1
|
Banerjee T, Pati S, Tiwari P, Vaidya VA. Chronic hM3Dq-DREADD-mediated chemogenetic activation of parvalbumin-positive inhibitory interneurons in postnatal life alters anxiety and despair-like behavior in adulthood in a task- and sex-dependent manner. J Biosci 2022. [DOI: 10.1007/s12038-022-00308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Moxon-Emre I, Daskalakis ZJ, Blumberger DM, Croarkin PE, Lyon RE, Forde NJ, Tani H, Truong P, Lai MC, Desarkar P, Sailasuta N, Szatmari P, Ameis SH. Modulation of Dorsolateral Prefrontal Cortex Glutamate/Glutamine Levels Following Repetitive Transcranial Magnetic Stimulation in Young Adults With Autism. Front Neurosci 2021; 15:711542. [PMID: 34690671 PMCID: PMC8527173 DOI: 10.3389/fnins.2021.711542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Altered excitatory and inhibitory neurotransmission has been implicated in autism spectrum disorder (ASD). Interventions using repetitive transcranial magnetic stimulation (rTMS) to enhance or inhibit cortical excitability are under study for various targets, though the mechanistic effects of rTMS have yet to be examined in ASD. Here, we examined whether an excitatory rTMS treatment course modulates glutamatergic (Glx) or γ-aminobutyric acid (GABA) metabolite levels in emerging adults with ASD. Twenty-eight participants with ASD and executive function impairment [23.3 ± 4.69 years; seven-female] underwent two magnetic resonance spectroscopy (MRS) scans of the left dorsolateral prefrontal cortex (DLPFC). MRS scans were acquired before and after participants with ASD were randomized to receive a 20-session course of active or sham rTMS to the DLPFC. Baseline MRS data was available for 19 typically developing controls [23.8 ± 4.47 years; six-female]. Metabolite levels for Glx and GABA+ were compared between ASD and control groups, at baseline, and metabolite level change, pre-to-post-rTMS treatment, was compared in ASD participants that underwent active vs. sham rTMS. Absolute change in Glx was greater in the active vs. sham-rTMS group [F(1,19) = 6.54, p = 0.02], though the absolute change in GABA+ did not differ between groups. We also examined how baseline metabolite levels related to pre/post-rTMS metabolite level change, in the active vs. sham groups. rTMS group moderated the relation between baseline Glx and pre-to-post-rTMS Glx change, such that baseline Glx predicted Glx change in the active-rTMS group only [b = 1.52, SE = 0.32, t(18) = 4.74, p < 0.001]; Glx levels increased when baseline levels were lower, and decreased when baseline levels were higher. Our results indicate that an interventional course of excitatory rTMS to the DLPFC may modulate local Glx levels in emerging adults with ASD, and align with prior reports of glutamatergic alterations following rTMS. Interventional studies that track glutamatergic markers may provide mechanistic insights into the therapeutic potential of rTMS in ASD. Clinical Trial Registration:Clinicaltrials.gov (ID: NCT02311751), https://clinicaltrials.gov/ct2/show/NCT02311751?term=ameis&rank=1; NCT02311751.
