1
|
Lucas-Romero J, Rivera-Arconada I, Lopez-Garcia JA. Synchronous firing of dorsal horn neurons at the origin of dorsal root reflexes in naïve and paw-inflamed mice. Front Cell Neurosci 2022; 16:1004956. [PMID: 36212688 PMCID: PMC9539274 DOI: 10.3389/fncel.2022.1004956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 12/05/2022] Open
Abstract
Spinal interneurons located in the dorsal horn induce primary afferent depolarization (PAD) controlling the excitability of the afferent’s terminals. Following inflammation, PAD may reach firing threshold contributing to maintain inflammation and pain. Our aim was to study the collective behavior of dorsal horn neurons, its relation to backfiring of primary afferents and the effects of a peripheral inflammation in this system. Experiments were performed on slices of spinal cord obtained from naïve adult mice or mice that had suffered an inflammatory pretreatment. Simultaneous recordings from groups of dorsal horn neurons and primary afferents were obtained and machine-learning methodology was used to analyze effective connectivity between them. Dorsal horn recordings showed grouping of spontaneous action potentials from different neurons in “population bursts.” These occurred at irregular intervals and were formed by action potentials from all classes of neurons recorded. Compared to naïve, population bursts from treated animals concentrated more action potentials, had a faster onset and a slower decay. Population bursts were disrupted by perfusion of picrotoxin and held a strong temporal correlation with backfiring of afferents. Effective connectivity analysis allowed pinpointing specific neurons holding pre- or post-synaptic relation to the afferents. Many of these neurons had an irregular fast bursting pattern of spontaneous firing. We conclude that population bursts contain action potentials from neurons presynaptic to the afferents which are likely to control their excitability. Peripheral inflammation may enhance synchrony in these neurons, increasing the chance of triggering action potentials in primary afferents and contributing toward central sensitization.
Collapse
|
2
|
Bannatyne BA, Hao ZZ, Dyer GMC, Watanabe M, Maxwell DJ, Berkowitz A. Neurotransmitters and Motoneuron Contacts of Multifunctional and Behaviorally Specialized Turtle Spinal Cord Interneurons. J Neurosci 2020; 40:2680-2694. [PMID: 32066584 PMCID: PMC7096148 DOI: 10.1523/jneurosci.2200-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
The spinal cord can appropriately generate diverse movements, even without brain input and movement-related sensory feedback, using a combination of multifunctional and behaviorally specialized interneurons. The adult turtle spinal cord can generate motor patterns underlying forward swimming, three forms of scratching, and limb withdrawal (flexion reflex). We previously described turtle spinal interneurons activated during both scratching and swimming (multifunctional interneurons), interneurons activated during scratching but not swimming (scratch-specialized interneurons), and interneurons activated during flexion reflex but not scratching or swimming (flexion reflex-selective interneurons). How multifunctional and behaviorally specialized turtle spinal interneurons affect downstream neurons was unknown. Here, we recorded intracellularly from spinal interneurons activated during these motor patterns in turtles of both sexes in vivo and filled each with dyes. We labeled motoneurons using choline acetyltransferase antibodies or earlier intraperitoneal FluoroGold injection and used immunocytochemistry of interneuron axon terminals to identify their neurotransmitter(s) and putative synaptic contacts with motoneurons. We found that multifunctional interneurons are heterogeneous with respect to neurotransmitter, with some glutamatergic and others GABAergic or glycinergic, and can directly contact motoneurons. Also, scratch-specialized interneurons are heterogeneous with respect to neurotransmitter and some directly contact motoneurons. Thus, scratch-specialized interneurons might directly excite motoneurons that are more strongly activated during scratching than forward swimming, such as hip-flexor motoneurons. Finally, and surprisingly, we found that some motoneurons are behaviorally specialized, for scratching or flexion reflex. Thus, either some limb muscles are only used for a subset of limb behaviors or some limb motoneurons are only recruited during certain limb behaviors.SIGNIFICANCE STATEMENT Both multifunctional and behaviorally specialized spinal cord interneurons have been described in turtles, but their outputs are unknown. We studied responses of multifunctional interneurons (activated during swimming and scratching) and scratch-specialized interneurons, filled each with dyes, and used immunocytochemistry to determine their neurotransmitters and contacts with motoneurons. We found that both multifunctional and scratch-specialized interneurons are heterogeneous with respect to neurotransmitter, with some excitatory and others inhibitory. We found that some multifunctional and some scratch-specialized interneurons directly contact motoneurons. Scratch-specialized interneurons may excite motoneurons that are more strongly activated during scratching than swimming, such as hip-flexor motoneurons, or inhibit their antagonists, hip-extensor motoneurons. Surprisingly, we also found that some motoneurons are behaviorally specialized, for scratching or for flexion reflex.
