1
|
Li YH, Sun CC, Chen PM, Chen HH. SGK1 Target Genes Involved in Heart and Blood Vessel Functions in PC12 Cells. Cells 2023; 12:1641. [PMID: 37371111 DOI: 10.3390/cells12121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1) is expressed in neuronal cells and involved in the pathogenesis of hypertension and metabolic syndrome, regulation of neuronal function, and depression in the brain. This study aims to identify the cellular mechanisms and signaling pathways of SGK1 in neuronal cells. In this study, the SGK1 inhibitor GSK650394 is used to suppress SGK1 expression in PC12 cells using an in vitro neuroscience research platform. Comparative transcriptomic analysis was performed to investigate the effects of SGK1 inhibition in nervous cells using mRNA sequencing (RNA-seq), differentially expressed genes (DEGs), and gene enrichment analysis. In total, 12,627 genes were identified, including 675 and 2152 DEGs at 48 and 72 h after treatment with GSK650394 in PC12 cells, respectively. Gene enrichment analysis data indicated that SGK1 inhibition-induced DEGs were enriched in 94 and 173 genes associated with vascular development and functional regulation and were validated using real-time PCR, Western blotting, and GEPIA2. Therefore, this study uses RNA-seq, DEG analysis, and GEPIA2 correlation analysis to identify positive candidate genes and signaling pathways regulated by SGK1 in rat nervous cells, which will enable further exploration of the underlying molecular signaling mechanisms of SGK1 and provide new insights into neuromodulation in cardiovascular diseases.
Collapse
Affiliation(s)
- Yu-He Li
- Department of Laboratory Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| | - Chia-Cheng Sun
- Physical Examination Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Po-Ming Chen
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Hsin-Hung Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| |
Collapse
|
2
|
Dellin M, Rohrbeck I, Asrani P, Schreiber JA, Ritter N, Glorius F, Wünsch B, Budde T, Temme L, Strünker T, Stallmeyer B, Tüttelmann F, Meuth SG, Spehr M, Matschke J, Steinbicker A, Gatsogiannis C, Stoll R, Strutz-Seebohm N, Seebohm G. The second PI(3,5)P 2 binding site in the S0 helix of KCNQ1 stabilizes PIP 2-at the primary PI1 site with potential consequences on intermediate-to-open state transition. Biol Chem 2023; 404:241-254. [PMID: 36809224 DOI: 10.1515/hsz-2022-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/13/2022] [Indexed: 02/23/2023]
Abstract
The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.
Collapse
Affiliation(s)
- Maurice Dellin
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
| | - Ina Rohrbeck
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
| | - Purva Asrani
- Faculty of Chemistry and Biochemistry, Biomolecular NMR Spectroscopy and RUBiospek|NMR, Ruhr University of Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - Julian A Schreiber
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Nadine Ritter
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Frank Glorius
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, D-48149, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Thomas Budde
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Louisa Temme
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Timo Strünker
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Domagkstraße 11, D-48149, Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Birgit Stallmeyer
- Institute of Reproductive Genetics, University of Münster, Vesaliusweg 12-14, D-48149, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Vesaliusweg 12-14, D-48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Worringerweg 3, D-52074, Aachen, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Andrea Steinbicker
- Goethe University Frankfurt and University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Münster, Busso-Peus Strasse 10, D-48149, Germany
| | - Raphael Stoll
- Faculty of Chemistry and Biochemistry, Biomolecular NMR Spectroscopy and RUBiospek|NMR, Ruhr University of Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - Nathalie Strutz-Seebohm
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
| | - Guiscard Seebohm
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
3
|
Cuellar-Santoyo AO, Ruiz-Rodríguez VM, Mares-Barbosa TB, Patrón-Soberano A, Howe AG, Portales-Pérez DP, Miquelajáuregui Graf A, Estrada-Sánchez AM. Revealing the contribution of astrocytes to glutamatergic neuronal transmission. Front Cell Neurosci 2023; 16:1037641. [PMID: 36744061 PMCID: PMC9893894 DOI: 10.3389/fncel.2022.1037641] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Research on glutamatergic neurotransmission has focused mainly on the function of presynaptic and postsynaptic neurons, leaving astrocytes with a secondary role only to ensure successful neurotransmission. However, recent evidence indicates that astrocytes contribute actively and even regulate neuronal transmission at different levels. This review establishes a framework by comparing glutamatergic components between neurons and astrocytes to examine how astrocytes modulate or otherwise influence neuronal transmission. We have included the most recent findings about the role of astrocytes in neurotransmission, allowing us to understand the complex network of neuron-astrocyte interactions. However, despite the knowledge of synaptic modulation by astrocytes, their contribution to specific physiological and pathological conditions remains to be elucidated. A full understanding of the astrocyte's role in neuronal processing could open fruitful new frontiers in the development of therapeutic applications.