Collapse
Affiliation(s)
- Iska Moxon-Emre
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Paul E Croarkin
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Rachael E Lyon
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Natalie J Forde
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Hideaki Tani
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Truong
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Meng-Chuan Lai
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Pushpal Desarkar
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Napapon Sailasuta
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Szatmari
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephanie H Ameis
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
3
|
Chan KL, Hock A, Edden RAE, MacMillan EL, Henning A. Improved prospective frequency correction for macromolecule-suppressed GABA editing with metabolite cycling at 3T. Magn Reson Med 2021; 86:2945-2956. [PMID: 34431549 DOI: 10.1002/mrm.28950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE To combine metabolite cycling with J-difference editing (MC MEGA) to allow for prospective frequency correction at each transient without additional acquisitions and compare it to water-suppressed MEGA-PRESS (WS MEGA) editing with intermittent prospective frequency correction. METHODS Macromolecule-suppressed gamma aminobutyric acid (GABA)-edited experiments were performed in a phantom and in the occipital lobe (OCC) (n = 12) and medial prefrontal cortex (mPFC) (n = 8) of the human brain. Water frequency consistency and average offset over acquisition time were compared. GABA multiplet patterns, signal intensities, and choline subtraction artifacts were evaluated. In vivo GABA concentrations were compared and related to frequency offset in the OCC. RESULTS MC MEGA was more stable with 21% and 32% smaller water frequency SDs in the OCC and mPFC, respectively. MC MEGA also had 39% and 40% smaller average frequency offsets in the OCC and mPFC, respectively. Phantom GABA multiplet patterns and signal intensities were similar. In vivo GABA concentrations were smaller in MC MEGA than in WS MEGA, with median (interquartile range) of 2.52 (0.27) and 2.29 (0.19) institutional units (i.u.), respectively in the OCC scans without prior DTI, and 0.99 (0.3) and 1.72 (0.5), respectively in the mPFC. OCC WS MEGA GABA concentrations, but not MC MEGA GABA concentrations were moderately correlated with frequency offset. mPFC WS MEGA spectra contained significantly more subtraction artifacts than MC MEGA spectra. CONCLUSION MC MEGA is feasible and allows for prospective frequency correction at every transient. MC MEGA GABA concentrations were not biased by frequency offsets and contained less subtraction artifacts compared to WS MEGA.
Collapse
Affiliation(s)
- Kimberly L Chan
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andreas Hock
- MR Clinical Science, Philips Health Systems, Horgen, Switzerland
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Erin L MacMillan
- UBC MRI Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,SFU ImageTech Lab, Simon Fraser University, Surrey, British Columbia, Canada.,MR Clinical Science, Philips Healthcare, Markham, Ontario, Canada
| | - Anke Henning
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
4
|
Zhang W, Xiong BR, Zhang LQ, Huang X, Yuan X, Tian YK, Tian XB. The Role of the GABAergic System in Diseases of the Central Nervous System. Neuroscience 2021; 470:88-99. [PMID: 34242730 DOI: 10.1016/j.neuroscience.2021.06.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
It is well known that the central nervous system (CNS) is a complex neuronal network and its function depends on the balance between excitatory and inhibitory neurons. Disruption of the excitatory/inhibitory (E/I) balance is the main cause for the majority of the CNS diseases. In this review, we will discuss roles of the inhibitory system in the CNS diseases. The GABAergic system as the main inhibitory system, is essential for the appropriate functioning of the CNS, especially as it is engaged in the formation of learning and memory. Many researchers have reported that the GABAergic system is involved in regulating synaptic plasticity, cognition and long-term potentiation. Some clinical manifestations (such as cognitive dysfunctions, attention deficits, etc.) have also been shown to emerge after abnormalities in the GABAergic system accompanied with concomitant diseases, that include Alzheimer's disease (AD), Parkinson's disease (PD), Autism spectrum disorder (ASD), Schizophrenia, etc. The GABAergic system consists of GABA, GABA transporters, GABAergic receptors and GABAergic neurons. Changes in any of these components may contribute to the dysfunctions of the CNS. In this review, we will synthesize studies which demonstrate how the GABAergic system participates in the pathogenesis of the CNS disorders, which may provide a new idea that might be used to treat the CNS diseases.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Bing-Rui Xiong
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, 430071 Wuhan, Hubei, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Xian Huang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Xiaoman Yuan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Yu-Ke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Xue-Bi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China.
