1
|
Ikeda M, Doi D, Ebise H, Ozaki Y, Fujii M, Kikuchi T, Yoshida K, Takahashi J. Validation of non-destructive morphology-based selection of cerebral cortical organoids by paired morphological and single-cell RNA-seq analyses. Stem Cell Reports 2024; 19:1635-1646. [PMID: 39393360 PMCID: PMC11589179 DOI: 10.1016/j.stemcr.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024] Open
Abstract
Organoids, self-organized cell aggregates, contribute significantly to developing disease models and cell-based therapies. Organoid-to-organoid variations, however, are inevitable despite the use of the latest differentiation protocols. Here, we focused on the morphology of organoids formed in a cerebral organoid differentiation culture and assessed their cellular compositions by single-cell RNA sequencing analysis. The data revealed that organoids primarily composed of non-neuronal cells, such as those from the neural crest and choroid plexus, showed unique morphological features. Moreover, we demonstrate that non-destructive morphological analysis can accurately distinguish organoids composed of cerebral cortical tissues from other cerebral tissues, thus enhancing experimental accuracy and reliability to ensure the safety of cell-based therapies.
Collapse
Affiliation(s)
- Megumi Ikeda
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047, Japan
| | - Daisuke Doi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Hayao Ebise
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047, Japan
| | - Yuki Ozaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Misaki Fujii
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Tetsuhiro Kikuchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Kenji Yoshida
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Chuo-ku, Kobe 650-0047, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
2
|
Zhao J, Zou W, Hu T. Novel genes associated with folic acid-mediated metabolism in mouse: A bioinformatics study. PLoS One 2020; 15:e0238940. [PMID: 32915913 PMCID: PMC7485790 DOI: 10.1371/journal.pone.0238940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
Folic acid plays an essential role in the central nervous system and cancer. This study aimed to screen genes related to folic acid metabolism. Datasets (GSE80587, GSE65267 and GSE116299) correlated to folic acid were screened in the Gene Expression Omnibus. Weighed gene co-expression network analysis was performed to identify modules associated with sample traits of folic acid and organs (brain, prostate and kidney). Functional enrichment analysis was performed for the eigengenes in modules that were significantly correlated with sample traits. Accordingly, the hub genes and key nodes in the modules were identified using the protein interaction network. A total of 17,252 genes in three datasets were identified. One module, which included 97 genes that were highly correlated with sample traits (including folic acid treatment [cor = -0.57, P = 3e-04] and kidney [cor = -0.68, p = 4e-06]), was screened out. Hub genes, including tetratricopeptide repeat protein 38 (Ttc38) and miR-185, as well as those (including Sema3A, Insl3, Dll1, Msh4 and Snai1) associated with "neuropilin binding", "regulation of reproductive process" and "vitamin D metabolic process", were identified. Genes, including Ttc38, Sema3A, Insl3, Dll1, Msh4 and Snai1, were the novel factors that may be associated with the development of the kidneys and related to folic acid treatment.
Collapse
Affiliation(s)
- Jianwen Zhao
- Shenyang Medical College, Shenyang, Liaoning, China
| | - Wen Zou
- Liaoning Vocational College of Ecological Engineering, Shenyang, Liaoning, China
| | - Tingxi Hu
- Shenyang Medical College, Shenyang, Liaoning, China
- * E-mail:
| |
Collapse
|
3
|
Axonal Extensions along Corticospinal Tracts from Transplanted Human Cerebral Organoids. Stem Cell Reports 2020; 15:467-481. [PMID: 32679062 PMCID: PMC7419717 DOI: 10.1016/j.stemcr.2020.06.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/23/2023] Open
Abstract
The reconstruction of lost neural circuits by cell replacement is a possible treatment for neurological deficits after cerebral cortex injury. Cerebral organoids can be a novel source for cell transplantation, but because the cellular composition of the organoids changes along the time course of the development, it remains unclear which developmental stage of the organoids is most suitable for reconstructing the corticospinal tract. Here, we transplanted human embryonic stem cell-derived cerebral organoids at 6 or 10 weeks after differentiation (6w- or 10w-organoids) into mouse cerebral cortices. 6w-organoids extended more axons along the corticospinal tract but caused graft overgrowth with a higher percentage of proliferative cells. Axonal extensions from 10w-organoids were smaller in number but were enhanced when the organoids were grafted 1 week after brain injury. Finally, 10w-organoids extended axons in cynomolgus monkey brains. These results contribute to the development of a cell-replacement therapy for brain injury and stroke.