Collapse
Affiliation(s)
- Ares Orlando Cuellar-Santoyo
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Victor Manuel Ruiz-Rodríguez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Teresa Belem Mares-Barbosa
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | - Araceli Patrón-Soberano
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Andrew G. Howe
- Intelligent Systems Laboratory, HRL Laboratories, LLC, Malibu, CA, United States
| | - Diana Patricia Portales-Pérez
- Translational and Molecular Medicine Laboratory, Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí, Mexico
| | | | - Ana María Estrada-Sánchez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| |
Collapse
|
4
|
Lalo U, Koh W, Lee CJ, Pankratov Y. The tripartite glutamatergic synapse. Neuropharmacology 2021; 199:108758. [PMID: 34433089 DOI: 10.1016/j.neuropharm.2021.108758] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/25/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022]
Abstract
Astroglial cells were long considered as structural and metabolic supporting cells are which do not directly participate in information processing in the brain. Discoveries of responsiveness of astrocytes to synaptically-released glutamate and their capability to release agonists of glutamate receptors awakened extensive studies of glia-neuron communications and led to the revolutionary changes in our understanding of brain cellular networks. Nowadays, astrocytes are widely acknowledged as inseparable element of glutamatergic synapses and role for glutamatergic astrocyte-neuron interactions in the brain computation is emerging. Astroglial glutamate receptors, in particular of NMDA, mGluR3 and mGluR5 types, can activate a variety of molecular cascades leading astroglial-driven modulation of extracellular levels of glutamate and activity of neuronal glutamate receptors. Their preferential location to the astroglial perisynaptic processes facilitates interaction of astrocytes with individual excitatory synapses. Bi-directional glutamatergic communication between astrocytes and neurons underpins a complex, spatially-distributed modulation of synaptic signalling thus contributing to the enrichment of information processing by the neuronal networks. Still, further research is needed to bridge the substantial gaps in our understanding of mechanisms and physiological relevance of astrocyte-neuron glutamatergic interactions, in particular ability of astrocytes directly activate neuronal glutamate receptors by releasing glutamate and, arguably, d-Serine. An emerging roles for aberrant changes in glutamatergic astroglial signalling, both neuroprotective and pathogenic, in neurological and neurodegenerative diseases also require further investigation. This article is part of the special Issue on 'Glutamate Receptors - The Glutamatergic Synapse'.
Collapse
Affiliation(s)
- Ulyana Lalo
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Wuhyun Koh
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, South Korea
| | - Yuriy Pankratov
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
5
|
Lang F, Rajaxavier J, Singh Y, Brucker SY, Salker MS. The Enigmatic Role of Serum & Glucocorticoid Inducible Kinase 1 in the Endometrium. Front Cell Dev Biol 2020; 8:556543. [PMID: 33195190 PMCID: PMC7609842 DOI: 10.3389/fcell.2020.556543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
The serum- and glucocorticoid-inducible kinase 1 (SGK1) is subject to genetic up-regulation by diverse stimulators including glucocorticoids, mineralocorticoids, dehydration, ischemia, radiation and hyperosmotic shock. To become active, the expressed kinase requires phosphorylation, which is accomplished by PI3K/PDK1 and mTOR dependent signaling. SGK1 enhances the expression/activity of various transport proteins including Na+/K+-ATPase as well as ion-, glucose-, and amino acid- carriers in the plasma membrane. SGK1 can further up-regulate diverse ion channels, such as Na+-, Ca2+-, K+- and Cl- channels. SGK1 regulates expression/activity of a wide variety of transcription factors (such as FKHRL1/Foxo3a, β-catenin, NFκB and p53). SGK1 thus contributes to the regulation of transport, glycolysis, angiogenesis, cell survival, immune regulation, cell migration, tissue fibrosis and tissue calcification. In this review we summarized the current findings that SGK1 plays a crucial function in the regulation of endometrial function. Specifically, it plays a dual role in the regulation of endometrial receptivity necessary for implantation and, subsequently in pregnancy maintenance. Furthermore, fetal programming of blood pressure regulation requires maternal SGK1. Underlying mechanisms are, however, still ill-defined and there is a substantial need for additional information to fully understand the role of SGK1 in the orchestration of embryo implantation, embryo survival and fetal programming.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard-Karls University, Tübingen, Germany