| |
Collapse
|
5
|
Loring KE, Mattiske T, Lee K, Zysk A, Jackson MR, Noebels JL, Shoubridge C. Early 17β-estradiol treatment reduces seizures but not abnormal behaviour in mice with expanded polyalanine tracts in the Aristaless related homeobox gene (ARX). Neurobiol Dis 2021; 153:105329. [PMID: 33711494 DOI: 10.1016/j.nbd.2021.105329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/01/2021] [Accepted: 03/07/2021] [Indexed: 11/20/2022] Open
Abstract
Children with severe intellectual disability have an increased prevalence of refractory seizures. Steroid treatment may improve seizure outcomes, but the mechanism remains unknown. Here we demonstrate that short term, daily delivery of an exogenous steroid 17β-estradiol (40 ng/g) in early postnatal life significantly reduced the number and severity of seizures, but did not improve behavioural deficits, in mice modelling mutations in the Aristaless-related homeobox gene (ARX), expanding the first (PA1) or second (PA2) polyalanine tract. Frequency of observed seizures on handling (n = 14/treatment/genotype) were significantly reduced in PA1 (32% reduction) and more modestly reduced in PA2 mice (14% reduction) with steroid treatment compared to vehicle. Spontaneous seizures were assessed (n = 7/treatment/genotype) at 7 weeks of age coinciding with a peak of seizure activity in untreated mice. PA1 mice treated with steroids no longer present with the most severe category of prolonged myoclonic seizures. Treated PA2 mice had an earlier onset of seizures coupled with a subsequent reduction in seizures later in postnatal life, with a complete absence of any seizures during the analysis at 7 weeks of age. Despite the reduction in seizures, 17β-estradiol treated mice showed no improvement in behavioural or cognitive outcomes in adulthood. For the first time we show that these deficits due to mutations in Arx are already present before seizure onset and do not worsen with seizures. ARX is a transcription factor and Arx PA mutant mice have deregulated transcriptome profiles in the developing embryonic brain. At postnatal day 10, treatment completion, RNAseq identified 129 genes significantly deregulated (Log2FC > ± 0.5, P-value<0.05) in the frontal cortex of mutant compared to wild-type mice. This list reflects genes deregulated in disease and was particularly enriched for known genes in neurodevelopmental disorders and those involved in signalling and developmental pathways. 17β-estradiol treatment of mutant mice significantly deregulated 295 genes, with only 23 deregulated genes overlapping between vehicle and steroid treated mutant mice. We conclude that 17β-estradiol treatment recruits processes and pathways to reduce the frequency and severity of seizures in the Arx PA mutant mice but does not precisely correct the deregulated transcriptome nor improve mortality or behavioural and cognitive deficits.
Collapse
Affiliation(s)
- Karagh E Loring
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Tessa Mattiske
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Kristie Lee
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Aneta Zysk
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Matilda R Jackson
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | | | - Cheryl Shoubridge
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
6
|
Bustos F, Segarra-Fas A, Nardocci G, Cassidy A, Antico O, Davidson L, Brandenburg L, Macartney TJ, Toth R, Hastie CJ, Moran J, Gourlay R, Varghese J, Soares RF, Montecino M, Findlay GM. Functional Diversification of SRSF Protein Kinase to Control Ubiquitin-Dependent Neurodevelopmental Signaling. Dev Cell 2020; 55:629-647.e7. [PMID: 33080171 PMCID: PMC7725506 DOI: 10.1016/j.devcel.2020.09.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Conserved protein kinases with core cellular functions have been frequently redeployed during metazoan evolution to regulate specialized developmental processes. The Ser/Arg (SR)-rich splicing factor (SRSF) protein kinase (SRPK), which is implicated in splicing regulation, is one such conserved eukaryotic kinase. Surprisingly, we show that SRPK has acquired the capacity to control a neurodevelopmental ubiquitin signaling pathway. In mammalian embryonic stem cells and cultured neurons, SRPK phosphorylates Ser-Arg motifs in RNF12/RLIM, a key developmental E3 ubiquitin ligase that is mutated in an intellectual disability syndrome. Processive phosphorylation by SRPK stimulates RNF12-dependent ubiquitylation of nuclear transcription factor substrates, thereby acting to restrain a neural gene expression program that is aberrantly expressed in intellectual disability. SRPK family genes are also mutated in intellectual disability disorders, and patient-derived SRPK point mutations impair RNF12 phosphorylation. Our data reveal unappreciated functional diversification of SRPK to regulate ubiquitin signaling that ensures correct regulation of neurodevelopmental gene expression.
