1
|
Dudhabhate BB, Awathale SN, Choudhary AG, Subhedar NK, Kokare DM. Deep brain stimulation targeted at lateral hypothalamus-medial forebrain bundle reverses depressive-like symptoms and related cognitive deficits in rat: Role of serotoninergic system. Neuroscience 2024; 556:96-113. [PMID: 39103042 DOI: 10.1016/j.neuroscience.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
The aim of the study is to understand the rationale behind the application of deep brain stimulation (DBS) in the treatment of depression. Male Wistar rats, rendered depressive with chronic unpredictable mild stress (CUMS) were implanted with electrode in the lateral hypothalamus-medial forebrain bundle (LH-MFB) and subjected to deep brain stimulation (DBS) for 4 h each day for 14 days. DBS rats, as well as controls, were screened for a range of parameters indicative of depressive state. Symptomatic features noticed in CUMS rats like the memory deficit, anhedonia, reduction in body weight and 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in mPFC and elevated plasma corticosterone were reversed in rats subjected to DBS. DBS arrested CUMS induced degeneration of 5-HT cells in interfascicular region of dorsal raphe nucleus (DRif) and fibers in LH-MFB and induced dendritic proliferation in mPFC neurons. MFB is known to serve as a major conduit for the DRif-mPFC serotoninergic pathway. While the density of serotonin fibers in the LH-MFB circuit was reduced in CUMS, it was upregulated in DBS-treated rats. Furthermore, microinjection of 5-HT1A receptor antagonist, WAY100635 into mPFC countered the positive effects of DBS like the antidepressant and memory-enhancing action. In this background, we suggest that DBS at LH-MFB may exercise positive effect in depressive rats via upregulation of the serotoninergic system. While these data drawn from the experiments on rat provide meaningful clues, we suggest that further studies aimed at understanding the usefulness of DBS at LH-MFB in humans may be rewarding.
Collapse
Affiliation(s)
- Biru B Dudhabhate
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Sanjay N Awathale
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424 001, Maharashtra, India
| | - Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India.
| |
Collapse
|
2
|
Silva RH, Lopes-Silva LB, Cunha DG, Becegato M, Ribeiro AM, Santos JR. Animal Approaches to Studying Risk Factors for Parkinson's Disease: A Narrative Review. Brain Sci 2024; 14:156. [PMID: 38391730 PMCID: PMC10887213 DOI: 10.3390/brainsci14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Despite recent efforts to search for biomarkers for the pre-symptomatic diagnosis of Parkinson's disease (PD), the presence of risk factors, prodromal signs, and family history still support the classification of individuals at risk for this disease. Human epidemiological studies are useful in this search but fail to provide causality. The study of well-known risk factors for PD in animal models can help elucidate mechanisms related to the disease's etiology and contribute to future prevention or treatment approaches. This narrative review aims to discuss animal studies that investigated four of the main risk factors and/or prodromal signs related to PD: advanced age, male sex, sleep alterations, and depression. Different databases were used to search the studies, which were included based on their relevance to the topic. Although still in a reduced number, such studies are of great relevance in the search for evidence that leads to a possible early diagnosis and improvements in methods of prevention and treatment.
Collapse
Affiliation(s)
- R H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - L B Lopes-Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - D G Cunha
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - M Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo 04021-001, SP, Brazil
| | - A M Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Universidade Federal de São Paulo, Santos 11015-020, SP, Brazil
| | - J R Santos
- Behavioral and Evolutionary Neurobiology Laboratory, Department of Biosciences, Federal University of Sergipe, Itabaiana 49500-000, SE, Brazil
| |
Collapse
|
3
|
Sampaio TB, Schamne MG, Santos JR, Ferro MM, Miyoshi E, Prediger RD. Exploring Parkinson's Disease-Associated Depression: Role of Inflammation on the Noradrenergic and Serotonergic Pathways. Brain Sci 2024; 14:100. [PMID: 38275520 PMCID: PMC10813485 DOI: 10.3390/brainsci14010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Parkinson's disease (PD) is a multifactorial disease, with genetic and environmental factors contributing to the disease onset. Classically, PD is a movement disorder characterized by the loss of dopaminergic neurons in the nigrostriatal pathway and intraneuronal aggregates mainly constituted of the protein α-synuclein. However, PD patients also display non-motor symptoms, including depression, which have been linked to functional abnormalities of non-dopaminergic neurons, including serotonergic and noradrenergic ones. Thus, through this comprehensive literature review, we shed light on the noradrenergic and serotonergic impairment linked to depression in PD, focusing on the putative involvement of inflammatory mechanisms.