| | - Janet Rajaxavier
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
| | - Yogesh Singh
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls University, Tübingen, Germany
| | - Sara Y. Brucker
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
| | - Madhuri S. Salker
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
| |
Collapse
|
6
|
Li X, Wu X, Luo P, Xiong L. Astrocyte-specific NDRG2 gene: functions in the brain and neurological diseases. Cell Mol Life Sci 2020; 77:2461-2472. [PMID: 31834421 PMCID: PMC11104915 DOI: 10.1007/s00018-019-03406-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 01/07/2023]
Abstract
In recent years, the roles of astrocytes of the central nervous system in brain function and neurological disease have drawn increasing attention. As a member of the N-myc downstream-regulated gene (NDRG) family, NDRG2 is principally expressed in astrocytes of the central nervous system. NDRG2, which is involved in cell proliferation and differentiation, is commonly regarded as a tumor suppressor. In astrocytes, NDRG2 affects the regulation of apoptosis, astrogliosis, blood-brain barrier integrity, and glutamate clearance. Several preclinical studies have revealed that NDRG2 is implicated in the pathogenesis of many neurological diseases not limited to tumors (mostly glioma in the nervous system), such as stroke, neurodegeneration (Alzheimer's disease and Parkinson's disease), and psychiatric disorders (depression and attention deficit hyperactivity disorder). This review summarizes the biological functions of NDRG2 under physiological and pathological conditions, and further discusses the roles of NDRG2 during the occurrence and development of neurological diseases.
Collapse
Affiliation(s)
- Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, 127 Changle Xi Road, Xi'an, 710032, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Xi Road, Xi'an, 710032, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, 127 Changle Xi Road, Xi'an, 710032, China.
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, 127 Changle Xi Road, Xi'an, 710032, China.
| |
Collapse
|
7
|
Zhou J, Tao K, Guo K, Wu L, Zhang Z, Feng D, Gao G, Qin H. Suppression of NDRG2 alleviates brain injury after intracerebral hemorrhage through mitigating astrocyte-drived glutamate neurotoxicity via NF-κB/GLT1 signaling. Brain Res 2019; 1729:146600. [PMID: 31843625 DOI: 10.1016/j.brainres.2019.146600] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 02/08/2023]
Abstract
N-myc downstream-regulated gene 2 (NDRG2), a newly identified astrocytic stress response gene, is involved in the regulation of astrocytic morphology and function, and has been indicated to be a potential therapeutic target for some central nervous system (CNS) diseases. However, the role of NDRG2 in intracerebral hemorrhage (ICH) remains unknown. Here, we reported that NDRG2 suppression exerted neuroprotection effect against hemorrhagic brain injury in ICH mice and in oxyhemoglobin (OxyHb)-treated cells. Ndrg2 knockout (Ndrg2-/-) mice exhibited reduced hematoma volume and neuronal apoptosis in perihematoma although Ndrg2 deficiency showed little effect on the initial hematoma volume after ICH induction by collagenase injection. Moreover, contrary to the increase in NDRG2 expression after ICH, the expression of glutamate transporter 1 (GLT1) in astrocytes was dramatically decreased in WT (Ndrg2+/+) mice, while which could be more maintained in Ndrg2 knockout mice following ICH. Furthermore, in terms of the mechanism of epigenetic regulation of GLT1 by NDRG2, the results showed that NDRG2 directly interacted with NF-κB, and inhibited the nuclear import and DNA binding activity of the NF-κB p65 subunit after OxyHb treatment in primary astrocytes, decreasing GLT1 transcription and impairing glutamate uptake. Overall, our findings indicate that NDRG2 plays a key role in the pathology of ICH by regulating astrocytic GLT1 expression; thus suppressing NDRG2 may be a potential therapeutic target for ICH.
