1
|
Papaioannou S, Medini P. Advantages, Pitfalls, and Developments of All Optical Interrogation Strategies of Microcircuits in vivo. Front Neurosci 2022; 16:859803. [PMID: 35837124 PMCID: PMC9274136 DOI: 10.3389/fnins.2022.859803] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
The holy grail for every neurophysiologist is to conclude a causal relationship between an elementary behaviour and the function of a specific brain area or circuit. Our effort to map elementary behaviours to specific brain loci and to further manipulate neural activity while observing the alterations in behaviour is in essence the goal for neuroscientists. Recent advancements in the area of experimental brain imaging in the form of longer wavelength near infrared (NIR) pulsed lasers with the development of highly efficient optogenetic actuators and reporters of neural activity, has endowed us with unprecedented resolution in spatiotemporal precision both in imaging neural activity as well as manipulating it with multiphoton microscopy. This readily available toolbox has introduced a so called all-optical physiology and interrogation of circuits and has opened new horizons when it comes to precisely, fast and non-invasively map and manipulate anatomically, molecularly or functionally identified mesoscopic brain circuits. The purpose of this review is to describe the advantages and possible pitfalls of all-optical approaches in system neuroscience, where by all-optical we mean use of multiphoton microscopy to image the functional response of neuron(s) in the network so to attain flexible choice of the cells to be also optogenetically photostimulated by holography, in absence of electrophysiology. Spatio-temporal constraints will be compared toward the classical reference of electrophysiology methods. When appropriate, in relation to current limitations of current optical approaches, we will make reference to latest works aimed to overcome these limitations, in order to highlight the most recent developments. We will also provide examples of types of experiments uniquely approachable all-optically. Finally, although mechanically non-invasive, all-optical electrophysiology exhibits potential off-target effects which can ambiguate and complicate the interpretation of the results. In summary, this review is an effort to exemplify how an all-optical experiment can be designed, conducted and interpreted from the point of view of the integrative neurophysiologist.
Collapse
|
2
|
Schwarz JR. Function of K2P channels in the mammalian node of Ranvier. J Physiol 2021; 599:4427-4439. [PMID: 34425634 DOI: 10.1113/jp281723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022] Open
Abstract
In myelinated nerve fibres, action potentials are generated at nodes of Ranvier. These structures are located at interruptions of the myelin sheath, forming narrow gaps with small rings of axolemma freely exposed to the extracellular space. The mammalian node contains a high density of Na+ channels and K+ -selective leakage channels. Voltage-dependent Kv1 channels are only present in the juxta-paranode. Recently, the leakage channels have been identified as K2P channels (TRAAK, TREK-1). K2P channels are K+ -selective 'background' channels, characterized by outward rectification and their ability to be activated, e.g. by temperature, mechanical stretch or arachidonic acid. We are only beginning to elucidate the peculiar functions of nodal K2P channels. I will discuss two functions of the nodal K2P-mediated conductance. First, at body temperature K2P channels have a high open probability, thereby inducing a resting potential of about -85 mV. This negative resting potential reduces steady-state Na+ channel inactivation and ensures a large Na+ inward current upon a depolarizing stimulus. Second, the K2P conductance is involved in nodal action potential repolarization. The identification of nodal K2P channels is exciting since it shows that the nodal K+ conductance is not a fixed value but can be changed: it can be increased or decreased by a broad range of K2P modulators, thereby modulating, for example, the resting potential. The functional importance of nodal K2P channels will be exemplified by describing in more detail the function of the K2P conductance increase by raising the temperature from room temperature to 37°C.
