clearly showed that hypoglycemia significantly downregulated the expression of claudin-5 in bEnd.3 cells, without affecting ZO-1 and occludin expression and distribution. Besides, transendothelial permeability significantly increased under hypoglycemic conditions compared to that under control conditions. Moreover, the hypoglycemic medium in presence of VEGF decreased endothelial permeability via the inhibition of claudin-5 degradation and improved hypoglycemia-induced cell toxicity. Furthermore, Glucose transporter-1 (Glut-1) and apoptosis regulator Bcl-2 expression were significantly upregulated. Taken together, hypoglycemia can significantly increase paraendocellular permeability by downregulating claudin-5 expression. We further showed that VEGF protected brain endothelial cells against hypoglycemia by enhancing glucose passage, reducing endothelial cell death, and ameliorating paraendocellular permeability.
Collapse
Affiliation(s)
- Fei Zhao
- Neurologic Department, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No.600, Yishan Road, Xuhui District, Shanghai, 200233 China
| | - Jiangshan Deng
- Neurologic Department, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No.600, Yishan Road, Xuhui District, Shanghai, 200233 China
| | - Xiaoyan Yu
- Neurologic Department, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No.600, Yishan Road, Xuhui District, Shanghai, 200233 China
| | - Dawei Li
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Hong Shi
- Neurologic Department, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No.600, Yishan Road, Xuhui District, Shanghai, 200233 China
| | - Yuwu Zhao
- Neurologic Department, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, No.600, Yishan Road, Xuhui District, Shanghai, 200233 China
| |
Collapse
|
21
|
Kotomin I, Valtink M, Hofmann K, Frenzel A, Morawietz H, Werner C, Funk RHW, Engelmann K. Sutureless fixation of amniotic membrane for therapy of ocular surface disorders. PLoS One 2015; 10:e0125035. [PMID: 25955359 PMCID: PMC4425509 DOI: 10.1371/journal.pone.0125035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 01/17/2015] [Indexed: 11/18/2022] Open
Abstract
Amniotic membrane is applied to the diseased ocular surface to stimulate wound healing and tissue repair, because it releases supportive growth factors and cytokines. These effects fade within about a week after application, necessitating repeated application. Generally, amniotic membrane is fixed with sutures to the ocular surface, but surgical intervention at the inflamed or diseased site can be detrimental. Therefore, we have developed a system for the mounting of amniotic membrane between two rings for application to a diseased ocular surface without surgical intervention (sutureless amniotic membrane transplantation). With this system, AmnioClip, amniotic membrane can be applied like a large contact lens. First prototypes were tested in an experiment on oneself for wearing comfort. The final system was tested on 7 patients in a pilot study. A possible influence of the ring system on the biological effects of amniotic membrane was analyzed by histochemistry and by analyzing the expression of vascular endothelial growth factor-A (VEGF-A), hepatocyte growth factor (HGF), fibroblast growth factor 2 (FGF 2) and pigment epithelium-derived factor (PEDF) from amniotic membranes before and after therapeutic application. The final product, AmnioClip, showed good tolerance and did not impair the biological effects of amniotic membrane. VEGF-A and PEDF mRNA was expressed in amniotic membrane after storage and mounting before transplantation, but was undetectable after a 7-day application period. Consequently, transplantation of amniotic membranes with AmnioClip provides a sutureless and hence improved therapeutic strategy for corneal surface disorders.