Collapse
Affiliation(s)
- Jiahua Zhou
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Kai Tao
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Kang Guo
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Lin Wu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, PR China
| | - Zhiguo Zhang
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Dayun Feng
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Guodong Gao
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, PR China.
| | - Huaizhou Qin
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
8
|
Schonkeren SL, Massen M, van der Horst R, Koch A, Vaes N, Melotte V. Nervous NDRGs: the N-myc downstream-regulated gene family in the central and peripheral nervous system. Neurogenetics 2019; 20:173-186. [PMID: 31485792 PMCID: PMC6754360 DOI: 10.1007/s10048-019-00587-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
Abstract
The N-Myc downstream-regulated gene (NDRG) family consists of four members (NDRG1, NDRG2, NDRG3, NDRG4) that are differentially expressed in various organs and function in important processes, like cell proliferation and differentiation. In the last couple of decades, interest in this family has risen due to its connection with several disorders of the nervous system including Charcot-Marie-Tooth disease and dementia, as well as nervous system cancers. By combining a literature review with in silico data analysis of publicly available datasets, such as the Mouse Brain Atlas, BrainSpan, the Genotype-Tissue Expression (GTEx) project, and Gene Expression Omnibus (GEO) datasets, this review summarizes the expression and functions of the NDRG family in the healthy and diseased nervous system. We here show that the NDRGs have a differential, relatively cell type-specific, expression pattern in the nervous system. Even though NDRGs share functionalities, like a role in vesicle trafficking, stress response, and neurite outgrowth, other functionalities seem to be unique to a specific member, e.g., the role of NDRG1 in myelination. Furthermore, mutations, phosphorylation, or changes in expression of NDRGs are related to nervous system diseases, including peripheral neuropathy and different forms of dementia. Moreover, NDRG1, NDRG2, and NDRG4 are all involved in cancers of the nervous system, such as glioma, neuroblastoma, or meningioma. All in all, our review elucidates that although the NDRGs belong to the same gene family and share some functional features, they should be considered unique in their expression patterns and functional importance for nervous system development and neuronal diseases.
Collapse
Affiliation(s)
- Simone L Schonkeren
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Maartje Massen
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Raisa van der Horst
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Alexander Koch
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Nathalie Vaes
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Jin PP, Xia F, Ma BF, Li Z, Zhang GF, Deng YC, Tu ZL, Zhang XX, Hou SX. Spatiotemporal expression of NDRG2 in the human fetal brain. Ann Anat 2018; 221:148-155. [PMID: 30312765 DOI: 10.1016/j.aanat.2018.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 01/08/2023]
Abstract
N-myc downstream-regulated gene 2 (NDRG2) has been implicated in the development of central nervous system and brain diseases such as brain tumors, ischemic stroke and neurodegenerative disorders. However, it remains unclear that the spatiotemporal distribution of NDRG2 in the human fetal brain. In this study, we examined the expression pattern of NDRG2 in different regions of human fetal brain at 16-28 gestational weeks (GWs) by using RT-PCR, western blot and immunohistochemistry. Firstly, RT-PCR revealed that mRNA of NDRG2 was detected in the human brain regions of fetuses at 16-28 GWs such as medulla oblongata (MdO), mesencephalon (MeE), cerebellum (Cbl), frontal lobe (Fr), ventricular (VZ)/subventricular zone (SVZ) and hippocampus (hip), and the expressions of NDRG2 mRNA in these human fetal brain regions were increased with gestational maturation. Furthermore, western blot and immunohistochemistry results revealed that at 28 GWs, the expression of NDRG2 protein was restricted to the MdO's olivary nucleus, MeE's aqueduct, cerebellar internal granular layers, cerebral cortex of the Fr, VZ/SVZ of lateral ventricle, and hippocampal dentate gyrus, and highest expression in the VZ/SVZ, and lowest in the MeE. Finally, double immunohistochemistry results showed that NDRG2 in the MdO, Cbl and VZ/SV at 28 GWS was mainly expressed in neurons (NeuN positive cells), and in some astrocytes (GFAP positive cells). Taken together, these results suggest that NDRG2 is mainly expressed in human fetal neurons of various brain regions during development, which may be involved in neuronal growth and maturation.