Collapse
|
4
|
Samata B, Takaichi R, Ishii Y, Fukushima K, Nakagawa H, Ono Y, Takahashi J. L1CAM Is a Marker for Enriching Corticospinal Motor Neurons in the Developing Brain. Front Cell Neurosci 2020; 14:31. [PMID: 32140099 PMCID: PMC7042175 DOI: 10.3389/fncel.2020.00031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 02/03/2020] [Indexed: 01/06/2023] Open
Abstract
The cerebral cortical tissue of murine embryo and pluripotent stem cell-derived neurons can survive in the adult brain and extend axons to the spinal cord. These features suggest that cell transplantation can be a strategy to reconstruct the corticospinal tract (CST). It is unknown, however, which cell population makes for safe and effective donor cells. To address this issue, we grafted the cerebral cortex of E14.5 mouse to the brain of adult mice and found that the cells in the graft extending axons along the CST expressed CTIP2. By using CTIP2:GFP knock-in mouse embryonic stem cells (mESCs), we identified L1CAM as a cell surface marker to enrich CTIP2+ cells. We sorted L1CAM+ cells from E14.5 mouse brain and confirmed that they extended a larger number of axons along the CST compared to L1CAM− cells. Our results suggest that sorting L1CAM+ cells from the embryonic cerebral cortex enriches subcortical projection neurons to reconstruct the CST.
Collapse
Affiliation(s)
- Bumpei Samata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Rika Takaichi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yuko Ishii
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Kaori Fukushima
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Harumi Nakagawa
- Department of Developmental Neurobiology, KAN Research Institute Inc., Kobe, Japan
| | - Yuichi Ono
- Department of Developmental Neurobiology, KAN Research Institute Inc., Kobe, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Sunohara T, Morizane A, Matsuura S, Miyamoto S, Saito H, Takahashi J. MicroRNA-Based Separation of Cortico-Fugal Projection Neuron-Like Cells Derived From Embryonic Stem Cells. Front Neurosci 2019; 13:1141. [PMID: 31708734 PMCID: PMC6819314 DOI: 10.3389/fnins.2019.01141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
The purification of pluripotent stem cell-derived cortico-fugal projection neurons (PSC-CFuPNs) is useful for disease modeling and cell therapies related to the dysfunction of cortical motor neurons, such as amyotrophic lateral sclerosis (ALS) or stroke. However, no CFuPN-specific surface markers for the purification are known. Recently, microRNAs (miRNAs) have been reported as alternatives to surface markers. Here, we investigated this possibility by applying the miRNA switch, an mRNA technology, to enrich PSC-CFuPNs. An array study of miRNAs in mouse fetal brain tissue revealed that CFuPNs highly express miRNA-124-3p at E14.5 and E16.5. In response, we designed a miRNA switched that responds to miRNA-124-3p and applied it to mouse embryonic stem cell (ESC)-derived cortical neurons. Flow cytometry and quantitative polymerase chain reaction (qPCR) analyses showed the miRNA-124-3p switch enriched CFuPN-like cells from this population. Immunocytechemical analysis confirmed vGlut1/Emx1/Bcl11b triple positive CFuPN-like cells were increased from 6.5 to 42%. Thus, our miRNA-124-3p switch can uniquely enrich live CFuPN-like cells from mouse ESC-derived cortical neurons.
