1
|
Bandura J, Chan C, Sun HS, Wheeler AR, Feng ZP. Distinct Proteomic Brain States Underlying Long-Term Memory Formation in Aversive Operant Conditioning. J Proteome Res 2024. [PMID: 39658033 DOI: 10.1021/acs.jproteome.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Long-term memory (LTM) formation relies on de novo protein synthesis; however, the full complement of proteins crucial to LTM formation remains unknown in any system. Using an aversive operant conditioning model of aerial respiratory behavior in the pond snail mollusk, Lymnaea stagnalis (L. stagnalis), we conducted a transcriptome-guided proteomic analysis on the central nervous system (CNS) of LTM, no LTM, and control animals. We identified 366 differentially expressed proteins linked to LTM formation, with 88 upregulated and 36 downregulated in LTM compared to both no LTM and controls. Functional annotation highlighted the importance of balancing protein synthesis and degradation for LTM, as indicated by the upregulation of proteins involved in proteasome activity and translation initiation, including EIF2D, mRNA levels of which were confirmed to be upregulated by conditioning and implicated nuclear factor Y as a potential regulator of LTM-related transcription in this model. This study represents the first transcriptome-guided proteomic analysis of LTM formation ability in this model and lays the groundwork for discovering orthologous proteins critical to LTM in mammals.
Collapse
Affiliation(s)
- Julia Bandura
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Calvin Chan
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hong-Shuo Sun
- Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
2
|
Wingrove J, de Hoog E, Spencer GE. Disruptions in network plasticity precede deficits in memory following inhibition of retinoid signaling. J Neurophysiol 2023; 129:41-55. [PMID: 36448682 DOI: 10.1152/jn.00270.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Retinoic acid, the active metabolite of vitamin A, is important for vertebrate cognition and hippocampal plasticity, but few studies have examined its role in invertebrate learning and memory, and its actions in the invertebrate central nervous system are currently unknown. Using the mollusc Lymnaea stagnalis, we examined operant conditioning of the respiratory behavior, controlled by a well-defined central pattern generator (CPG), and used citral to inhibit retinoic acid signaling. Both citral- and vehicle-treated animals showed normal learning, but citral-treated animals failed to exhibit long-term memory at 24 h. Cohorts of citral- or vehicle-treated animals were dissected into semi-intact preparations, either 1 h after training, or after the memory test 24 h later. Simultaneous electrophysiological recordings from the CPG pacemaker cell (right pedal dorsal 1; RPeD1) and an identified motorneuron (VI) were made while monitoring respiratory activity (pneumostome opening). Activity of the CPG pneumostome opener interneuron (input 3 interneuron; IP3) was also monitored indirectly. Vehicle-treated conditioned preparations showed significant changes in network parameters immediately after learning, such as reduced motorneuron bursting activity (from IP3 input), delayed pneumostome opening, and decoupling of coincident IP3 input within the network. However, citral-treated preparations failed to exhibit these network changes and more closely resembled naïve preparations. Importantly, these citral-induced differences were manifested immediately after training and before any overt changes in the behavioral response (memory impairment). These studies shed light on where and when retinoid signaling might affect a central pattern-generating network to promote memory formation during conditioning of a homeostatic behavior.NEW & NOTEWORTHY We provide novel evidence for how conditioning-induced changes in a CPG network are disrupted when retinoid signaling is inhibited. Inhibition of retinoic acid signaling prevents long-term memory formation following operant conditioning, but has no effect on learning. Simultaneous electrophysiological and behavioral analyses indicate network changes immediately following learning, but these changes are prevented with inhibition of retinoid signaling, before any overt changes in behavior. These data suggest sites for retinoid actions during memory formation.
Collapse
Affiliation(s)
- Joel Wingrove
- Department Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | - Eric de Hoog
- Department Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department Biological Sciences, Brock University, St Catharines, Ontario, Canada
| |
Collapse
|
3
|
Okada S, Hirano N, Abe T, Nagayama T. Aversive operant conditioning alters the phototactic orientation of the marbled crayfish. J Exp Biol 2021; 224:jeb.242180. [PMID: 33536310 DOI: 10.1242/jeb.242180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
Aversive learning was applied to affect the phototactic behaviour of the marbled crayfish. Animals initially showed negative phototaxis to white light and positive taxis to blue light. Using an aversive learning paradigm, we investigated the plasticity of innate behaviour following operant conditioning. The initial rate of choosing a blue-lit exit was analysed by a dual choice experiment between blue-lit and white-lit exits in pre-test conditions. During training, electrical shocks were applied to the animals when they oriented to the blue-lit exit. Memory tests were given to analyse the orientation rate to the blue-lit exit in trials 1 and 24 h after training and these rates were compared with the pre-test. In general, animals avoided the blue-lit exit in the memory tests. When training was carried out three times, the long-term memory was retained for at least 48 h, although a single bout of training was also enough to form a long-term memory. Cooling animals at 4°C or injection of cycloheximide immediately after training altered the formation of long-term memory, but had no effect on short-term memory formation. Administration of the adenylate cyclase inhibitor SQ22536, the PKA inhibitor H89 or the CREB inhibitor KG-501 immediately after training also blocked the formation of long-term memory, but had no effect on short-term memory formation. Thus, our pharmacological behavioural analyses showed that new protein synthesis was necessary to form long-term memories and that the cAMP/PKA/CREB pathway is the main signal cascade for long-term memory formation in the marbled crayfish.