Collapse
Affiliation(s)
| | - Marissa Giovanna Schamne
- Graduate Program in Biomedical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Jean Rodrigo Santos
- Department of Pharmacy, State University of Centro Oeste, Guarapuava 85040-167, PR, Brazil
| | - Marcelo Machado Ferro
- Graduate Program in Biomedical Sciences, Department of General Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Edmar Miyoshi
- Graduate Program in Biomedical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Rui Daniel Prediger
- Graduate Program in Pharmacology, Department of Pharmacology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| |
Collapse
|
4
|
Gargano A, Olabiyi BF, Palmisano M, Zimmer A, Bilkei-Gorzo A. Possible role of locus coeruleus neuronal loss in age-related memory and attention deficits. Front Neurosci 2023; 17:1264253. [PMID: 37694113 PMCID: PMC10492095 DOI: 10.3389/fnins.2023.1264253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Aging is associated with a decline in cognitive abilities, including memory and attention. It is generally accepted that age-related histological changes such as increased neuroinflammatory glial activity and a reduction in the number of specific neuronal populations contribute to cognitive aging. Noradrenergic neurons in the locus coeruleus (LC) undergo an approximately 20 % loss during ageing both in humans and mice, but whether this change contributes to cognitive deficits is not known. To address this issue, we asked whether a similar loss of LC neurons in young animals as observed in aged animals impairs memory and attention, cognitive domains that are both influenced by the noradrenergic system and impaired in aging. Methods For that, we treated young healthy mice with DSP-4, a toxin that specifically kills LC noradrenergic neurons. We compared the performance of DSP-4 treated young mice with the performance of aged mice in models of attention and memory. To do this, we first determined the dose of DSP-4, which causes a similar 20 % neuronal loss as is typical in aged animals. Results Young mice treated with DSP-4 showed impaired attention in the presence of distractor and memory deficits in the 5-choice serial reaction time test (5-CSRTT). Old, untreated mice showed severe deficits in both the 5-CSRTT and in fear extinction tests. Discussion Our data now suggest that a reduction in the number of LC neurons contributes to impaired working memory and greater distractibility in attentional tasks but not to deficits in fear extinction. We hypothesize that the moderate loss of LC noradrenergic neurons during aging contributes to attention deficits and working memory impairments.
Collapse
Affiliation(s)
| | | | | | | | - Andras Bilkei-Gorzo
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Venusberg-Campus, Bonn, Germany
| |
Collapse
|
5
|
Ray Chaudhuri K, Leta V, Bannister K, Brooks DJ, Svenningsson P. The noradrenergic subtype of Parkinson disease: from animal models to clinical practice. Nat Rev Neurol 2023:10.1038/s41582-023-00802-5. [PMID: 37142796 DOI: 10.1038/s41582-023-00802-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 05/06/2023]
Abstract
Many advances in understanding the pathophysiology of Parkinson disease (PD) have been based on research addressing its motor symptoms and phenotypes. Various data-driven clinical phenotyping studies supported by neuropathological and in vivo neuroimaging data suggest the existence of distinct non-motor endophenotypes of PD even at diagnosis, a concept further strengthened by the predominantly non-motor spectrum of symptoms in prodromal PD. Preclinical and clinical studies support early dysfunction of noradrenergic transmission in both the CNS and peripheral nervous system circuits in patients with PD that results in a specific cluster of non-motor symptoms, including rapid eye movement sleep behaviour disorder, pain, anxiety and dysautonomia (particularly orthostatic hypotension and urinary dysfunction). Cluster analyses of large independent cohorts of patients with PD and phenotype-focused studies have confirmed the existence of a noradrenergic subtype of PD, which had been previously postulated but not fully characterized. This Review discusses the translational work that unravelled the clinical and neuropathological processes underpinning the noradrenergic PD subtype. Although some overlap with other PD subtypes is inevitable as the disease progresses, recognition of noradrenergic PD as a distinct early disease subtype represents an important advance towards the delivery of personalized medicine for patients with PD.