Collapse
Affiliation(s)
- Jürgen R Schwarz
- Institute of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Interactions among diameter, myelination, and the Na/K pump affect axonal resilience to high-frequency spiking. Proc Natl Acad Sci U S A 2021; 118:2105795118. [PMID: 34353911 PMCID: PMC8364126 DOI: 10.1073/pnas.2105795118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The reliability of spike propagation in axons is determined by complex interactions among ionic currents, ion pumps, and morphological properties. We use compartment-based modeling to reveal that interactions of diameter, myelination, and the Na/K pump determine the reliability of high-frequency spike propagation. By acting as a “reservoir” of nodal Na+ influx, myelinated compartments efficiently increase propagation reliability. Although spike broadening was thought to oppose fast spiking, its effect on spike propagation is complicated, depending on the balance of Na+ channel inactivation gate recovery, Na+ influx, and axial charge. Our findings suggest that slow Na+ removal influences axonal resilience to high-frequency spike propagation and that different strategies may be required to overcome this constraint in different neurons. Axons reliably conduct action potentials between neurons and/or other targets. Axons have widely variable diameters and can be myelinated or unmyelinated. Although the effect of these factors on propagation speed is well studied, how they constrain axonal resilience to high-frequency spiking is incompletely understood. Maximal firing frequencies range from ∼1 Hz to >300 Hz across neurons, but the process by which Na/K pumps counteract Na+ influx is slow, and the extent to which slow Na+ removal is compatible with high-frequency spiking is unclear. Modeling the process of Na+ removal shows that large-diameter axons are more resilient to high-frequency spikes than are small-diameter axons, because of their slow Na+ accumulation. In myelinated axons, the myelinated compartments between nodes of Ranvier act as a “reservoir” to slow Na+ accumulation and increase the reliability of axonal propagation. We now find that slowing the activation of K+ current can increase the Na+ influx rate, and the effect of minimizing the overlap between Na+ and K+ currents on spike propagation resilience depends on complex interactions among diameter, myelination, and the Na/K pump density. Our results suggest that, in neurons with different channel gating kinetic parameters, different strategies may be required to improve the reliability of axonal propagation.
Collapse
|
4
|
Ona Jodar T, Lage-Rupprecht V, Abraham NM, Rose CR, Egger V. Local Postsynaptic Signaling on Slow Time Scales in Reciprocal Olfactory Bulb Granule Cell Spines Matches Asynchronous Release. Front Synaptic Neurosci 2020; 12:551691. [PMID: 33304264 PMCID: PMC7701096 DOI: 10.3389/fnsyn.2020.551691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
In the vertebrate olfactory bulb (OB), axonless granule cells (GC) mediate self- and lateral inhibitory interactions between mitral/tufted cells via reciprocal dendrodendritic synapses. Locally triggered release of GABA from the large reciprocal GC spines occurs on both fast and slow time scales, possibly enabling parallel processing during olfactory perception. Here we investigate local mechanisms for asynchronous spine output. To reveal the temporal and spatial characteristics of postsynaptic ion transients, we imaged spine and adjacent dendrite Ca2 +- and Na+-signals with minimal exogenous buffering by the respective fluorescent indicator dyes upon two-photon uncaging of DNI-glutamate in OB slices from juvenile rats. Both postsynaptic fluorescence signals decayed slowly, with average half durations in the spine head of t1 / 2_Δ[Ca2 +]i ∼500 ms and t1 / 2_Δ[Na+]i ∼1,000 ms. We also analyzed the kinetics of already existing data of postsynaptic spine Ca2 +-signals in response to glomerular stimulation in OB slices from adult mice, either WT or animals with partial GC glutamate receptor deletions (NMDAR: GluN1 subunit; AMPAR: GluA2 subunit). In a large subset of spines the fluorescence signal had a protracted rise time (average time to peak ∼400 ms, range 20 to >1,000 ms). This slow rise was independent of Ca2 + entry via NMDARs, since similarly slow signals occurred in ΔGluN1 GCs. Additional Ca2 + entry in ΔGluA2 GCs (with AMPARs rendered Ca2 +-permeable), however, resulted in larger ΔF/Fs that rose yet more slowly. Thus GC spines appear to dispose of several local mechanisms to promote asynchronous GABA release, which are reflected in the time course of mitral/tufted cell recurrent inhibition.