Collapse
Affiliation(s)
- B Anne Bannatyne
- Spinal Cord Group, Institute of Neuroscience and Psychology, University of Glasgow, United Kingdom G12 8QQ
| | - Zhao-Zhe Hao
- Department of Biology and Cellular and Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman, Oklahoma 73019, and
| | - Georgia M C Dyer
- Spinal Cord Group, Institute of Neuroscience and Psychology, University of Glasgow, United Kingdom G12 8QQ
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Faculty of Medicine, Sapporo 060-8638, Japan
| | - David J Maxwell
- Spinal Cord Group, Institute of Neuroscience and Psychology, University of Glasgow, United Kingdom G12 8QQ
| | - Ari Berkowitz
- Department of Biology and Cellular and Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman, Oklahoma 73019, and
| |
Collapse
|
3
|
Méndez-Fernández A, Moreno-Castillo M, Huidobro N, Flores A, Manjarrez E. Afterdischarges of Spinal Interneurons Following a Brief High-Frequency Stimulation of Ia Afferents in the Cat. Front Integr Neurosci 2020; 13:75. [PMID: 32038185 PMCID: PMC6992651 DOI: 10.3389/fnint.2019.00075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Spinal motoneurons exhibit sustained afterdischarges and plateau potentials following a brief high-frequency stimulation of Ia afferents. Also, there is evidence that spinal cord interneurons exhibit plateau potentials. However, to our knowledge, there are no reports about the possible afterdischarge behavior of lumbar spinal interneurons activated by Ia afferents. Given that there are spinal interneurons receiving monosynaptic inputs from Ia afferents, these cells could then be activated in parallel to motoneurons after repetitive muscle stretch. We explored this possibility in cats with a precollicular-postmammillary decerebration. We found that a brief high-frequency stimulation of Ia afferents produces afterdischarges that are highly correlated to a DC slow potential recorded at the cord dorsum. We conclude that in the cat spinal cord, not only the motoneurons but also the interneurons from the superficial and deep dorsal horn produce sustained afterdischarges, thus highlighting the importance of interneurons in the spinal neuronal circuitry. The significance of our finding is that it opens the possibility that the spinal cord interneurons activated by Ia afferents could also exhibit bistability, a relevant phenomenon well-characterized in the motoneurons.
Collapse
Affiliation(s)
| | | | - Nayeli Huidobro
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Amira Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Elias Manjarrez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
4
|
Cav3.2 T-type calcium channels shape electrical firing in mouse Lamina II neurons. Sci Rep 2019; 9:3112. [PMID: 30816223 PMCID: PMC6395820 DOI: 10.1038/s41598-019-39703-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
The T-type calcium channel, Cav3.2, is necessary for acute pain perception, as well as mechanical and cold allodynia in mice. Being found throughout sensory pathways, from excitatory primary afferent neurons up to pain matrix structures, it is a promising target for analgesics. In our study, Cav3.2 was detected in ~60% of the lamina II (LII) neurons of the spinal cord, a site for integration of sensory processing. It was co-expressed with Tlx3 and Pax2, markers of excitatory and inhibitory interneurons, as well as nNOS, calretinin, calbindin, PKCγ and not parvalbumin. Non-selective T-type channel blockers slowed the inhibitory but not the excitatory transmission in LII neurons. Furthermore, T-type channel blockers modified the intrinsic properties of LII neurons, abolishing low-threshold activated currents, rebound depolarizations, and blunting excitability. The recording of Cav3.2-positive LII neurons, after intraspinal injection of AAV-DJ-Cav3.2-mcherry, showed that their intrinsic properties resembled those of the global population. However, Cav3.2 ablation in the dorsal horn of Cav3.2GFP-Flox KI mice after intraspinal injection of AAV-DJ-Cav3.2-Cre-IRES-mcherry, had drastic effects. Indeed, it (1) blunted the likelihood of transient firing patterns; (2) blunted the likelihood and the amplitude of rebound depolarizations, (3) eliminated action potential pairing, and (4) remodeled the kinetics of the action potentials. In contrast, the properties of Cav3.2-positive neurons were only marginally modified in Cav3.1 knockout mice. Overall, in addition to their previously established roles in the superficial spinal cord and in primary afferent neurons, Cav3.2 channel appear to be necessary for specific, significant and multiple controls of LII neuron excitability.