Collapse
Affiliation(s)
- K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK.
| | - Valentina Leta
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | - Kirsty Bannister
- Central Modulation of Pain Lab, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - David J Brooks
- Institute of Translational and Clinical Research, University of Newcastle upon Tyne, Newcastle, UK
- Department of Nuclear Medicine, Aarhus University, Aarhus, Denmark
| | - Per Svenningsson
- Department of Basic and Clinical Neurosciences, The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
6
|
Santoro M, Fadda P, Klephan KJ, Hull C, Teismann P, Platt B, Riedel G. Neurochemical, histological, and behavioral profiling of the acute, sub-acute, and chronic MPTP mouse model of Parkinson's disease. J Neurochem 2023; 164:121-142. [PMID: 36184945 PMCID: PMC10098710 DOI: 10.1111/jnc.15699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 02/04/2023]
Abstract
Parkinson's disease (PD) is a heterogeneous multi-systemic disorder unique to humans characterized by motor and non-motor symptoms. Preclinical experimental models of PD present limitations and inconsistent neurochemical, histological, and behavioral readouts. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD is the most common in vivo screening platform for novel drug therapies; nonetheless, behavioral endpoints yielded amongst laboratories are often discordant and inconclusive. In this study, we characterized neurochemically, histologically, and behaviorally three different MPTP mouse models of PD to identify translational traits reminiscent of PD symptomatology. MPTP was intraperitoneally (i.p.) administered in three different regimens: (i) acute-four injections of 20 mg/kg of MPTP every 2 h; (ii) sub-acute-one daily injection of 30 mg/kg of MPTP for 5 consecutive days; and (iii) chronic-one daily injection of 4 mg/kg of MPTP for 28 consecutive days. A series of behavioral tests were conducted to assess motor and non-motor behavioral changes including anxiety, endurance, gait, motor deficits, cognitive impairment, circadian rhythm and food consumption. Impairments in balance and gait were confirmed in the chronic and acute models, respectively, with the latter showing significant correlation with lesion size. The sub-acute model, by contrast, presented with generalized hyperactivity. Both, motor and non-motor changes were identified in the acute and sub-acute regime where habituation to a novel environment was significantly reduced. Moreover, we report increased water and food intake across all three models. Overall, the acute model displayed the most severe lesion size, while across the three models striatal dopamine content (DA) did not correlate with the behavioral performance. The present study demonstrates that detection of behavioral changes following MPTP exposure is challenging and does not correlate with the dopaminergic lesion extent.
Collapse
Affiliation(s)
- Matteo Santoro
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
- Present address:
Department of Neurosurgery, School of MedicineStanford UniversityPalo AltoCaliforniaUSA
| | - Paola Fadda
- Department of NeuroscienceUniversity of CagliariCagliariItaly
| | - Katie J. Klephan
- Newcastle UniversitySchool of Biomedical, Nutritional, and Sport SciencesNewcastle upon TyneUK
- Present address:
AccuRXLondonLondonUK
| | - Claire Hull
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Peter Teismann
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Bettina Platt
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - Gernot Riedel
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
7
|
Mou YK, Guan LN, Yao XY, Wang JH, Song XY, Ji YQ, Ren C, Wei SZ. Application of Neurotoxin-Induced Animal Models in the Study of Parkinson's Disease-Related Depression: Profile and Proposal. Front Aging Neurosci 2022; 14:890512. [PMID: 35645772 PMCID: PMC9136050 DOI: 10.3389/fnagi.2022.890512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 01/17/2023] Open
Abstract
Depression can be a non-motor symptom, a risk factor, and even a co-morbidity of Parkinson's disease (PD). In either case, depression seriously affects the quality of life of PD patients. Unfortunately, at present, a large number of clinical and basic studies focused on the pathophysiological mechanism of PD and the prevention and treatment of motor symptoms. Although there has been increasing attention to PD-related depression, it is difficult to achieve early detection and early intervention, because the clinical guidelines mostly refer to depression developed after or accompanied by motor impairments. Why is there such a dilemma? This is because there has been no suitable preclinical animal model for studying the relationship between depression and PD, and the assessment of depressive behavior in PD preclinical models is as well a very challenging task since it is not free from the confounding from the motor impairment. As a common method to simulate PD symptoms, neurotoxin-induced PD models have been widely used. Studies have found that neurotoxin-induced PD model animals could exhibit depression-like behaviors, which sometimes manifested earlier than motor impairments. Therefore, there have been attempts to establish the PD-related depression model by neurotoxin induction. However, due to a lack of unified protocol, the reported results were diverse. For the purpose of further promoting the improvement and optimization of the animal models and the study of PD-related depression, we reviewed the establishment and evaluation strategies of the current animal models of PD-related depression based on both the existing literature and our own research experience, and discussed the possible mechanism and interventions, in order to provide a reference for future research in this area.