Collapse
Affiliation(s)
- Francisco Bustos
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Anna Segarra-Fas
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Gino Nardocci
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Andrew Cassidy
- Tayside Centre for Genomic Analysis, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Odetta Antico
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Lindsay Davidson
- School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Lennart Brandenburg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J Macartney
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Rachel Toth
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - C James Hastie
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Jennifer Moran
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Robert Gourlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Joby Varghese
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Renata F Soares
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Martin Montecino
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Greg M Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
7
|
Connexin Hemichannel Mimetic Peptide Attenuates Cortical Interneuron Loss and Perineuronal Net Disruption Following Cerebral Ischemia in Near-Term Fetal Sheep. Int J Mol Sci 2020; 21:ijms21186475. [PMID: 32899855 PMCID: PMC7554896 DOI: 10.3390/ijms21186475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Perinatal hypoxia-ischemia is associated with disruption of cortical gamma-aminobutyric acid (GABA)ergic interneurons and their surrounding perineuronal nets, which may contribute to persisting neurological deficits. Blockade of connexin43 hemichannels using a mimetic peptide can alleviate seizures and injury after hypoxia-ischemia. In this study, we tested the hypothesis that connexin43 hemichannel blockade improves the integrity of cortical interneurons and perineuronal nets. Term-equivalent fetal sheep received 30 min of bilateral carotid artery occlusion, recovery for 90 min, followed by a 25-h intracerebroventricular infusion of vehicle or a mimetic peptide that blocks connexin hemichannels or by a sham ischemia + vehicle infusion. Brain tissues were stained for interneuronal markers or perineuronal nets. Cerebral ischemia was associated with loss of cortical interneurons and perineuronal nets. The mimetic peptide infusion reduced loss of glutamic acid decarboxylase-, calretinin-, and parvalbumin-expressing interneurons and perineuronal nets. The interneuron and perineuronal net densities were negatively correlated with total seizure burden after ischemia. These data suggest that the opening of connexin43 hemichannels after perinatal hypoxia-ischemia causes loss of cortical interneurons and perineuronal nets and that this exacerbates seizures. Connexin43 hemichannel blockade may be an effective strategy to attenuate seizures and may improve long-term neurological outcomes after perinatal hypoxia-ischemia.
Collapse
|
8
|
Malomouzh A, Ilyin V, Nikolsky E. Components of the GABAergic signaling in the peripheral cholinergic synapses of vertebrates: a review. Amino Acids 2019; 51:1093-1102. [PMID: 31236726 DOI: 10.1007/s00726-019-02754-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/19/2019] [Indexed: 12/23/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system. Since the 1970s, many studies have focused on the role of GABA in the mammalian peripheral nervous system, and particularly in the cholinergic synapses. In this review, we present current findings for the cholinergic neurons of vegetative ganglia as well as for the neurons innervating smooth and striated muscles. Synaptic contacts formed by these neurons contain GABA and the enzyme, glutamic acid decarboxylase, which catalyzes the synthesis of GABA from glutamate. Newly formed GABA is released in the cholinergic synapses and mostly all the peripheral cholinergic synaptic contacts contain iono- and metabotropic GABA receptors. Although the underlying molecular mechanism of the release is not well understood, still, it is speculated that GABA is released by a vesicular and/or non-vesicular way via reversal of the GABA transporter. We also review the signaling role of GABA in the peripheral cholinergic synapses by modulating acetylcholine release, but its exact physiological function remains to be elucidated.
Collapse
Affiliation(s)
- Artem Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, P.O. box 30, Kazan, 420111, Russia.
| | - Victor Ilyin
- Neuropharmacology Lab, Kazan Federal University, 18 Kremlyovskaya St, Kazan, 420008, Russia
| | - Evgeny Nikolsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, P.O. box 30, Kazan, 420111, Russia.,Neuropharmacology Lab, Kazan Federal University, 18 Kremlyovskaya St, Kazan, 420008, Russia
| |
Collapse
|
9
|
Lenina O, Petrov K, Kovyazina I, Malomouzh A. Enhancement of mouse diaphragm contractility in the presence of antagonists of GABA A and GABA B receptors. Exp Physiol 2019; 104:1004-1010. [PMID: 31074160 DOI: 10.1113/ep087611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/07/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do GABA receptors play any role at the neuromuscular junction? What is the main finding and its importance? In the presence of either ionotropic or metabotropic GABA receptor antagonists, diaphragm muscle force production elicited by stimulating the motor nerve at ≥50 Hz was increased. Our data indicate the presence of GABAergic signalling at the neuromuscular junction. ABSTRACT Despite the signalling role of GABA in the brain and spinal cord, the role of this molecule in the peripheral nervous system and, in particular, at the neuromuscular junction remains practically unexplored. In the present work, the force of mouse diaphragm contractions was measured in the presence of blockers of metabotropic GABAB receptors (CGP 55845) and ionotropic GABAA receptors (picrotoxin) with various patterns of indirect and direct stimulation of muscle by trains of 40 pulses delivered at 10, 20, 50 and 70 Hz. It was found that neither blocker affected the diaphragm contractility caused by indirect stimulation through the motor nerve at 10 and 20 Hz. However, when the stimulation frequency was increased to 50 or 70 Hz, the force of subsequent contractions in the train (when compared with the amplitude of contraction in response to the first pulse) was increased by both CGP 55845 and picrotoxin. With direct stimulation of the diaphragm, no significant changes in the contraction force were detected at any frequency used. The results obtained support the following conclusions: (i) pharmacological inhibition of GABA receptors increases the contractile activity of skeletal muscle; and (ii) frequency-dependent enhancement of GABA receptor activation takes place in the region of the neuromuscular junction.