Collapse
|
5
|
Johnson KP, Tran SM, Siegrist EA, Paidimarri KB, Elson MS, Berkowitz A. Turtle Flexion Reflex Motor Patterns Show Windup, Mediated Partly by L-type Calcium Channels. Front Neural Circuits 2017; 11:83. [PMID: 29163064 PMCID: PMC5671496 DOI: 10.3389/fncir.2017.00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/13/2017] [Indexed: 01/14/2023] Open
Abstract
Windup is a form of multisecond temporal summation in which identical stimuli, delivered seconds apart, trigger increasingly strong neuronal responses. L-type Ca2+ channels have been shown to play an important role in the production of windup of spinal cord neuronal responses, initially in studies of turtle spinal cord and later in studies of mammalian spinal cord. L-type Ca2+ channels have also been shown to contribute to windup of limb withdrawal reflex (flexion reflex) in rats, but flexion reflex windup has not previously been described in turtles and its cellular mechanisms have not been studied. We studied windup of flexion reflex motor patterns, evoked with weak mechanical and electrical stimulation of the dorsal hindlimb foot skin and assessed via a hip flexor (HF) nerve recording, in spinal cord-transected and immobilized turtles in vivo. We found that an L-type Ca2+ channel antagonist, nifedipine, applied at concentrations of 50 μM or 100 μM to the hindlimb enlargement spinal cord, significantly reduced windup of flexion reflex motor patterns, while lower concentrations of nifedipine had no such effect. Nifedipine similarly reduced the amplitude of an individual flexion reflex motor pattern evoked by a stronger mechanical stimulus, in a dose-dependent manner, suggesting that L-type Ca2+ channels contribute to each flexion reflex as well as to multisecond summation of flexion reflex responses in turtles. We also found that we could elicit flexion reflex windup consistently using a 4-g von Frey filament, which is not usually considered a nociceptive stimulus. Thus, it may be that windup can be evoked by a wide range of tactile stimuli and that L-type calcium channels contribute to multisecond temporal summation of diverse tactile stimuli across vertebrates.