Collapse
Affiliation(s)
- Ilya Kotomin
- Department of Ophthalmology, Klinikum Chemnitz gGmbH, Chemnitz, Germany
| | - Monika Valtink
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Kai Hofmann
- Deutsche Gesellschaft für Gewebetransplantation, DGFG, Hannover, Germany
| | - Annika Frenzel
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, TU Dresden, Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, TU Dresden, Dresden, Germany
- CRTD / DFG-Center for Regenerative Therapies Dresden—Cluster of Excellence, Dresden, Germany
| | - Carsten Werner
- CRTD / DFG-Center for Regenerative Therapies Dresden—Cluster of Excellence, Dresden, Germany
- Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Richard H. W. Funk
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
- CRTD / DFG-Center for Regenerative Therapies Dresden—Cluster of Excellence, Dresden, Germany
| | - Katrin Engelmann
- Department of Ophthalmology, Klinikum Chemnitz gGmbH, Chemnitz, Germany
- Deutsche Gesellschaft für Gewebetransplantation, DGFG, Hannover, Germany
- CRTD / DFG-Center for Regenerative Therapies Dresden—Cluster of Excellence, Dresden, Germany
- * E-mail:
| |
Collapse
|
22
|
Involvement of GluR2 up-regulation in neuroprotection by electroacupuncture pretreatment via cannabinoid CB1 receptor in mice. Sci Rep 2015; 5:9490. [PMID: 25830356 PMCID: PMC4381620 DOI: 10.1038/srep09490] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/19/2015] [Indexed: 01/05/2023] Open
Abstract
We investigated whether glutamate receptor subunit 2 (GluR2) is involved in EA pretreatment-induced neuroprotection via cannabinoid CB1 receptors (CB1R) after global cerebral ischemia in mice. Two hours after electric acupuncture (EA) pretreatment, global cerebral ischemia (GCI) was induced by bilateral common carotid artery occlusion (BCCAO) for 20 min. The GluR2 expression was examined in the hippocampus after reperfusion. Cell survival, neuronal apoptosis, the Bax/Bcl-2 ratio and neurological scores were evaluated at 24 h after BCCAO in the presence or absence of the GluR2 inhibitor. Furthermore, the GluR2 was determined in the presence and absence of CB1R inhibitor. Our results showed EA pretreatment enhanced expression of GluR2 in the hippocampus 2 h after reperfusion. Moreover, EA pretreatment improved neurological outcome, promoted cell survival, inhibited neuronal apoptosis, and decreased the Bax/Bcl-2 ratio after reperfusion. GluR2 knockdown by GluR2 siRNA effectively reversed the beneficial effects of EA pretreatment. Furthermore, CB1R siRNA and two CB1R antagonists blocked the elevation of GluR2 expression by EA pretreatment, whereas the two CB1R agonists up-regulated GluR2 expression as EA pretreatment. In conclusion, GluR2 up-regulation is involved in neuroprotection of EA pretreatment against GCI through CB1R, suggesting that GluR2 may be a novel target for stroke intervention.
Collapse
|
23
|
Fan Y, Wang L, Liu C, Zhu H, Zhou L, Wang Y, Wu X, Li Q. Local renin-angiotensin system regulates hypoxia-induced vascular endothelial growth factor synthesis in mesenchymal stem cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2505-2514. [PMID: 26045756 PMCID: PMC4440065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
The use of mesenchymal stem cell (MSC) transplantation for ischemic heart disease has been reported for several years. The main mechanisms responsible for the efficacy of this technique include the differentiation of MSCs into cardiomyocytes and endothelial cells, as well as paracrine effects. However, the differentiation rates of MSCs are very low, and the differentiated cells are not mature. In addition, MSCs undergo massive cell death within a few days after transplantation to the ischemic myocardium. Paracrine effects may thus play a major role in MSCs transplantation. Angiotensin II (Ang II) is known to be produced locally in the ischemic myocardium, but the effects of hypoxia on the local renin-angiotensin system (RAS) in MSCs, and the role of the RAS in hypoxia-induced vascular endothelial growth factor (VEGF) secretion remain unknown. In this study, we demonstrated that hypoxia stimulated the local RAS in MSCs, while pretreatment with the Ang II type 1 (AT1) receptor antagonist losartan reduced hypoxia-induced hypoxia-inducible factor 1α (HIF-1α) and VEGF production. The ERK1/2 inhibitor U0126 and the Akt inhibitor LY294002 also inhibited hypoxia-induced HIF-1α and VEGF production. Overall, these results indicate that the local RAS in MSCs regulates hypoxia-induced VEGF production through ERK1/2, Akt and HIF-1α pathways via the AT1 receptor.