Collapse
Affiliation(s)
- Oksana Lenina
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia
| | - Konstantin Petrov
- A. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia.,Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia.,Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| | - Irina Kovyazina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia.,Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia.,Department of Medical and Biological Physics, Kazan State Medical University, Kazan, Russia
| | - Artem Malomouzh
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Russia.,Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| |
Collapse
|
10
|
Beversdorf DQ, Stevens HE, Margolis KG, Van de Water J. Prenatal Stress and Maternal Immune Dysregulation in Autism Spectrum Disorders: Potential Points for Intervention. Curr Pharm Des 2019; 25:4331-4343. [PMID: 31742491 PMCID: PMC7100710 DOI: 10.2174/1381612825666191119093335] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Genetics is a major etiological contributor to autism spectrum disorder (ASD). Environmental factors, however, also appear to contribute. ASD pathophysiology due to gene x environment is also beginning to be explored. One reason to focus on environmental factors is that they may allow opportunities for intervention or prevention. METHODS AND RESULTS Herein, we review two such factors that have been associated with a significant proportion of ASD risk, prenatal stress exposure and maternal immune dysregulation. Maternal stress susceptibility appears to interact with prenatal stress exposure to affect offspring neurodevelopment. We also explore how maternal stress may interact with the microbiome in the neurodevelopmental setting. Additionally, understanding of the impact of maternal immune dysfunction on ASD has recently been advanced by recognition of specific fetal brain proteins targeted by maternal autoantibodies, and identification of unique mid-gestational maternal immune profiles. This might also be interrelated with maternal stress exposure. Animal models have been developed to explore pathophysiology targeting each of these factors. CONCLUSION We are beginning to understand the behavioral, pharmacopathological, and epigenetic effects related to these interactions, and we are beginning to explore potential mitigating factors. Continued growth in understanding of these mechanisms may ultimately allow for the identification of multiple potential targets for prevention or intervention for this subset of environmental-associated ASD cases.
Collapse
Affiliation(s)
- David Q. Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, and The Thompson Center for Neurodevelopmental Disorders, University of Missouri, William and Nancy Thompson Endowed Chair in Radiology
| | - Hanna E. Stevens
- Departments of Psychiatry and Pediatrics, Iowa Neuroscience Institute, University of Iowa
| | - Kara Gross Margolis
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, Morgan Stanley Children’s Hospital, Columbia University Medical Center
| | - Judy Van de Water
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, And the MIND Institute, University of California, Davis
| |
Collapse
|
11
|
CTCF Governs the Identity and Migration of MGE-Derived Cortical Interneurons. J Neurosci 2018; 39:177-192. [PMID: 30377227 DOI: 10.1523/jneurosci.3496-17.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/13/2022] Open
Abstract
The CCCTC-binding factor (CTCF) is a central regulator of chromatin topology recently linked to neurodevelopmental disorders such as intellectual disability, autism, and schizophrenia. The aim of this study was to identify novel roles of CTCF in the developing mouse brain. We provide evidence that CTCF is required for the expression of the LIM homeodomain factor LHX6 involved in fate determination of cortical interneurons (CINs) that originate in the medial ganglionic eminence (MGE). Conditional Ctcf ablation in the MGE of mice of either sex leads to delayed tangential migration, abnormal distribution of CIN in the neocortex, a marked reduction of CINs expressing parvalbumin and somatostatin (Sst), and an increased number of MGE-derived cells expressing Lhx8 and other markers of basal forebrain projection neurons. Likewise, Ctcf-null MGE cells transplanted into the cortex of wild-type hosts generate fewer Sst-expressing CINs and exhibit lamination defects that are efficiently rescued upon reexpression of LHX6. Collectively, these data indicate that CTCF regulates the dichotomy between Lhx6 and Lhx8 to achieve correct specification and migration of MGE-derived CINs.SIGNIFICANCE STATEMENT This work provides evidence that CCCTC-binding factor (CTCF) controls an early fate decision point in the generation of cortical interneurons mediated at least in part by Lhx6. Importantly, the abnormalities described could reflect early molecular and cellular events that contribute to human neurological disorders previously linked to CTCF, including schizophrenia, autism, and intellectual disability.
