1
|
Baeten P, Hamad I, Hoeks C, Hiltensperger M, Van Wijmeersch B, Popescu V, Aly L, Somers V, Korn T, Kleinewietfeld M, Hellings N, Broux B. Rapamycin rescues loss of function in blood-brain barrier-interacting Tregs. JCI Insight 2024; 9:e167457. [PMID: 38386413 PMCID: PMC11128200 DOI: 10.1172/jci.insight.167457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including multiple sclerosis (MS). There is a need to ensure in vivo Treg stability before successful application of Treg therapy. Using genetic fate-mapping mice, we demonstrate that inflammatory, cytokine-expressing exFOXP3 T cells accumulate in the CNS during experimental autoimmune encephalomyelitis. In a human in vitro model, we discovered that interaction with inflamed blood-brain barrier endothelial cells (BBB-ECs) induces loss of function by Tregs. Transcriptome and cytokine analysis revealed that in vitro migrated Tregs have disrupted regenerative potential and a proinflammatory Th1/17 signature, and they upregulate the mTORC1 signaling pathway. In vitro treatment of migrated human Tregs with the clinically approved mTORC1 inhibitor rapamycin restored suppression. Finally, flow cytometric analysis indicated an enrichment of inflammatory, less-suppressive CD49d+ Tregs in the cerebrospinal fluid of people with MS. In summary, interaction with BBB-ECs is sufficient to affect Treg function, and transmigration triggers an additive proinflammatory phenotype switch. These insights help improve the efficacy of autologous Treg therapy of MS.
Collapse
Affiliation(s)
- Paulien Baeten
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ibrahim Hamad
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Cindy Hoeks
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Michael Hiltensperger
- Klinikum Rechts der Isar, Institute for Experimental Neuroimmunology, Technische Universität München, Munich, Germany
| | - Bart Van Wijmeersch
- Universitair MS Centrum, Campus Pelt, Belgium
- Noorderhart, Revalidatie & MS Centrum, Pelt, Belgium
| | - Veronica Popescu
- Universitair MS Centrum, Campus Pelt, Belgium
- Noorderhart, Revalidatie & MS Centrum, Pelt, Belgium
| | - Lilian Aly
- Klinikum Rechts der Isar, Institute for Experimental Neuroimmunology, Technische Universität München, Munich, Germany
| | - Veerle Somers
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Thomas Korn
- Klinikum Rechts der Isar, Institute for Experimental Neuroimmunology, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus Kleinewietfeld
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Niels Hellings
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Bieke Broux
- Universitair MS Centrum, Campus Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
2
|
Jain A, Dhir N, Singh H, Sharma AR, Medhi B, Prakash A. Disrupting Maternal Behavior and Inducing Cannibalism Due to Valproic Acid: An Unexplored Insight. Basic Clin Neurosci 2024; 15:261-272. [PMID: 39228456 PMCID: PMC11367216 DOI: 10.32598/bcn.2022.4410.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 09/05/2024] Open
Abstract
Introduction Valproic acid (VPA) is the most widely used chemical to develop the preclinical model of autism spectrum disorder (ASD). However, in addition to inducing autism, it causes different teratogenic effects like teeth malformation, tail kink, and abnormal body growth in offspring. So far, no study has explored VPA-induced maternal misbehavior, miscarriage, and maternal cannibalism. We aimed to determine the cannibalistic effects of VPA in pregnant female Wistar rats and VPA's influence on causing miscarriage frequency. Methods Our study was conducted on pregnant Wistar rats. On gestation day (GD) 12.5, they were treated with VPA (600 mg/kg intraperitoneal) dissolved in saline at 250 mg/mL concentration. The observations were mean litter size, mean male/female pups, mean mortality, maternal cannibalism, mean number of pups alive, cannibalism of malformed pups, miscarriage, survival analysis of pups, and odds and risk ratio were calculated for deaths observed in both study (control and VPA-treated) groups. The study was conducted till the weaning period. Results VPA-exposed pregnant females portrayed significantly decreased litter size (P<0.0001), significantly higher cannibalistic behavior (P=0.0023), and significantly higher cannibalism of malformed pups (P=0.0484) than the control group. VPA had caused complete pregnancy loss (miscarriage) in 5 pregnant females. Moreover, the VPA group's mortality percentage (P=0.0019) was significantly higher than the control group. Conclusion Overall, VPA has marked teratogenic effects (anatomical and morphological changes in offspring) with maternal behavior disruption, which causes cannibalism in Wistar female rats. The current manuscript findings can aid in investigating the novel mechanisms involved in maternal behavior disruption during the development of the VPA autism model.
