1
|
Sun Q, Jiang YQ, Lu MC. Topographic heterogeneity of intrinsic excitability in mouse hippocampal CA3 pyramidal neurons. J Neurophysiol 2020; 124:1270-1284. [PMID: 32937083 DOI: 10.1152/jn.00147.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Area CA3 in the hippocampus is traditionally thought to act as a homogeneous neural circuit that is vital for spatial navigation and episodic memories. However, recent studies have revealed that CA3 pyramidal neurons in dorsal hippocampus display marked anatomic and functional heterogeneity along the proximodistal (transverse) axis. The hippocampus is also known to be functionally segregated along the dorsoventral (longitudinal) axis, with dorsal hippocampus strongly involved in spatial navigation and ventral hippocampus associated with emotion and anxiety. Surprisingly, however, relatively little is known about CA3 functional heterogeneity along the dorsoventral axis. Here, we carried out mouse-brain-slice patch-clamp recordings and morphological analyses to examine the heterogeneity of CA3 cellular properties along both proximodistal and dorsoventral axes. We find that CA3 pyramidal neurons exhibit considerable heterogeneity of somatodendritic morphology and intrinsic membrane properties, with ventral CA3 (vCA3) displaying more elaborate somatodendritic morphology, lower intrinsic excitability, smaller input resistance, greater cell capacitance, and more prominent hyperpolarization-activated current than dorsal CA3 (dCA3). Furthermore, although both dCA3 and vCA3 exhibit proximal-to-distal gradients in intrinsic properties and neuronal morphology, these proximal-to-distal gradients in vCA3 are more moderate than those in dCA3. Taken together, our results extend previous findings on the proximodistal heterogeneity of dCA3 function and uncover a complex, yet orderly, pattern of topographic organization of CA3 neuronal features that extends to multiple anatomic dimensions and may contribute to its in vivo functional diversity.NEW & NOTEWORTHY Area CA3 is a major hippocampal region that is classically thought to act as a homogeneous neural network vital for spatial navigation and episodic memories. Here, we report that CA3 pyramidal neurons exhibit marked heterogeneity of somatodendritic morphology and cellular electrical properties along both proximodistal and dorsoventral axes. These new results uncover a complex, yet orderly, pattern of topographic organization of CA3 neuronal features that may contribute to its in vivo functional diversity.
Collapse
Affiliation(s)
- Qian Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Yu-Qiu Jiang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Melissa C Lu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
2
|
Zhao Z, Li L, Gu H. Dynamical Mechanism of Hyperpolarization-Activated Non-specific Cation Current Induced Resonance and Spike-Timing Precision in a Neuronal Model. Front Cell Neurosci 2018; 12:62. [PMID: 29568262 PMCID: PMC5852126 DOI: 10.3389/fncel.2018.00062] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/20/2018] [Indexed: 01/23/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated cation current (Ih) plays important roles in the achievement of many physiological/pathological functions in the nervous system by modulating the electrophysiological activities, such as the rebound (spike) to hyperpolarization stimulations, subthreshold membrane resonance to sinusoidal currents, and spike-timing precision to stochastic factors. In the present paper, with increasing gh (conductance of Ih), the rebound (spike) and subthreshold resonance appear and become stronger, and the variability of the interspike intervals (ISIs) becomes lower, i.e., the enhancement of spike-timing precision, which are simulated in a conductance-based theoretical model and well explained by the nonlinear concept of bifurcation. With increasing gh, the stable node to stable focus, to coexistence behavior, and to firing via the codimension-1 bifurcations (Hopf bifurcation, saddle-node bifurcation, saddle-node bifurcations on an invariant circle, and saddle homoclinic orbit) and codimension-2 bifurcations such as Bogdanov-Takens (BT) point related to the transition between saddle-node and Hopf bifurcations, are acquired with 1- and 2-parameter bifurcation analysis. The decrease of variability of ISIs with increasing gh is induced by the fast decrease of the standard deviation of ISIs, which is related to the increase of the capacity of resisting noisy disturbance due to the firing becomes far away from the bifurcation point. The enhancement of the rebound (spike) with increasing gh builds up a relationship to the decrease of the capacity of resisting disturbance like the hyperpolarization stimulus as the resting state approaches the bifurcation point. The “typical”-resonance and non-resonance appear in the parameter region of the stable focus and node far away from the bifurcation points, respectively. The complex or “strange” dynamics, such as the “weak”-resonance for the stable node near the transition point between the stable node and focus and the non-resonance for the stable focus close to the codimension-1 and −2 bifurcation points, are discussed.