Collapse
|
12
|
Beversdorf DQ, Stevens HE, Jones KL. Prenatal Stress, Maternal Immune Dysregulation, and Their Association With Autism Spectrum Disorders. Curr Psychiatry Rep 2018; 20:76. [PMID: 30094645 PMCID: PMC6369590 DOI: 10.1007/s11920-018-0945-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW While genetic factors are a major etiological contributor to autism spectrum disorder (ASD), evidence also supports a role for environmental factors. Herein, we will discuss two such factors that have been associated with a significant proportion of ASD risk: prenatal stress exposure and maternal immune dysregulation, and how sex and gender relate to these factors. RECENT FINDINGS Recent evidence suggests that maternal stress susceptibility interacts with prenatal stress exposure to affect offspring neurodevelopment. Additionally, understanding of the impact of maternal immune dysfunction on ASD has recently been advanced by recognition of specific fetal brain proteins targeted by maternal autoantibodies, and identification of unique mid-gestational maternal immune profiles. Animal models have been developed to explore pathophysiology targeting both of these factors, with limited sex-specific effects observed. While prenatal stress and maternal immune dysregulation are associated with ASD, most cases of these prenatal exposures do not result in ASD, suggesting interaction with multiple other risks. We are beginning to understand the behavioral, pharmacopathological, and epigenetic effects related to these interactions, as well as potential mitigating factors. Sex differences of these risks have been understudied but are crucial for understanding the higher prevalence of ASD in boys. Continued growth in understanding of these mechanisms may ultimately allow for the identification of multiple potential points for prevention or intervention, and for a personalized medicine approach for this subset of environmental-associated ASD cases.
Collapse
Affiliation(s)
- David Q. Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences And The Thompson Center for Neurodevelopmental Disorders, University of Missouri, Columbia, MO, USA,Department of Radiology, University of Missouri, DC 069.10, One Hospital Drive, Columbia, MO 65212, USA
| | - Hanna E. Stevens
- Departments of Psychiatry and Pediatrics, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| | - Karen L. Jones
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, And the MIND Institute, University of California, Davis, Davis, CA, USA
| |
Collapse
|
13
|
Cortès-Saladelafont E, Molero-Luis M, Cuadras D, Casado M, Armstrong-Morón J, Yubero D, Montoya J, Artuch R, García-Cazorla À. Gamma-aminobutyric acid levels in cerebrospinal fluid in neuropaediatric disorders. Dev Med Child Neurol 2018; 60:780-792. [PMID: 29577258 DOI: 10.1111/dmcn.13746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 11/29/2022]
Abstract
AIM Gamma-aminobutyric acid (GABA) is a major modulator in brain maturation and its role in many different neurodevelopmental disorders has been widely reported. Although the involvement of GABA in different disorders has been related to its regulatory function as an inhibitory neurotransmitter in the mature brain, co-transmitter, and signalling molecule, little is known about its role as a clinical biomarker in neuropaediatric disorders. The aim of this study is to report the cerebrospinal fluid (CSF) free-GABA concentrations in a large cohort of patients (n=85) with different neurological disorders. METHOD GABA was measured in the CSF of neuropaediatric patients using capillary electrophoresis with laser-induced fluorescence detection. Other neurotransmitters (amino acids and monoamines) were also analysed. RESULTS GABA concentrations in CSF were abnormal, with a greater frequency (44%) than monoamines (20%) in neuropaediatric patients compared with our reference values. Although we included a few patients with inborn errors of metabolism, GABA levels in CSF were more frequently abnormal in metabolic disorders than in other nosological groups. INTERPRETATION Our work suggests further research into brain GABAergic status in neuropaediatric disorders, which could also lead to new therapeutic strategies. WHAT THIS PAPER ADDS Homeostasis of GABA seems more vulnerable than that of monoamines in the developing brain. The highest GABA levels are found in the primary GABA neurotransmitter disorder SSADH deficiency. GABA alterations are not specific for any clinical or neuroimaging presentation.