Collapse
Affiliation(s)
- Ashish Jain
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Neha Dhir
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Harvinder Singh
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | | | - Bikash Medhi
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| | - Ajay Prakash
- Experimental Pharmacology Laboratory, Neurobehavioral Research Laboratory, Department of Pharmacology, PGIMER, Chandigarh, India
| |
Collapse
|
3
|
Wang H, Balice-Gordon R. Editorial: Synaptic Diseases: From Biology to Potential Therapy. Front Synaptic Neurosci 2022; 14:846099. [PMID: 35480634 PMCID: PMC9037745 DOI: 10.3389/fnsyn.2022.846099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hansen Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- *Correspondence: Hansen Wang
| | | |
Collapse
|
4
|
Al Dera H. Cellular and molecular mechanisms underlying autism spectrum disorders and associated comorbidities: A pathophysiological review. Biomed Pharmacother 2022; 148:112688. [PMID: 35149383 DOI: 10.1016/j.biopha.2022.112688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that develop in early life due to interaction between several genetic and environmental factors and lead to alterations in brain function and structure. During the last decades, several mechanisms have been placed to explain the pathogenesis of autism. Unfortunately, these are reported in several studies and reviews which make it difficult to follow by the reader. In addition, some recent molecular mechanisms related to ASD have been unrevealed. This paper revises and highlights the major common molecular mechanisms responsible for the clinical symptoms seen in people with ASD, including the roles of common genetic factors and disorders, neuroinflammation, GABAergic signaling, and alterations in Ca+2 signaling. Besides, it covers the major molecular mechanisms and signaling pathways involved in initiating the epileptic seizure, including the alterations in the GABAergic and glutamate signaling, vitamin and mineral deficiency, disorders of metabolism, and autoimmunity. Finally, this review also discusses sleep disorder patterns and the molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Hussain Al Dera
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Eshraghi RS, Davies C, Iyengar R, Perez L, Mittal R, Eshraghi AA. Gut-Induced Inflammation during Development May Compromise the Blood-Brain Barrier and Predispose to Autism Spectrum Disorder. J Clin Med 2020; 10:jcm10010027. [PMID: 33374296 PMCID: PMC7794774 DOI: 10.3390/jcm10010027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Recently, the gut microbiome has gained considerable interest as one of the major contributors to the pathogenesis of multi-system inflammatory disorders. Several studies have suggested that the gut microbiota plays a role in modulating complex signaling pathways, predominantly via the bidirectional gut-brain-axis (GBA). Subsequent in vivo studies have demonstrated the direct role of altered gut microbes and metabolites in the progression of neurodevelopmental diseases. This review will discuss the most recent advancements in our understanding of the gut microbiome’s clinical significance in regulating blood-brain barrier (BBB) integrity, immunological function, and neurobiological development. In particular, we address the potentially causal role of GBA dysregulation in the pathophysiology of autism spectrum disorder (ASD) through compromising the BBB and immunological abnormalities. A thorough understanding of the complex signaling interactions between gut microbes, metabolites, neural development, immune mediators, and neurobiological functionality will facilitate the development of targeted therapeutic modalities to better understand, prevent, and treat ASD.
Collapse
Affiliation(s)
- Rebecca S. Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
- Correspondence:
| | - Camron Davies
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
| | - Rahul Iyengar
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
| | - Linda Perez
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
| | - Rahul Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
| | - Adrien A. Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (C.D.); (R.I.); (L.P.); (R.M.); (A.A.E.)
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
6
|
Wang H. Modeling Neurological Diseases With Human Brain Organoids. Front Synaptic Neurosci 2018; 10:15. [PMID: 29937727 PMCID: PMC6002496 DOI: 10.3389/fnsyn.2018.00015] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
The complexity and delicacy of human brain make it challenging to recapitulate its development, function and disorders. Brain organoids derived from human pluripotent stem cells (PSCs) provide a new tool to model both normal and pathological human brain, and greatly enhance our ability to study brain biology and diseases. Currently, human brain organoids are increasingly used in modeling neurological disorders and relative therapeutic discovery. This review article focuses on recent advances in human brain organoid system and its application in disease modeling. It also discusses the limitations and future perspective of human brain organoids in modeling neurological diseases.