Collapse
Affiliation(s)
- Yue Fan
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing, P.R.China
| | - Lulu Wang
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing, P.R.China
| | - Chao Liu
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing, P.R.China
| | - Hongyi Zhu
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing, P.R.China
| | - Lu Zhou
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing, P.R.China
| | - Yu Wang
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing, P.R.China
| | - Xiaowei Wu
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing, P.R.China
| | - Qingping Li
- Department of Pharmacology, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University Nanjing, P.R.China
| |
Collapse
|
24
|
Yalcinbayir O, Buyukuysal RL, Gelisken O, Buyukuysal C, Can B. Amino acid and vascular endothelial growth factor levels in subretinal fluid in rhegmatogenous retinal detachment. Mol Vis 2014; 20:1357-65. [PMID: 25352742 PMCID: PMC4169890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/19/2014] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To study the concentrations of amino acids and vascular endothelial growth factor (VEGF) in subretinal fluid (SRF) of cases with rhegmatogenous retinal detachment (RRD). The relevance of the results with postoperative anatomic and functional success in RRD was investigated. METHODS Fifty-three patients were included in this prospective study. The study group consisted of 46 patients who had scleral buckling surgery with the diagnosis of RRD, and SRF was obtained during the surgery. The control specimens consisted of vitreous samples of seven patients who were diagnosed with pars plana vitrectomy without RRD. Study cases were divided into three groups, corresponding to the duration of retinal detachment. Clinical characteristics, including best corrected visual acuity (BCVA) and anatomic status at month 6, were recorded. Concentrations of 15 selected amino acids were quantified by using high performance liquid chromatography, and VEGF levels were measured with enzyme immunoassay. RESULTS When compared with the control group, SRF concentrations of aspartate, citrulline, glutamate, and glycine increased significantly in the study group (p<0.05). Statistical analysis showed that concentrations of alanine, isoleucine, leucine, methionine, phenylalanine, threonine, tyrosine, and valine decreased (p<0.05). SRF levels of glutamine, taurine, and serine had no significant change. SRF VEGF levels were significantly higher than the vitreous samples of the controls (p<0.001). Time-dependent changes and interactions between VEGF and amino acids were observed. There was no correlation between the concentrations of amino acids or VEGF with the parameters of BCVA and anatomical success. CONCLUSIONS Significant changes occur in concentrations of amino acids and VEGF in SRF of cases with RRD. Our results suggest that several mechanisms contribute to the pathophysiology.
Collapse
Affiliation(s)
- Ozgur Yalcinbayir
- Department of Ophthalmology. Uludag University School of Medicine, Bursa, Turkey
| | | | - Oner Gelisken
- Department of Ophthalmology. Uludag University School of Medicine, Bursa, Turkey
| | - Cagatay Buyukuysal
- Department of Biostatistics. Bulent Ecevit University School of Medicine, Zonguldak, Turkey
| | - Basak Can
- Department of Ophthalmology. Uludag University School of Medicine, Bursa, Turkey
| |
Collapse
|
25
|
VEGF levels in CSF and serum in mild ALS patients. J Neurol Sci 2014; 346:216-20. [PMID: 25204587 DOI: 10.1016/j.jns.2014.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder involving both upper and lower motor neurons in the cerebral cortex, brainstem and spinal cord. Vascular endothelial growth factor (VEGF) was originally described as a factor with a regulatory role in vascular growth and development, and now it also functions as a neurotrophic factor protecting motoneurons from insults such as oxidative stress, hypoxia and glutamate-excitotoxicity, but the role of VEGF in ALS is still unclear. The aim of this study is to measure cerebrospinal fluid (CSF) and serum VEGF levels in patients with ALS, and to investigate whether there are correlations between CSF and serum VEGF levels and clinical parameters of the disease and whether VEGF has a prognostic and evaluating potential for ALS. Results showed that VEGF levels were found to increase significantly in CSF and serum in ALS patients studied; they were positively and significantly correlated with the disease duration in ALS patients and inversely and significantly correlated with disease progression rate (DPR) of ALS patients. Moreover, CSF and serum from ALS patients with long duration and slow disease progression rate revealed higher VEGF levels as compared to ALS patients with short duration and rapid disease progression rate. In conclusion, VEGF upregulation may indicate an activation of compensatory responses in ALS which may reflect or in fact account for increased duration and slow disease progression rate. We propose that VEGF may be a useful biomarker having the prognostic and evaluating potential for ALS.