Collapse
Affiliation(s)
- Zhiguo Zhao
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China.,School of Basic Science, Henan Institute of Technology, Xinxiang, China
| | - Li Li
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China
| | - Huaguang Gu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Butler JL, Hay YA, Paulsen O. Comparison of three gamma oscillations in the mouse entorhinal-hippocampal system. Eur J Neurosci 2018; 48:2795-2806. [PMID: 29356162 PMCID: PMC6221063 DOI: 10.1111/ejn.13831] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/29/2017] [Accepted: 01/08/2018] [Indexed: 02/01/2023]
Abstract
The entorhinal-hippocampal system is an important circuit in the brain, essential for certain cognitive tasks such as memory and navigation. Different gamma oscillations occur in this circuit, with the medial entorhinal cortex (mEC), CA3 and CA1 all generating gamma oscillations with different properties. These three gamma oscillations converge within CA1, where much work has gone into trying to isolate them from each other. Here, we compared the gamma generators in the mEC, CA3 and CA1 using optogenetically induced theta-gamma oscillations. Expressing channelrhodopsin-2 in principal neurons in each of the three regions allowed for the induction of gamma oscillations via sinusoidal blue light stimulation at theta frequency. Recording the oscillations in CA1 in vivo, we found that CA3 stimulation induced slower gamma oscillations than CA1 stimulation, matching in vivo reports of spontaneous CA3 and CA1 gamma oscillations. In brain slices ex vivo, optogenetic stimulation of CA3 induced slower gamma oscillations than stimulation of either mEC or CA1, whose gamma oscillations were of similar frequency. All three gamma oscillations had a current sink-source pair between the perisomatic and dendritic layers of the same region. Taking advantage of this model to analyse gamma frequency mechanisms in slice, we showed using pharmacology that all three gamma oscillations were dependent on the same types of synaptic receptor, being abolished by blockade of either type A γ-aminobutyric acid receptors or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors, and insensitive to blockade of N-methyl-d-aspartate receptors. These results indicate that a fast excitatory-inhibitory feedback loop underlies the generation of gamma oscillations in all three regions.
Collapse
Affiliation(s)
- James L Butler
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Y Audrey Hay
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Ole Paulsen
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|
4
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
5
|
Schmidt-Hieber C, Nolan MF. Synaptic integrative mechanisms for spatial cognition. Nat Neurosci 2017; 20:1483-1492. [PMID: 29073648 DOI: 10.1038/nn.4652] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022]
Abstract
Synaptic integrative mechanisms have profound effects on electrical signaling in the brain that, although largely hidden from recording methods that observe the spiking activity of neurons, may be critical for the encoding, storage and retrieval of information. Here we review roles for synaptic integrative mechanisms in the selection, generation and plasticity of place and grid fields, and in related temporal codes for the representation of space. We outline outstanding questions and challenges in the testing of hypothesized models for spatial computation and memory.