Collapse
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Achuta VS, Möykkynen T, Peteri UK, Turconi G, Rivera C, Keinänen K, Castrén ML. Functional changes of AMPA responses in human induced pluripotent stem cell-derived neural progenitors in fragile X syndrome. Sci Signal 2018; 11:11/513/eaan8784. [PMID: 29339535 DOI: 10.1126/scisignal.aan8784] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Altered neuronal network formation and function involving dysregulated excitatory and inhibitory circuits are associated with fragile X syndrome (FXS). We examined functional maturation of the excitatory transmission system in FXS by investigating the response of FXS patient-derived neural progenitor cells to the glutamate analog (AMPA). Neural progenitors derived from induced pluripotent stem cell (iPSC) lines generated from boys with FXS had augmented intracellular Ca2+ responses to AMPA and kainate that were mediated by Ca2+-permeable AMPA receptors (CP-AMPARs) lacking the GluA2 subunit. Together with the enhanced differentiation of glutamate-responsive cells, the proportion of CP-AMPAR and N-methyl-d-aspartate (NMDA) receptor-coexpressing cells was increased in human FXS progenitors. Differentiation of cells lacking GluA2 was also increased and paralleled the increased inward rectification in neural progenitors derived from Fmr1-knockout mice (the FXS mouse model). Human FXS progenitors had increased the expression of the precursor and mature forms of miR-181a, a microRNA that represses translation of the transcript encoding GluA2. Blocking GluA2-lacking, CP-AMPARs reduced the neurite length of human iPSC-derived control progenitors and further reduced the shortened length of neurites in human FXS progenitors, supporting the contribution of CP-AMPARs to the regulation of progenitor differentiation. Furthermore, we observed reduced expression of Gria2 (the GluA2-encoding gene) in the frontal lobe of FXS mice, consistent with functional changes of AMPARs in FXS. Increased Ca2+ influx through CP-AMPARs may increase the vulnerability and affect the differentiation and migration of distinct cell populations, which may interfere with normal circuit formation in FXS.
Collapse
Affiliation(s)
- Venkat Swaroop Achuta
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | - Tommi Möykkynen
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FIN-00014, Helsinki, Finland
| | - Ulla-Kaisa Peteri
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | - Giorgio Turconi
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland
| | - Claudio Rivera
- Neuroscience Center, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland.,Institut de Neurobiologie de la Méditerranée, INSERM, Unité 901, 13009 Marseille, France.,Aix-Marseille Université, Unité Mixte de Recherche 901, 13273 Marseille, France
| | - Kari Keinänen
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, P.O. Box 56, FIN-00014, Helsinki, Finland
| | - Maija L Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, P.O. Box 63, FIN-00014 Helsinki, Finland. .,Rinnekoti Foundation, Rinnekodintie 10, FIN-02980 Espoo, Finland.,Autism Foundation, Kuortaneenkatu 7B, FIN-00520 Helsinki, Finland
| |
Collapse
|
8
|
Craig AB, Grossman E, Krichmar JL. Investigation of autistic traits through strategic decision-making in games with adaptive agents. Sci Rep 2017; 7:5533. [PMID: 28717229 PMCID: PMC5514024 DOI: 10.1038/s41598-017-05933-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022] Open
Abstract
Autism Spectrum Disorders are characterized by difficulties in communicating and cooperating with other people. Impairment in Theory of Mind (ToM), the ability to infer what another person is thinking, may contribute to these social deficits. The present study assesses the relationship between autistic traits and decision-making in a socioeconomic game environment that measures ToM and cooperation. We quantified participant strategy during game play with computer agents that simulated aspects of ToM or fixed strategy agents with static behaviors or heuristics. Individuals with higher Autism Quotient (AQ) scores cooperated less than subjects with low AQ scores with the ToM agents. In contrast, subjects with higher AQ scores cooperated more with fixed strategy agents. Additionally, subjects with higher AQ scores spent more time than low AQ subjects signaling cooperative intent in games with fixed strategy agents while spending less time signaling cooperation with adaptive agents, indicating a preference toward systemizing behaviors in the face of uncertainty. We conclude that individuals with high levels of autistic traits are less likely to utilize ToM as a cognitive strategy, even when it is beneficial, to achieve a desired outcome.