Collapse
Affiliation(s)
- Tiffany Ona Jodar
- Regensburg University, Regensburg, Germany
- Institut D’Investigacions Biomèdiques, Barcelona, Spain
| | - Vanessa Lage-Rupprecht
- Regensburg University, Regensburg, Germany
- Fraunhofer Institute for Algorithms and Scientific Computing, St. Augustin, Germany
| | | | | | | |
Collapse
|
5
|
Goaillard JM, Moubarak E, Tapia M, Tell F. Diversity of Axonal and Dendritic Contributions to Neuronal Output. Front Cell Neurosci 2020; 13:570. [PMID: 32038171 PMCID: PMC6987044 DOI: 10.3389/fncel.2019.00570] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
Our general understanding of neuronal function is that dendrites receive information that is transmitted to the axon, where action potentials (APs) are initiated and propagated to eventually trigger neurotransmitter release at synaptic terminals. Even though this canonical division of labor is true for a number of neuronal types in the mammalian brain (including neocortical and hippocampal pyramidal neurons or cerebellar Purkinje neurons), many neuronal types do not comply with this classical polarity scheme. In fact, dendrites can be the site of AP initiation and propagation, and even neurotransmitter release. In several interneuron types, all functions are carried out by dendrites as these neurons are devoid of a canonical axon. In this article, we present a few examples of "misbehaving" neurons (with a non-canonical polarity scheme) to highlight the diversity of solutions that are used by mammalian neurons to transmit information. Moreover, we discuss how the contribution of dendrites and axons to neuronal excitability may impose constraints on the morphology of these compartments in specific functional contexts.
Collapse
Affiliation(s)
- Jean-Marc Goaillard
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| | - Estelle Moubarak
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| | - Mónica Tapia
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| | - Fabien Tell
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
| |
Collapse
|
6
|
Coincidence Detection within the Excitable Rat Olfactory Bulb Granule Cell Spines. J Neurosci 2019; 39:584-595. [PMID: 30674614 DOI: 10.1523/jneurosci.1798-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/13/2018] [Accepted: 10/09/2018] [Indexed: 11/21/2022] Open
Abstract
In the mammalian olfactory bulb, the inhibitory axonless granule cells (GCs) feature reciprocal synapses that interconnect them with the principal neurons of the bulb, mitral, and tufted cells. These synapses are located within large excitable spines that can generate local action potentials (APs) upon synaptic input ("spine spike"). Moreover, GCs can fire global APs that propagate throughout the dendrite. Strikingly, local postsynaptic Ca2+ entry summates mostly linearly with Ca2+ entry due to coincident global APs generated by glomerular stimulation, although some underlying conductances should be inactivated. We investigated this phenomenon by constructing a compartmental GC model to simulate the pairing of local and global signals as a function of their temporal separation Δt. These simulations yield strongly sublinear summation of spine Ca2+ entry for the case of perfect coincidence Δt = 0 ms. Summation efficiency (SE) sharply rises for both positive and negative Δt. The SE reduction for coincident signals depends on the presence of voltage-gated Na+ channels in the spine head, while NMDARs are not essential. We experimentally validated the simulated SE in slices of juvenile rat brain (both sexes) by pairing two-photon uncaging of glutamate at spines and APs evoked by somatic current injection at various intervals Δt while imaging spine Ca2+ signals. Finally, the latencies of synaptically evoked global APs and EPSPs were found to correspond to Δt ≈ 10 ms, explaining the observed approximately linear summation of synaptic local and global signals. Our results provide additional evidence for the existence of the GC spine spike.SIGNIFICANCE STATEMENT Here we investigate the interaction of local synaptic inputs and global activation of a neuron by a backpropagating action potential within a dendritic spine with respect to local Ca2+ signaling. Our system of interest, the reciprocal spine of the olfactory bulb granule cell, is known to feature a special processing mode, namely, a synaptically triggered action potential that is restricted to the spine head. Therefore, coincidence detection of local and global signals follows different rules than in more conventional synapses. We unravel these rules using both simulations and experiments and find that signals coincident within ≈±7 ms around 0 ms result in sublinear summation of Ca2+ entry because of synaptic activation of voltage-gated Na+ channels within the spine.