Collapse
Affiliation(s)
- Elisenda Cortès-Saladelafont
- Department of Neurology, Neurometabolic Unit and Synaptic Metabolism Laboratory, Hospital Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Marta Molero-Luis
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Centro de In.vestigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetics and Biochemistry, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Daniel Cuadras
- Statistics Department, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Mercedes Casado
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Centro de In.vestigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetics and Biochemistry, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Judith Armstrong-Morón
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Centro de In.vestigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetics and Biochemistry, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Dèlia Yubero
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Centro de In.vestigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetics and Biochemistry, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Julio Montoya
- Centro de In.vestigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry, Molecular and Cellular Biology, Universidad de Zaragoza, Zaragoza, Spain
| | - Rafael Artuch
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Centro de In.vestigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetics and Biochemistry, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Àngels García-Cazorla
- Department of Neurology, Neurometabolic Unit and Synaptic Metabolism Laboratory, Hospital Sant Joan de Déu, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain.,Centro de In.vestigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
14
|
Smith-Hicks CL, Cai P, Savonenko AV, Reeves RH, Worley PF. Increased Sparsity of Hippocampal CA1 Neuronal Ensembles in a Mouse Model of Down Syndrome Assayed by Arc Expression. Front Neural Circuits 2017; 11:6. [PMID: 28217086 PMCID: PMC5289947 DOI: 10.3389/fncir.2017.00006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/19/2017] [Indexed: 02/05/2023] Open
Abstract
Down syndrome (DS) is the leading chromosomal cause of intellectual disability, yet the neural substrates of learning and memory deficits remain poorly understood. Here, we interrogate neural networks linked to learning and memory in a well-characterized model of DS, the Ts65Dn mouse. We report that Ts65Dn mice exhibit exploratory behavior that is not different from littermate wild-type (WT) controls yet behavioral activation of Arc mRNA transcription in pyramidal neurons of the CA1 region of the hippocampus is altered in Ts65Dn mice. In WT mice, a 5 min period of exploration of a novel environment resulted in Arc mRNA transcription in 39% of CA1 neurons. By contrast, the same period of exploration resulted in only ~20% of CA1 neurons transcribing Arc mRNA in Ts65Dn mice indicating increased sparsity of the behaviorally induced ensemble. Like WT mice the CA1 pyramidal neurons of Ts65Dn mice reactivated Arc transcription during a second exposure to the same environment 20 min after the first experience, but the size of the reactivated ensemble was only ~60% of that in WT mice. After repeated daily exposures there was a further decline in the size of the reactivated ensemble in Ts65Dn and a disruption of reactivation. Together these data demonstrate reduction in the size of the behaviorally induced network that expresses Arc in Ts65Dn mice and disruption of the long-term stability of the ensemble. We propose that these deficits in network formation and stability contribute to cognitive symptoms in DS.