Collapse
Affiliation(s)
- Alexis B Craig
- Department of Cognitive Sciences, University of California, Irvine, 2201 Social & Behavioral Sciences Gateway Building, Irvine, CA, 92697, USA
| | - Emily Grossman
- Department of Cognitive Sciences, University of California, Irvine, 2201 Social & Behavioral Sciences Gateway Building, Irvine, CA, 92697, USA
| | - Jeffrey L Krichmar
- Department of Cognitive Sciences, University of California, Irvine, 2201 Social & Behavioral Sciences Gateway Building, Irvine, CA, 92697, USA.
- Department of Computer Science, University of California, Irvine, 3019 Donald Bren Hall, Irvine, CA, 92697, USA.
| |
Collapse
|
9
|
Tognini P. Gut Microbiota: A Potential Regulator of Neurodevelopment. Front Cell Neurosci 2017; 11:25. [PMID: 28223922 PMCID: PMC5293830 DOI: 10.3389/fncel.2017.00025] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022] Open
Abstract
During childhood, our brain is exposed to a variety of environmental inputs that can sculpt synaptic connections and neuronal circuits, with subsequent influence on behavior and learning processes. Critical periods of neurodevelopment are windows of opportunity in which the neuronal circuits are extremely plastic and can be easily subjected to remodeling in response to experience. However, the brain is also more susceptible to aberrant stimuli that might lead to altered developmental trajectories. Intriguingly, postnatal brain development is paralleled by the maturation of the gut microbiota: the ecosystem of symbionts populating our gastro-intestinal tract. Recent discoveries have started to unveil an unexpected link between the gut microbiome and neurophysiological processes. Indeed, the commensal bacteria seem to be able to influence host behavioral outcome and neurochemistry through mechanisms which remain poorly understood. Remarkably, the efficacy of the gut flora action appears to be dependent on the timing during postnatal life at which the host gut microbes’ signals reaches the brain, suggesting the fascinating possibility of critical periods for this microbiota-driven shaping of host neuronal functions and behavior. Therefore, to understand the importance of the intestinal ecosystem’s impact on neuronal circuits functions and plasticity during development and the discovery of the involved molecular mechanisms, will pave the way to identify new and, hopefully, powerful microbiota-based therapeutic interventions for the treatment of neurodevelopmental and psychiatric diseases.
Collapse
Affiliation(s)
- Paola Tognini
- Sassone-Corsi Laboratory, Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California Irvine Irvine, CA, USA
| |
Collapse
|
10
|
Vahdatpour C, Dyer AH, Tropea D. Insulin-Like Growth Factor 1 and Related Compounds in the Treatment of Childhood-Onset Neurodevelopmental Disorders. Front Neurosci 2016; 10:450. [PMID: 27746717 PMCID: PMC5043261 DOI: 10.3389/fnins.2016.00450] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022] Open
Abstract
Insulin-Like Growth Factor 1 (IGF-1) is a neurotrophic polypeptide with crucial roles to play in Central Nervous System (CNS) growth, development and maturation. Following interrogation of the neurobiology underlying several neurodevelopmental disorders and Autism Spectrum Disorders (ASD), both recombinant IGF-1 (mecasermin) and related derivatives, such as (1-3)IGF-1, have emerged as potential therapeutic approaches. Clinical pilot studies and early reports have supported the safety/preliminary efficacy of IGF-1 and related compounds in the treatment of Rett Syndrome, with evidence mounting for its use in Phelan McDermid Syndrome and Fragile X Syndrome. In ASD, clinical trials are ongoing. Here, we review the role of IGF-1 in the molecular etiologies of these conditions in addition to the accumulating evidence from early clinical studies highlighting the possibility of IGF-1 and related compounds as potential treatments for these childhood-onset neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Adam H. Dyer
- School of Medicine, Trinity College DublinDublin, Ireland
| | - Daniela Tropea
- Department of Psychiatry, Trinity College DublinDublin, Ireland
| |
Collapse
|
11
|
Wang H. Endocannabinoid Mediates Excitatory Synaptic Function of β-Neurexins. Commentary: β-Neurexins Control Neural Circuits by Regulating Synaptic Endocannabinoid Signaling. Front Neurosci 2016; 10:203. [PMID: 27242408 PMCID: PMC4873487 DOI: 10.3389/fnins.2016.00203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/25/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto Toronto, ON, Canada
| |
Collapse
|