Collapse
Affiliation(s)
- Keith P Johnson
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Stephen M Tran
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Emily A Siegrist
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | | | - Matthew S Elson
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Ari Berkowitz
- Department of Biology, University of Oklahoma, Norman, OK, United States.,Cellular and Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
6
|
Roca-Lapirot O, Radwani H, Aby F, Nagy F, Landry M, Fossat P. Calcium signalling through L-type calcium channels: role in pathophysiology of spinal nociceptive transmission. Br J Pharmacol 2017; 175:2362-2374. [PMID: 28214378 DOI: 10.1111/bph.13747] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/24/2017] [Accepted: 02/08/2017] [Indexed: 02/02/2023] Open
Abstract
L-type voltage-gated calcium channels are ubiquitous channels in the CNS. L-type calcium channels (LTCs) are mostly post-synaptic channels regulating neuronal firing and gene expression. They play a role in important physio-pathological processes such as learning and memory, Parkinson's disease, autism and, as recognized more recently, in the pathophysiology of pain processes. Classically, the fundamental role of these channels in cardiovascular functions has limited the use of classical molecules to treat LTC-dependent disorders. However, when applied locally in the dorsal horn of the spinal cord, the three families of LTC pharmacological blockers - dihydropyridines (nifedipine), phenylalkylamines (verapamil) and benzothiazepines (diltiazem) - proved effective in altering short-term sensitization to pain, inflammation-induced hyperexcitability and neuropathy-induced allodynia. Two subtypes of LTCs, Cav 1.2 and Cav 1.3, are expressed in the dorsal horn of the spinal cord, where Cav 1.2 channels are localized mostly in the soma and proximal dendritic shafts, and Cav 1.3 channels are more distally located in the somato-dendritic compartment. Together with their different kinetics and pharmacological properties, this spatial distribution contributes to their separate roles in shaping short- and long-term sensitization to pain. Cav 1.3 channels sustain the expression of plateau potentials, an input/output amplification phenomenon that contributes to short-term sensitization to pain such as prolonged after-discharges, dynamic receptive fields and windup. The Cav 1.2 channels support calcium influx that is crucial for the excitation-transcription coupling underlying nerve injury-induced dorsal horn hyperexcitability. These subtype-specific cellular mechanisms may have different consequences in the development and/or the maintenance of pathological pain. Recent progress in developing more specific compounds for each subunit will offer new opportunities to modulate LTCs for the treatment of pathological pain with reduced side-effects. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Olivier Roca-Lapirot
- Interdisciplinary Institute for Neuroscience (IINS, CNRS UMR 5297), University of Bordeaux, Bordeaux Cedex, France
| | - Houda Radwani
- Interdisciplinary Institute for Neuroscience (IINS, CNRS UMR 5297), University of Bordeaux, Bordeaux Cedex, France
| | - Franck Aby
- Interdisciplinary Institute for Neuroscience (IINS, CNRS UMR 5297), University of Bordeaux, Bordeaux Cedex, France
| | - Frédéric Nagy
- Interdisciplinary Institute for Neuroscience (IINS, CNRS UMR 5297), University of Bordeaux, Bordeaux Cedex, France
| | - Marc Landry
- Interdisciplinary Institute for Neuroscience (IINS, CNRS UMR 5297), University of Bordeaux, Bordeaux Cedex, France
| | - Pascal Fossat
- Interdisciplinary Institute for Neuroscience (IINS, CNRS UMR 5297), University of Bordeaux, Bordeaux Cedex, France
| |
Collapse
|
7
|
Rivera-Arconada I, Lopez-Garcia JA. Characterisation of rebound depolarisation in mice deep dorsal horn neurons in vitro. Pflugers Arch 2014; 467:1985-96. [PMID: 25292284 DOI: 10.1007/s00424-014-1623-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/19/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Abstract
Spinal dorsal horn neurons constitute the first relay for pain processing and participate in the processing of other sensory, motor and autonomic information. At the cellular level, intrinsic excitability is a factor contributing to network function. In turn, excitability is set by the array of ionic conductance expressed by neurons. Here, we set out to characterise rebound depolarisation following hyperpolarisation, a feature frequently described in dorsal horn neurons but never addressed in depth. To this end, an in vitro preparation of the spinal cord from mice pups was used combined with whole-cell recordings in current and voltage clamp modes. Results show the expression of H- and/or T-type currents in a significant proportion of dorsal horn neurons. The expression of these currents determines the presence of rebound behaviour at the end of hyperpolarising pulses. T-type calcium currents were associated to high-amplitude rebounds usually involving high-frequency action potential firing. H-currents were associated to low-amplitude rebounds less prone to elicit firing or firing at lower frequencies. For a large proportion of neurons expressing both currents, the H-current constitutes a mechanism to ensure a faster response after hyperpolarisations, adjusting the latency of the rebound firing. We conclude that rebound depolarisation and firing are intrinsic factors to many dorsal horn neurons that may constitute a mechanism to integrate somatosensory information in the spinal cord, allowing for a rapid switch from inhibited-to-excited states.
Collapse
Affiliation(s)
- Ivan Rivera-Arconada
- Department of Biología de Sistemas (Área Fisiología) Edificio de Medicina, Universidad de Alcala, 28871, Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|