Collapse
|
26
|
Moloney EB, de Winter F, Verhaagen J. ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. Front Neurosci 2014; 8:252. [PMID: 25177267 PMCID: PMC4132373 DOI: 10.3389/fnins.2014.00252] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/29/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is being redefined as a distal axonopathy, in that many molecular changes influencing motor neuron degeneration occur at the neuromuscular junction (NMJ) at very early stages of the disease prior to symptom onset. A huge variety of genetic and environmental causes have been associated with ALS, and interestingly, although the cause of the disease can differ, both sporadic and familial forms of ALS show a remarkable similarity in terms of disease progression and clinical manifestation. The NMJ is a highly specialized synapse, allowing for controlled signaling between muscle and nerve necessary for skeletal muscle function. In this review we will evaluate the clinical, animal experimental and cellular/molecular evidence that supports the idea of ALS as a distal axonopathy. We will discuss the early molecular mechanisms that occur at the NMJ, which alter the functional abilities of the NMJ. Specifically, we focus on the role of axon guidance molecules on the stability of the cytoskeleton and how these molecules may directly influence the cells of the NMJ in a way that may initiate or facilitate the dismantling of the neuromuscular synapse in the presymptomatic stages of ALS.
Collapse
Affiliation(s)
- Elizabeth B. Moloney
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and ScienceAmsterdam, Netherlands
| | - Fred de Winter
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and ScienceAmsterdam, Netherlands
- Department of Neurosurgery, Leiden University Medical CentreLeiden, Netherlands
| | - Joost Verhaagen
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and ScienceAmsterdam, Netherlands
- Centre for Neurogenomics and Cognitive Research, Vrije Universiteit AmsterdamAmsterdam, Netherlands
| |
Collapse
|
27
|
Tapia R. Cellular and molecular mechanisms of motor neuron death in amyotrophic lateral sclerosis: a perspective. Front Cell Neurosci 2014; 8:241. [PMID: 25177274 PMCID: PMC4132292 DOI: 10.3389/fncel.2014.00241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/29/2014] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México Mexico City, Mexico
| |
Collapse
|
28
|
Lovejoy DB, Guillemin GJ. The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis. Front Aging Neurosci 2014; 6:173. [PMID: 25100994 PMCID: PMC4107949 DOI: 10.3389/fnagi.2014.00173] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/01/2014] [Indexed: 12/12/2022] Open
Abstract
Modulations of the potentially toxic transition metals iron (Fe) and copper (Cu) are implicated in the neurodegenerative process in a variety of human disease states including amyotrophic lateral sclerosis (ALS). However, the precise role played by these metals is still very much unclear, despite considerable clinical and experimental data suggestive of a role for these elements in the neurodegenerative process. The discovery of mutations in the antioxidant enzyme Cu/Zn superoxide dismutase 1 (SOD-1) in ALS patients established the first known cause of ALS. Recent data suggest that various mutations in SOD-1 affect metal-binding of Cu and Zn, in turn promoting toxic protein aggregation. Copper homeostasis is also disturbed in ALS, and may be relevant to ALS pathogenesis. Another set of interesting observations in ALS patients involves the key nutrient Fe. In ALS patients, Fe loading can be inferred by studies showing increased expression of serum ferritin, an Fe-storage protein, with high serum ferritin levels correlating to poor prognosis. Magnetic resonance imaging of ALS patients shows a characteristic T2 shortening that is attributed to the presence of Fe in the motor cortex. In mutant SOD-1 mouse models, increased Fe is also detected in the spinal cord and treatment with Fe-chelating drugs lowers spinal cord Fe, preserves motor neurons, and extends lifespan. Inflammation may play a key causative role in Fe accumulation, but this is not yet conclusive. Excess transition metals may enhance induction of endoplasmic reticulum (ER) stress, a system that is already under strain in ALS. Taken together, the evidence suggests a role for transition metals in ALS progression and the potential use of metal-chelating drugs as a component of future ALS therapy.