Collapse
Affiliation(s)
- Peng-Peng Jin
- Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Feng Xia
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Bin-Fang Ma
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an 710032, China
| | - Zhen Li
- Department of Histology and Embryology, Fourth Military Medical University, Xi'an 710032, China
| | - Guo-Feng Zhang
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Yan-Chun Deng
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhi-Lan Tu
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Xing-Xing Zhang
- Departments of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shuang-Xing Hou
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
| |
Collapse
|
10
|
Lang F, Pelzl L, Hauser S, Hermann A, Stournaras C, Schöls L. To die or not to die SGK1-sensitive ORAI/STIM in cell survival. Cell Calcium 2018; 74:29-34. [PMID: 29807219 DOI: 10.1016/j.ceca.2018.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
The pore forming Ca2+ release activated Ca2+ channel (CRAC) isoforms ORAI1-3 and their regulators STIM1,2 accomplish store operated Ca2+ entry (SOCE). Activation of SOCE may lead to cytosolic Ca2+ oscillations, which in turn support cell proliferation and cell survival. ORAI/STIM and thus SOCE are upregulated by the serum and glucocorticoid inducible kinase SGK1, a kinase under powerful genomic regulation and activated by phosphorylation via the phosphoinositol-3-phosphate pathway. SGK1 enhances ORAI1 abundance partially by phosphorylation of Nedd4-2, an ubiquitin ligase priming the channel protein for degradation. The SGK1-phosphorylated Nedd4-2 binds to the protein 14-3-3 and is thus unable to ubiquinate ORAI1. SGK1 further increases the ORAI1 and STIM1 protein abundance by activating nuclear factor kappa B (NF-κB), a transcription factor upregulating the expression of STIM1 and ORAI1. SGK1-sensitive upregulation of ORAI/STIM and thus SOCE is triggered by a wide variety of hormones and growth factors, as well as several cell stressors including ischemia, radiation, and cell shrinkage. SGK1 dependent upregulation of ORAI/STIM confers survival of tumor cells and thus impacts on growth and therapy resistance of cancer. On the other hand, SGK1-dependent upregulation of ORAI1 and STIM1 may support survival of neurons and impairment of SGK1-dependent ORAI/STIM activity may foster neurodegeneration. Clearly, further experimental effort is needed to define the mechanisms linking SGK1-dependent upregulation of ORAI1 and STIM1 to cell survival and to define the impact of SGK1-dependent upregulation of ORAI1 and STIM1 on malignancy and neurodegenerative disease.
Collapse
Affiliation(s)
- Florian Lang
- Department of Vegetative Physiology, Eberhad Karls University, Wilhelmstr. 56, D-72074 Tübingen, Germany.
| | - Lisann Pelzl
- Department of Vegetative Physiology, Eberhad Karls University, Wilhelmstr. 56, D-72074 Tübingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases, Research Site Tübingen, Germany; Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Andreas Hermann
- Department of Neurology and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Germany & DZNE, German Center for Neurodegenerative Diseases, Research Site Dresden, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases, Research Site Tübingen, Germany; Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
11
|
Lang F, Guelinckx I, Lemetais G, Melander O. Two Liters a Day Keep the Doctor Away? Considerations on the Pathophysiology of Suboptimal Fluid Intake in the Common Population. Kidney Blood Press Res 2017; 42:483-494. [PMID: 28787716 DOI: 10.1159/000479640] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/19/2017] [Indexed: 11/19/2022] Open
Abstract
Suboptimal fluid intake may require enhanced release of antidiuretic hormone (ADH) or vasopressin for the maintenance of adequate hydration. Enhanced copeptin levels (reflecting enhanced vasopressin levels) in 25% of the common population are associated with enhanced risk of metabolic syndrome with abdominal obesity, type 2 diabetes, hypertension, coronary artery disease, heart failure, vascular dementia, cognitive impairment, microalbuminuria, chronic kidney disease, inflammatory bowel disease, cancer, and premature mortality. Vasopressin stimulates the release of glucocorticoids which in turn up-regulate the serum- and glucocorticoid-inducible kinase 1 (SGK1). Moreover, dehydration upregulates the transcription factor NFAT5, which in turn stimulates SGK1 expression. SGK1 is activated by insulin, growth factors and oxidative stress