Collapse
Affiliation(s)
- Ya-Kui Mou
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Li-Na Guan
- Department of Neurosurgical Intensive Care Unit, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiao-Yan Yao
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Jia-Hui Wang
- Department of Central Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiao-Yu Song
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yong-Qiang Ji
- Department of Nephrology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Chao Ren
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Shi-Zhuang Wei
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| |
Collapse
|
8
|
Tirassa P, Schirinzi T, Raspa M, Ralli M, Greco A, Polimeni A, Possenti R, Mercuri NB, Severini C. What substance P might tell us about the prognosis and mechanism of Parkinson's disease? Neurosci Biobehav Rev 2021; 131:899-911. [PMID: 34653503 DOI: 10.1016/j.neubiorev.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
The neuropeptide substance P (SP) plays an important role in neurodegenerative disorders, among which Parkinson's disease (PD). In the present work we have reviewed the involvement of SP and its preferred receptor (NK1-R) in motor and non-motor PD symptoms, in both PD animal models and patients. Despite PD is primarily a motor disorder, non-motor abnormalities, including olfactory deficits and gastrointestinal dysfunctions, can represent diagnostic PD predictors, according to the hypothesis that the olfactory and the enteric nervous system represent starting points of neurodegeneration, ascending to the brain via the sympathetic fibers and the vagus nerve. In PD patients, the α-synuclein aggregates in the olfactory bulb and the gastrointestinal tract, as well as in the dorsal motor nucleus of the vagus nerve often co-localize with SP, indicating SP-positive neurons as highly vulnerable sites of degeneration. Considering the involvement of the SP/NK1-R in both the periphery and specific brain areas, this system might represent a neuronal substrate for the symptom and disease progression, as well as a therapeutic target for PD.
Collapse
Affiliation(s)
- Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Antonella Polimeni
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Roberta Possenti
- Department of Systems Medicine, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
| |
Collapse
|
9
|
Prasuhn J, Prasuhn M, Fellbrich A, Strautz R, Lemmer F, Dreischmeier S, Kasten M, Münte TF, Hanssen H, Heldmann M, Brüggemann N. Association of Locus Coeruleus and Substantia Nigra Pathology With Cognitive and Motor Functions in Patients With Parkinson Disease. Neurology 2021; 97:e1007-e1016. [PMID: 34187859 DOI: 10.1212/wnl.0000000000012444] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/10/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the contribution of substantia nigra (SN) and locus coeruleus (LC) pathology to clinical signs and symptoms in Parkinson's disease (PD) by applying neuromelanin-weighted imaging. METHODS Forty-seven patients with PD and 53 matched controls underwent motor assessment, a neuropsychological test battery and neuromelanin-weighted MRI. Patients with PD have been enrolled after fulfilling the criteria for 'clinically established PD' as defined by the Movement Disorders Society Clinical Diagnostic Criteria. Two independent raters identified SN and LC and calculated the contrast-to-noise ratio (CNR). RESULTS The intra-rater reliability demonstrated a good reliability between raters with an intraclass correlation coefficient of .88 (p<.001) and an inter-rater reliability of .80 (p<.001). Both, SN and LC CNRs were lower in patients with PD (p≤.001) compared to controls. The CNR of SN but not of LC was strongly correlated with disease duration (p≤.001). Neuromelanin pathology of the pars compacta-containing dorso-lateral SN correlated with MDS-UPDRS I, II and III but not cognitive functions. In contrast, neuromelanin pathology of LC was associated with cognitive functions in all tested domains but not with motor impairment or activities of daily living. No such associations were present in controls. CONCLUSIONS Neuromelanin imaging of the SN and LC is well-suited to map neurodegeneration in PD. Neuromelanin pathology of the SN correlates with motor dysfunction whereas LC pathology is related to cognitive impairment. Neuromelanin-weighted imaging of the LC could thus serve as an imaging marker of executive and other cognitive dysfunctions in PD. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that neuromelanin-weighted imaging was associated with the severity of various signs and symptoms in patients with PD.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Michelle Prasuhn