Collapse
Affiliation(s)
- Shione Okada
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| | - Natsumi Hirano
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| | - Toshiki Abe
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560 Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| |
Collapse
|
4
|
Dong N, Bandura J, Zhang Z, Wang Y, Labadie K, Noel B, Davison A, Koene JM, Sun HS, Coutellec MA, Feng ZP. Ion channel profiling of the Lymnaea stagnalis ganglia via transcriptome analysis. BMC Genomics 2021; 22:18. [PMID: 33407100 PMCID: PMC7789530 DOI: 10.1186/s12864-020-07287-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The pond snail Lymnaea stagnalis (L. stagnalis) has been widely used as a model organism in neurobiology, ecotoxicology, and parasitology due to the relative simplicity of its central nervous system (CNS). However, its usefulness is restricted by a limited availability of transcriptome data. While sequence information for the L. stagnalis CNS transcripts has been obtained from EST libraries and a de novo RNA-seq assembly, the quality of these assemblies is limited by a combination of low coverage of EST libraries, the fragmented nature of de novo assemblies, and lack of reference genome. RESULTS In this study, taking advantage of the recent availability of a preliminary L. stagnalis genome, we generated an RNA-seq library from the adult L. stagnalis CNS, using a combination of genome-guided and de novo assembly programs to identify 17,832 protein-coding L. stagnalis transcripts. We combined our library with existing resources to produce a transcript set with greater sequence length, completeness, and diversity than previously available ones. Using our assembly and functional domain analysis, we profiled L. stagnalis CNS transcripts encoding ion channels and ionotropic receptors, which are key proteins for CNS function, and compared their sequences to other vertebrate and invertebrate model organisms. Interestingly, L. stagnalis transcripts encoding numerous putative Ca2+ channels showed the most sequence similarity to those of Mus musculus, Danio rerio, Xenopus tropicalis, Drosophila melanogaster, and Caenorhabditis elegans, suggesting that many calcium channel-related signaling pathways may be evolutionarily conserved. CONCLUSIONS Our study provides the most thorough characterization to date of the L. stagnalis transcriptome and provides insights into differences between vertebrates and invertebrates in CNS transcript diversity, according to function and protein class. Furthermore, this study provides a complete characterization of the ion channels of Lymnaea stagnalis, opening new avenues for future research on fundamental neurobiological processes in this model system.
Collapse
Affiliation(s)
- Nancy Dong
- Department of Physiology, University of Toronto, 3308 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Julia Bandura
- Department of Physiology, University of Toronto, 3308 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Zhaolei Zhang
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Yan Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Karine Labadie
- Genoscope, Institut de biologie François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, BP5706, 91057, Evry, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry, Université Paris-Saclay, 91057, Evry, France
| | - Angus Davison
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK, NG7 2RD, UK
| | - Joris M Koene
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, 3308 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, 3308 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
5
|
Dong N, Senzel A, Li K, Lu TZ, Guo CH, Aleksic M, Feng ZP. MEN1 Tumor Suppressor Gene is Required for Long-term Memory Formation in an Aversive Operant Conditioning Model of Lymnaea stagnalis. Neuroscience 2018; 379:22-31. [PMID: 29496634 DOI: 10.1016/j.neuroscience.2018.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/04/2018] [Accepted: 02/09/2018] [Indexed: 02/02/2023]
Abstract
Activity-dependent transcription factors critically coordinate the gene expression program underlying memory formation. The tumor suppressor gene, MEN1, encodes a ubiquitously expressed transcription regulator required for synaptogenesis and synaptic plasticity in invertebrate and vertebrate central neurons. In this study, we investigated the role of MEN1 in long-term memory (LTM) formation in an aversive operant conditioning paradigm in the freshwater pond snail Lymnaea stagnalis (L. stagnalis). We demonstrated that LTM formation is associated with an increased expression of MEN1 coinciding with an up-regulation of creb1 gene expression. In vivo knockdown of MEN1 prevented LTM formation and conditioning-induced changes in neuronal activity in the identified pacemaker neuron RPeD1. Our findings suggest the involvement of a new pathway in LTM consolidation that requires MEN1-mediated gene regulation.
Collapse
Affiliation(s)
- Nancy Dong
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Anthony Senzel
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kathy Li
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tom Z Lu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Cong-Hui Guo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mila Aleksic
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|