via phosphatidylinositide-3-kinase, 3-phosphoinositide-dependent kinase PDK1 and mTOR. SGK1 is a powerful stimulator of Na+/K+-ATPase, carriers (e.g. the Na+,K+,2Cl- cotransporter NKCC, the NaCl cotransporter NCC, the Na+/H+ exchanger NHE3, and the Na+ coupled glucose transporter SGLT1), and ion channels (e.g. the epithelial Na+ channel ENaC, the Ca2+ release activated Ca2+ channel Orai1 with its stimulator STIM1, and diverse K+ channels). SGK1 further participates in the regulation of the transcription factors nuclear factor kappa-B NFκB, p53, cAMP responsive element binding protein (CREB), activator protein-1, and forkhead transcription factor FKHR-L1 (FOXO3a). Enhanced SGK1 activity fosters the development of hypertension, obesity, diabetes, thrombosis, stroke, inflammation including inflammatory bowel disease and autoimmune disease, cardiac fibrosis, proteinuria, renal failure as well as tumor growth. The present brief review makes the case that suboptimal fluid intake in the common population may enhance vasopressin and glucocorticoid levels thus up-regulating SGK1 expression and favouring the development of SGK1 related pathologies.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology I, University of Tuebingen, Tuebingen, Germany
| | | | | | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
12
|
Matschke J, Wiebeck E, Hurst S, Rudner J, Jendrossek V. Role of SGK1 for fatty acid uptake, cell survival and radioresistance of NCI-H460 lung cancer cells exposed to acute or chronic cycling severe hypoxia. Radiat Oncol 2016; 11:75. [PMID: 27251632 PMCID: PMC4888512 DOI: 10.1186/s13014-016-0647-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/12/2016] [Indexed: 12/12/2022] Open
Abstract
Background Unsaturated fatty acids (FA) are required for cancer cell growth. In normoxia cells can generate unsaturated FA from saturated stearic and palmitic acid by desaturation. However, since the desaturation step is oxygen-dependent hypoxic cancer cells display an increased dependence on the uptake of unsaturated FA. Up to now the mechanism of increased FA uptake in hypoxia is largely unknown. Here we aimed to study the role of human serum and glucocorticoid-inducible kinase (SGK1) in the regulation of FA uptake in cancer cells exposed to acute or chronic cycling hypoxia and explore its use as target for the radiosensitization of hypoxic cancer cells. Methods The effect of SGK1-inhibition (GSK650394) on NCI-H460 lung adenocarcinoma cells exposed to normoxia, acute or chronic cycling hypoxia was analyzed under standard and serum-deprived conditions by short-term proliferation, apoptosis and cell death assays. The impact of SGK1-inhibition on radiation sensitivity was determined by standard colony formation assays. The effect of GSK650394 on FA uptake was quantified by measuring intracellular accumulation of fluorescent FA (C1-BODIPY®-C12). Results Exposure to acute or chronic cycling hypoxia was associated with up-regulated expression of SGK1 in NCI-H460 cells, increased uptake of FA from the culture medium, and increased sensitivity to serum deprivation. Survival of serum-deprived hypoxic NCI-H460 cells was rescued by the addition of the unsaturated FA, oleic acid, whereas the saturated FA, palmitic acid was highly toxic to the hypoxic cancer cells. Interestingly, SGK1 inhibition abrogated the rescue effect of oleic acid in serum-deprived hypoxic cancer cells and this effect was associated with a reduction in FA uptake particularly in anoxia-tolerant cancer cells exposed to severe hypoxia. Finally, SKG1 inhibition decreased long-term survival and potently sensitized the parental and anoxia-tolerant NCI-H460 cells to the cytotoxic effects of ionizing radiation in normoxia as well as the anoxia-tolerant cancer cells in severe hypoxia. Conclusions Our data suggest that SGK1 plays a role in the regulation of FA uptake that becomes essential under conditions of acute or chronic cycling hypoxia. We assume that SGK1 may represent a promising therapeutic target for the eradication of hypoxic cancer cells.
Collapse
Affiliation(s)
- Johann Matschke
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 173, 45122, Essen, Germany
| | - Elisa Wiebeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 173, 45122, Essen, Germany
| | - Sebastian Hurst
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 173, 45122, Essen, Germany
| | - Justine Rudner
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 173, 45122, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Virchowstrasse 173, 45122, Essen, Germany.
| |
Collapse
|