Collapse
|
7
|
Gerkau NJ, Lerchundi R, Nelson JSE, Lantermann M, Meyer J, Hirrlinger J, Rose CR. Relation between activity-induced intracellular sodium transients and ATP dynamics in mouse hippocampal neurons. J Physiol 2019; 597:5687-5705. [PMID: 31549401 DOI: 10.1113/jp278658] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Employing quantitative Na+ -imaging and Förster resonance energy transfer-based imaging with ATeam1.03YEMK (ATeam), we studied the relation between activity-induced Na+ influx and intracellular ATP in CA1 pyramidal neurons of the mouse hippocampus. Calibration of ATeam in situ enabled a quantitative estimate of changes in intracellular ATP concentrations. Different paradigms of stimulation that induced global Na+ influx into the entire neuron resulted in decreases in [ATP] in the range of 0.1-0.6 mm in somata and dendrites, while Na+ influx that was locally restricted to parts of dendrites did not evoke a detectable change in dendritic [ATP]. Our data suggest that global Na+ transients require global cellular activation of the Na+ /K+ -ATPase resulting in a consumption of ATP that transiently overrides its production. For recovery from locally restricted Na+ influx, ATP production as well as fast intracellular diffusion of ATP and Na+ might prevent a local drop in [ATP]. ABSTRACT Excitatory neuronal activity results in the influx of Na+ through voltage- and ligand-gated channels. Recovery from accompanying increases in intracellular Na+ concentrations ([Na+ ]i ) is mainly mediated by the Na+ /K+ -ATPase (NKA) and is one of the major energy-consuming processes in the brain. Here, we analysed the relation between different patterns of activity-induced [Na+ ]i signalling and ATP in mouse hippocampal CA1 pyramidal neurons by Na+ imaging with sodium-binding benzofurane isophthalate (SBFI) and employing the genetically encoded nanosensor ATeam1.03YEMK (ATeam). In situ calibrations demonstrated a sigmoidal dependence of the ATeam Förster resonance energy transfer ratio on the intracellular ATP concentration ([ATP]i ) with an apparent KD of 2.6 mm, indicating its suitability for [ATP]i measurement. Induction of recurrent network activity resulted in global [Na+ ]i oscillations with amplitudes of ∼10 mm, encompassing somata and dendrites. These were accompanied by a steady decline in [ATP]i by 0.3-0.4 mm in both compartments. Global [Na+ ]i transients, induced by afferent fibre stimulation or bath application of glutamate, caused delayed, transient decreases in [ATP]i as well. Brief focal glutamate application that evoked transient local Na+ influx into a dendrite, however, did not result in a measurable reduction in [ATP]i . Our results suggest that ATP consumption by the NKA following global [Na+ ]i transients temporarily overrides its availability, causing a decrease in [ATP]i . Locally restricted Na+ transients, however, do not result in detectable changes in local [ATP]i , suggesting that ATP production, together with rapid intracellular diffusion of both ATP and Na+ from and to unstimulated neighbouring regions, counteracts a local energy shortage under these conditions.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Rodrigo Lerchundi
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Joel S E Nelson
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Marina Lantermann
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Jan Meyer
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, University of Leipzig, 04103, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, 37075, Goettingen, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225, Duesseldorf, Germany
| |
Collapse
|
8
|
Heterogeneity of Activity-Induced Sodium Transients between Astrocytes of the Mouse Hippocampus and Neocortex: Mechanisms and Consequences. J Neurosci 2019; 39:2620-2634. [PMID: 30737311 DOI: 10.1523/jneurosci.2029-18.2019] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/07/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023] Open
Abstract