Collapse
Affiliation(s)
- David B Lovejoy
- Australian School of Advanced Medicine, Macquarie University , Sydney, NSW , Australia
| | - Gilles J Guillemin
- Australian School of Advanced Medicine, Macquarie University , Sydney, NSW , Australia
| |
Collapse
|
29
|
Vijayalakshmi K, Ostwal P, Sumitha R, Shruthi S, Varghese AM, Mishra P, Manohari SG, Sagar BC, Sathyaprabha TN, Nalini A, Raju TR, Alladi PA. Role of VEGF and VEGFR2 Receptor in Reversal of ALS-CSF Induced Degeneration of NSC-34 Motor Neuron Cell Line. Mol Neurobiol 2014; 51:995-1007. [PMID: 24880751 DOI: 10.1007/s12035-014-8757-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022]
Abstract
Vascular endothelial growth factor (VEGF), the well-known angiogenic factor is both neurotrophic and neuroprotective. Altered VEGF signalling is implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), a fatal degenerative disease of motor neurons. We have shown earlier that VEGF protects NSC-34 motor neuronal cell line, when exposed to cerebrospinal fluid (CSF) from sporadic ALS patients (ALS-CSF). Here, we have investigated the consequences of ALS-CSF and VEGF supplementation on the VEGFR2 receptor and endogenous VEGF expression. ALS-CSF caused significant down-regulation of VEGFR2 as well as the Calbindin-D28K levels, but not endogenous VEGF. Exogenous supplementation restored the depletion of VEGFR2 and Calbindin-D28K with a concomitant up-regulation of endogenous VEGF. The up-regulated caspase 3 in the ALS-CSF group was reinstated to basal levels along with a significant reduction in the number of TUNEL-positive cells. Electron photomicrographs of ALS-CSF-exposed cells divulged presence of cytoplasmic vacuoles alongside severe damage to organelles like mitochondria, endoplasmic reticulum, etc. Substantial recovery of most of the damaged organelles was noted in response to VEGF supplementation. While the enhancement in endogenous VEGF levels highlights the autocrine functions, the up-regulation of VEGFR2 receptor emphasizes the paracrine functions of VEGF in modulating its neuroprotective effect against ALS-CSF. The revival of cellular organellar structure, increased calbindin expression and enhanced survival in response to VEGF supplementation consolidates the opinion that VEGF indeed has a therapeutic potential in sporadic ALS.
Collapse
Affiliation(s)
- K Vijayalakshmi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bangalore, 560 029, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm 2014; 2014:861231. [PMID: 24966471 PMCID: PMC4055424 DOI: 10.1155/2014/861231] [Citation(s) in RCA: 459] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/07/2014] [Indexed: 02/08/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) is a proinflammatory cytokine that exerts both homeostatic and pathophysiological roles in the central nervous system. In pathological conditions, microglia release large amounts of TNF-α; this de novo production of TNF-α is an important component of the so-called neuroinflammatory response that is associated with several neurological disorders. In addition, TNF-α can potentiate glutamate-mediated cytotoxicity by two complementary mechanisms: indirectly, by inhibiting glutamate transport on astrocytes, and directly, by rapidly triggering the surface expression of Ca+2 permeable-AMPA receptors and NMDA receptors, while decreasing inhibitory GABAA receptors on neurons. Thus, the net effect of TNF-α is to alter the balance of excitation and inhibition resulting in a higher synaptic excitatory/inhibitory ratio. This review summarizes the current knowledge of the cellular and molecular mechanisms by which TNF-α links the neuroinflammatory and excitotoxic processes that occur in several neurodegenerative diseases, but with a special emphasis on amyotrophic lateral sclerosis (ALS). As microglial activation and upregulation of TNF-α expression is a common feature of several CNS diseases, as well as chronic opioid exposure and neuropathic pain, modulating TNF-α signaling may represent a valuable target for intervention.
Collapse
|
31
|
Pronto-Laborinho AC, Pinto S, de Carvalho M. Roles of vascular endothelial growth factor in amyotrophic lateral sclerosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:947513. [PMID: 24987705 PMCID: PMC4022172 DOI: 10.1155/2014/947513] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound, translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will be particularly interesting to test its effects in ALS patients. In the present paper the authors make a brief description of the molecular properties of VEGF and its receptors and review its different features and therapeutic potential in the nervous system/neurodegenerative disease, particularly in ALS.
Collapse
Affiliation(s)
- Ana Catarina Pronto-Laborinho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Susana Pinto
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Mamede de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Department of Neurosciences, Hospital Santa Maria, Centro Hospitalar Lisboa Norte, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|