Collapse
Affiliation(s)
| | - Matthew F Nolan
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Peng Y, Wang J, Zheng C. Study on dynamic characteristics' change of hippocampal neuron reduced models caused by the Alzheimer's disease. JOURNAL OF BIOLOGICAL DYNAMICS 2016; 10:250-262. [PMID: 26998957 DOI: 10.1080/17513758.2016.1162856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the paper, based on the electrophysiological experimental data, the Hippocampal neuron reduced model under the pathology condition of Alzheimer's disease (AD) has been built by modifying parameters' values. The reduced neuron model's dynamic characteristics under effect of AD are comparatively studied. Under direct current stimulation, compared with the normal neuron model, the AD neuron model's dynamic characteristics have obviously been changed. The neuron model under the AD condition undergoes supercritical Andronov-Hopf bifurcation from the rest state to the continuous discharge state. It is different from the neuron model under the normal condition, which undergoes saddle-node bifurcation. So, the neuron model changes into a resonator with monostable state from an integrator with bistable state under AD's action. The research reveals the neuron model's dynamic characteristics' changing under effect of AD, and provides some theoretic basis for AD research by neurodynamics theory.
Collapse
Affiliation(s)
- Yueping Peng
- a Key Laboratory of Biomedical Information Engineering of Education Ministry , Xi'an Jiaotong University , Xi'an , People's Republic of China
- b Information Engineering Department , Engineering University of Chinese Armed Police Force , Xi'an , People's Republic of China
| | - Jue Wang
- a Key Laboratory of Biomedical Information Engineering of Education Ministry , Xi'an Jiaotong University , Xi'an , People's Republic of China
| | - Chongxun Zheng
- a Key Laboratory of Biomedical Information Engineering of Education Ministry , Xi'an Jiaotong University , Xi'an , People's Republic of China
| |
Collapse
|
7
|
Butler JL, Paulsen O. Hippocampal network oscillations - recent insights from in vitro experiments. Curr Opin Neurobiol 2015; 31:40-4. [PMID: 25137641 DOI: 10.1016/j.conb.2014.07.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 07/26/2014] [Accepted: 07/30/2014] [Indexed: 01/07/2023]
Abstract
Network oscillations are present throughout the mammalian brain. They are important for certain cognitive functions, such as learning and memory. The hippocampus exhibits prominent oscillations similar to those seen in other parts of the cortex. Due to its highly organised lamellar structure, ex vivo and in vitro preparations from the hippocampus have provided experimental models within which to study network oscillations. As such, experiments in hippocampal slices continue to progress our understanding about both the mechanisms and functions of cortical network oscillations. Here, advances from the past two years are summarised, and the current state of the field discussed.
Collapse
Affiliation(s)
- James L Butler
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, United Kingdom.
| |
Collapse
|
8
|
Cherubini E, Miles R. The CA3 region of the hippocampus: how is it? What is it for? How does it do it? Front Cell Neurosci 2015; 9:19. [PMID: 25698930 PMCID: PMC4318343 DOI: 10.3389/fncel.2015.00019] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/12/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Enrico Cherubini
- Department of Neuroscience, International School for Advanced Studies Trieste, Italy ; European Brain Research Institute (EBRI) Rita Levi-Montalcini Rome, Italy
| | - Richard Miles
- Institut du Cerveau et de la Moelle, CHU Pitié-Salpêtrière Inserm U1127, CNRS UMR7225, Université Pierre et Marie Curie UMR S1127 Paris, France
| |
Collapse
|
9
|
Phase-resetting as a tool of information transmission. Curr Opin Neurobiol 2014; 31:206-13. [PMID: 25529003 DOI: 10.1016/j.conb.2014.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 11/23/2022]
Abstract
Models of information transmission in the brain largely rely on firing rate codes. The abundance of oscillatory activity in the brain suggests that information may be also encoded using the phases of ongoing oscillations. Sensory perception, working memory and spatial navigation have been hypothesized to use phase codes, and cross-frequency coordination and phase synchronization between brain areas have been proposed to gate the flow of information. Phase codes generally require the phase of the oscillations to be reset at specific reference points for consistent coding, and coordination between oscillators requires favorable phase resetting characteristics. Recent evidence supports a role for neural oscillations in providing temporal reference windows that allow for correct parsing of phase-coded information.
Collapse
|