Activity-related sodium transients induced by glutamate uptake represent a special form of astrocyte excitability. Astrocytes of the neocortex, as opposed to the hippocampus proper, also express ionotropic glutamate receptors, which might provide additional sodium influx. We compared glutamate-related sodium transients in astrocytes and neurons in slices of the neocortex and hippocampus of juvenile mice of both sexes, using widefield and multiphoton imaging. Stimulation of glutamatergic afferents or glutamate application induced sodium transients that were twice as large in neocortical as in hippocampal astrocytes, despite similar neuronal responses. Astrocyte sodium transients were reduced by ∼50% upon blocking NMDA receptors in the neocortex, but not hippocampus. Neocortical, but not hippocampal, astrocytes exhibited marked sodium increases in response to NMDA. These key differences in sodium signaling were also observed in neonates and in adults. NMDA application evoked local calcium transients in processes of neocortical astrocytes, which were dampened upon blocking sodium/calcium exchange (NCX) with KB-R7943 or SEA0400. Mathematical computation based on our data predict that NMDA-induced sodium increases drive the NCX into reverse mode, resulting in calcium influx. Together, our study reveals a considerable regional heterogeneity in astrocyte sodium transients, which persists throughout postnatal development. Neocortical astrocytes respond with much larger sodium elevations to glutamatergic activity than hippocampal astrocytes. Moreover, neocortical astrocytes experience NMDA-receptor-mediated sodium influx, which hippocampal astrocytes lack, and which drives calcium import through reverse NCX. This pathway thereby links sodium to calcium signaling and represents a new mechanism for the generation of local calcium influx in neocortical astrocytes.SIGNIFICANCE STATEMENT Astrocyte calcium signals play a central role in neuron-glia interaction. Moreover, activity-related sodium transients may represent a new form of astrocyte excitability. Here we show that activation of NMDA receptors results in prominent sodium transients in neocortical, but not hippocampal, astrocytes in the mouse brain. NMDA receptor activation is accompanied by local calcium signaling in processes of neocortical astrocytes, which is augmented by sodium-driven reversal of the sodium/calcium exchanger. Our data demonstrate a significant regional heterogeneity in the magnitude and mechanisms of astrocyte sodium transients. They also suggest a close interrelation between NMDA-receptor-mediated sodium influx and calcium signaling through the reversal of sodium/calcium exchanger, thereby establishing a new pathway for the generation of local calcium signaling in astrocyte processes.
Collapse
|
9
|
Shang M, Xing J. Blocking of Dendrodendritic Inhibition Unleashes Widely Spread Lateral Propagation of Odor-evoked Activity in the Mouse Olfactory Bulb. Neuroscience 2018; 391:50-59. [PMID: 30208337 DOI: 10.1016/j.neuroscience.2018.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/01/2018] [Accepted: 09/03/2018] [Indexed: 01/27/2023]
Abstract
The olfactory circuitry in mice involves a well-characterized, vertical receptor type-specific organization, but the localized inhibitory effect from granule cells on action potentials that propagate laterally in secondary dendrites of mitral cell remains open to debate. To understand the functional dynamics of the lateral (horizontal) circuits, we analyzed odor-induced signaling using transgenic mice expressing a genetically encoded Ca2+ indicator specifically in mitral/tufted and some juxtaglomerular cells. Optical imaging of the dorsal olfactory bulb (dOB) revealed specific patterns of glomerular activation in response to odor presentation or direct electric stimulation of the olfactory nerve (ON). Application of a mixture of ionotropic and metabotropic glutamate receptor antagonists onto the exposed dOB completely abolished the responses to direct stimulation of the ON as well as discrete odor-evoked glomerular responses patterns, while a spatially more widespread response component increased and expanded into previously nonresponsive regions. To test whether the widespread odor response component represented signal propagation along mitral cell secondary dendrites, an NMDA receptor antagonist alone was applied to the dOB and was found to also increase and expand odor-evoked response patterns. Finally, with dOB excitatory synaptic transmission completely blocked, application of 1 mM muscimol (a GABAA receptor agonist) to a circumscribed volume in the deep external plexiform layer (EPL) induced an odor non-responsive area. These results indicate that odor stimulation can activate olfactory reciprocal synapses and control lateral interactions among olfactory glomerular modules along a wide range of mitral cell secondary dendrites by modulating the inhibitory effect from granule cells.