Collapse
Affiliation(s)
- Constance L Smith-Hicks
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA; Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Peiling Cai
- The State Key Laboratory of Biotherapy, West-China Hospital, Sichuan University Chengdu, China
| | - Alena V Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Roger H Reeves
- Department of Physiology and Institute of Genetic Medicine, Johns Hopkins University, School of Medicine Baltimore, MD, USA
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA; Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
15
|
Sun LR, Bosemani T, Smith-Hicks CL. Neuroimaging Abnormalities in a Child With Infantile Spasms on High-Dose Vigabatrin. Pediatr Neurol 2017; 67:109-110. [PMID: 27908655 DOI: 10.1016/j.pediatrneurol.2016.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Lisa R Sun
- Division of Pediatric Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Thangamadhan Bosemani
- Section of Pediatric Neuroradiology, Division of Pediatric Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Constance L Smith-Hicks
- Division of Pediatric Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Division of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
16
|
Tyson JA, Goldberg EM, Maroof AM, Xu Q, Petros TJ, Anderson SA. Duration of culture and sonic hedgehog signaling differentially specify PV versus SST cortical interneuron fates from embryonic stem cells. Development 2016; 142:1267-78. [PMID: 25804737 DOI: 10.1242/dev.111526] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Medial ganglionic eminence (MGE)-derived GABAergic cortical interneurons (cINs) consist of multiple subtypes that are involved in many cortical functions. They also have a remarkable capacity to migrate, survive and integrate into cortical circuitry after transplantation into postnatal cortex. These features have engendered considerable interest in generating distinct subgroups of interneurons from pluripotent stem cells (PSCs) for the study of interneuron fate and function, and for the development of cell-based therapies. Although advances have been made, the capacity to generate highly enriched pools of subgroup fate-committed interneuron progenitors from PSCs has remained elusive. Previous studies have suggested that the two main MGE-derived interneuron subgroups--those expressing somatostatin (SST) and those expressing parvalbumin (PV)--are specified in the MGE from Nkx2.1-expressing progenitors at higher or lower levels of sonic hedgehog (Shh) signaling, respectively. To further explore the role of Shh and other factors in cIN fate determination, we generated a reporter line such that Nkx2.1-expressing progenitors express mCherry and postmitotic Lhx6-expressing MGE-derived interneurons express GFP. Manipulations of Shh exposure and time in culture influenced the subgroup fates of ESC-derived interneurons. Exposure to higher Shh levels, and collecting GFP-expressing precursors at 12 days in culture, resulted in the strongest enrichment for SST interneurons over those expressing PV, whereas the strongest enrichment for PV interneurons was produced by lower Shh and by collecting mCherry-expressing cells after 17 days in culture. These findings confirm that fate determination of cIN subgroups is crucially influenced by Shh signaling, and provide a system for the further study of interneuron fate and function.
Collapse
Affiliation(s)
- Jennifer A Tyson
- Department of Psychiatry, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine ARC 517, Philadelphia, PA 19104-5127, USA Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Ethan M Goldberg
- Division of Neurology, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19083, USA Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19083, USA
| | - Asif M Maroof
- Harvard University Department of Stem Cell and Regenerative Biology, Cambridge, MA 02138, USA
| | - Qing Xu
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Timothy J Petros
- Department of Neuroscience, NYU Langone Medical Center, New York, NY 10016, USA
| | - Stewart A Anderson
- Department of Psychiatry, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine ARC 517, Philadelphia, PA 19104-5127, USA
| |
Collapse
|
17
|
Malomouzh AI, Petrov KA, Nurullin LF, Nikolsky EE. Metabotropic GABAB
receptors mediate GABA inhibition of acetylcholine release in the rat neuromuscular junction. J Neurochem 2015; 135:1149-60. [DOI: 10.1111/jnc.13373] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Artem I. Malomouzh
- Kazan Institute of Biochemistry and Biophysics; Russian Academy of Sciences; Kazan Russia
- Kazan Federal University; Kazan Russia
| | - Konstantin A. Petrov
- Kazan Institute of Biochemistry and Biophysics; Russian Academy of Sciences; Kazan Russia
- Kazan Federal University; Kazan Russia
- A.E. Arbuzov Institute of Organic and Physical Chemistry; Russian Academy of Sciences; Kazan Russia
| | - Leniz F. Nurullin
- Kazan Institute of Biochemistry and Biophysics; Russian Academy of Sciences; Kazan Russia
- Kazan Federal University; Kazan Russia
- Kazan State Medical University; Kazan Russia
| | - Evgeny E. Nikolsky
- Kazan Institute of Biochemistry and Biophysics; Russian Academy of Sciences; Kazan Russia
- Kazan Federal University; Kazan Russia
- Kazan State Medical University; Kazan Russia
| |
Collapse
|