Collapse
Affiliation(s)
- Tadashi Sunohara
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Satoshi Matsuura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
Therapeutic effects of combined cell transplantation and locomotor training in rats with brain injury. NPJ Regen Med 2019; 4:13. [PMID: 31231547 PMCID: PMC6549150 DOI: 10.1038/s41536-019-0075-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
Cell-based therapies are attracting attention as alternative therapeutic options for brain damage. In this study, we investigated the therapeutic effect of a combined therapy of cell transplantation and locomotor training by evaluating the neuronal connectivity. We transplanted neural cells derived from the frontal cortex of E14.5 GFP-expressing mice into the frontal lobe of 3-week-old rats with brain injury, followed by treadmill training (TMT) for 14 days. In the TMT(-) group, graft-derived neurites were observed only in the striatum and internal capsule. In contrast, in the TMT(+) group, they were observed in the striatum, internal capsule, and the cerebral peduncle and spinal cord. The length of the longest neurite was significantly longer in the TMT(+) group than in the TMT(-) group. In the TMT(+) group, Synaptophysin+ vesicles on the neuronal fibers around the ipsilateral red nucleus were found, suggesting that neuronal fibers from the grafted cells formed synapses with the host neurons. A functional analysis of motor recovery using the foot fault test showed that, 1 week after the transplantation, the recovery was significantly better in the cell transplantation and TMT group than the cell transplantation only group. The percentage of cells expressing C-FOS was increased in the grafts in the TMT(+) group. In conclusion, TMT promoted neurite extensions from the grafted neural cells, and the combined therapy of cell transplantation and locomotor training might have the potential to promote the functional recovery of rats with brain injury compared to cell transplantation alone.
Collapse
|
7
|
Forbes LH, Andrews MR. Grafted Human iPSC-Derived Neural Progenitor Cells Express Integrins and Extend Long-Distance Axons Within the Developing Corticospinal Tract. Front Cell Neurosci 2019; 13:26. [PMID: 30809126 PMCID: PMC6380224 DOI: 10.3389/fncel.2019.00026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
After spinal cord injury (SCI), regeneration of adult motor axons such as axons in the corticospinal tract (CST) is severely limited. Alongside the inhibitory lesion environment, most neuronal subtypes in the mature central nervous system (CNS) are intrinsically unrepairable. With age, expression of growth-promoting proteins in neurons, such as integrins, declines. Integrin receptors allow communication between the extracellular matrix (ECM) and cell cytoskeleton and their expression in axons facilitates growth and guidance throughout the ECM. The α9β1 integrin heterodimer binds to tenascin-C (TN-C), an ECM glycoprotein expressed during development and after injury. In the mature CST however, expression of the α9 integrin subunit is downregulated, adding to the intrinsic inability of axons to regenerate. Our previous work has shown the α9 integrin subunit is not trafficked within axons of mature CST or rubrospinal tracts (RSTs). Thus, here we have utilized human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) to increase expression of α9 integrinwithin the developing rat CST. We demonstrate that human NPCs (hNPCs) express endogenous levels of both α9 and β1 integrin subunits as well as cortical neuron markers such as chicken ovalbumin upstream promoter transcription factor (COUP-TF) interacting protein 2 (Ctip2) and T-box brain 1 (Tbr1). In addition, lentivirus-mediated α9 integrin overexpression in hNPCs resulted in increased neurite outgrowth in the presence of TN-C in vitro. Following transplantation into the sensorimotor cortex of newborn rats, both wild type (WT) and α9-expressing hNPCs extend along the endogenous CST and retain expression of α9 throughout the length of the axonal compartment for up to 8 weeks following transplantation. These data highlight the growth potential of transplanted human iPSCs which may be a future target for regenerative therapies after nervous system injury.
Collapse
Affiliation(s)
- Lindsey H Forbes
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Melissa R Andrews
- School of Medicine, University of St Andrews, St Andrews, United Kingdom.,Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|