Collapse
Affiliation(s)
- Mengjuan Shang
- Department of Radiation Medicine, Faculty of Preventive Medicine, Airforce Medical University, 169(#) ChangLe West Road, Xi'an 710032, China
| | - Junling Xing
- Department of Radiation Biology, Faculty of Preventive Medicine, Airforce Medical University, 169(#) ChangLe West Road, Xi'an 710032, China; Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520-8001, USA.
| |
Collapse
|
10
|
Naumann G, Lippmann K, Eilers J. Photophysical properties of Na + -indicator dyes suitable for quantitative two-photon fluorescence-lifetime measurements. J Microsc 2018; 272:136-144. [PMID: 30191999 DOI: 10.1111/jmi.12754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/14/2018] [Accepted: 08/14/2018] [Indexed: 12/29/2022]
Abstract
Two-photon microscopy (2PM) offers great potential in fluorescence imaging of intracellular Na+ dynamics of live cells. A severe drawback, however, is that quantitative ratioing of fluorescence intensities at different wavelengths [possible in one-photon imaging with the classical Na+ -indicator dye sodium-binding benzofuran isophtalate (SBFI)] is not practical in 2PM. We aimed at establishing 2PM-based time-correlated fluorescence lifetime measurements as an alternative method for quantifying Na+ dynamics. We compared the photophysical properties of the four Na+ -sensitive fluorescent indicator dyes SBFI, CoroNa Green, Sodium Green and Asante NaTRIUM Green-2 (ANG-2) in cuvette calibrations. All four dyes showed Na+ -dependent intensity changes, with ANG-2 having the most favourable properties for 2PM. All dyes but SBFI showed significant changes in their fluorescence lifetime upon Na+ binding, again with ANG-2 being the most promising dye. We found that, unfortunately, the fluorescence lifetime of ANG-2 is not only affected by Na+ but also by protons, K+ and dye impurities, rendering a quantitative description of the individual lifetime components impractical. However, a simplified calibration procedure, based on a published approach for Ca2+ imaging, allowed relating lifetimes to Na+ concentration. Using ANG-2 and the simplified calibration will allow quantitative two-photon Na+ imaging with millimolar sensitivity. LAY DESCRIPTION Dynamic changes of ion concentrations, which play crucial roles in cellular physiology, can be monitored with appropriate fluorescent indicator dyes. For intracellular sodium ions (Na+ ), certain dyes even allow quantitative measurements with standard microscopic techniques. However, for two-photon microscopy, which allows resolving cells deep in intact tissue, imaging solutions that are fully quantitative are lacking. For the four commercially available Na+ dyes 'SBFI', 'CoroNa Green', 'Sodium Green', and 'Asante NaTRIUM Green-2' (ANG2) we analyzed whether their fluorescent lifetime (LT), i.e., the nanosecond decay of emission of photons after a pulsed excitation, could serve as a quantitative measure of intracellular Na+ . Pulsed excitation in the femtosecond range is an inherent feature of two-photon microscopy and, in combination with fast, single-photon counting microscopes, allows for easy-to-implement LT microscopy. We found that Sodium Green and ANG2 showed strong Na+ -dependent changes in the fluorescence LT, while SBFI showed no, and CoroNa Green only small changes. ANG2, as the brightest dye, was further characterized regarding effects of protons and potassium ions (K+ ), both also present in cells at significant concentrations, on the fluorescence LT. We found that the LT of ANG2 is affected in a predictable manner by Na+ , K+ , and protons. However, our data reveal that the commercial dye must also contain impurities with unexpected Na+ - and K+ -binding characteristics, rendering a quantitative description of the individual lifetime components impractical. We, therefore, adapted a simplified calibration procedure, based on a published approach for Ca2+ imaging, that allows relating the average lifetime to Na+ concentration. With this simplified calibration procedure, ANG2 is well suited for quantitative two-photon Na+ imaging with millimolar sensitivity.
Collapse
Affiliation(s)
- G Naumann
- Carl-Ludwig-Institute for Physiology, University Leipzig, Liebigstr. 27, Leipzig, Germany
| | - K Lippmann
- Carl-Ludwig-Institute for Physiology, University Leipzig, Liebigstr. 27, Leipzig, Germany
| | - J Eilers
- Carl-Ludwig-Institute for Physiology, University Leipzig, Liebigstr. 27, Leipzig, Germany
| |
Collapse
|