- Department of Ophthalmology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Laboratory for Angiogenesis and Ocular Cell Transplantation, University of Lübeck, Lübeck, Germany
| | - Anja Fellbrich
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Robert Strautz
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Psychiatry, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Felicitas Lemmer
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Shalida Dreischmeier
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Department of Psychiatry, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Henrike Hanssen
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany .,Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
10
|
Li Z, Cao P, Meng H, Li D, Zhang Y, Li Y, Wang S. Long-term exposure to 2-amino-3-methylimidazo[4,5-f]quinoline can trigger a potential risk of Parkinson's disease. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125230. [PMID: 33548786 DOI: 10.1016/j.jhazmat.2021.125230] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Humans are exposed to heterocyclic amines (HCAs) from a wide range of sources, such as protein-rich thermally processed foods, cigarette smoke, contaminated river water, the atmosphere, soil, and forest fire ash. Although the carcinogenic and mutagenic hazards of HCAs have been widely studied, the potential neurotoxicity of these compounds still needs to be further elucidated. Here, we studied the neurotoxicity of the HCA 2-amino-3-methylimidazole[4,5-f]quinoline (IQ) in vivo by utilizing a zebrafish model. After 35 days of exposure at 8, 80, and 800 ng/mL, zebrafish exploratory behavior and locomotor activity were significantly inhibited, and light/dark preference behaviors were also disturbed. Moreover, the expression of Parkinson's disease (PD)-related genes and proteins, dopamine-related genes, neuroplasticity-related genes, antioxidant enzyme genes and inflammatory cytokine genes in the zebrafish brain was significantly affected. The numbers of NeuN neurons in the midbrain were decreased in exposed zebrafish, while the numbers of apoptotic cells were increased. In summary, our research suggests that IQ is neurotoxic and significantly associated with PD and that long-term exposure to IQ may contribute to PD risk. This risk may be related to IQ-mediated effects on mitochondrial homeostasis and induction of oxidative stress and inflammation.
Collapse
Affiliation(s)
- Zhi Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Peipei Cao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huiling Meng
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dan Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuhao Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
11
|
O'Neill E, Griffin ÉW, O'Sullivan R, Murray C, Ryan L, Yssel J, Harkin A, Cunningham C. Acute neuroinflammation, sickness behavior and working memory responses to acute systemic LPS challenge following noradrenergic lesion in mice. Brain Behav Immun 2021; 94:357-368. [PMID: 33307172 DOI: 10.1016/j.bbi.2020.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
Locus coeruleus (LC)-derived noradrenaline is important in cognition and decreases with age, but the impact of prior noradrenaline deficiency on vulnerability to inflammation-induced acute cognitive dysfunction is unclear. Here we assessed whether noradrenergic depletion, in female mice, impacted upon inflammation, locomotor activity and working memory directly after acute systemic immune challenge with bacterial lipopolysaccharide (LPS), a paradigm we have previously used to capture delirium-like acute cognitive deficits. Mice received 2 doses of the LC-selective noradrenergic toxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4; 50 mg/kg i.p.) and were challenged, 2 weeks later, with LPS (100 μg/kg i.p.). DSP-4 dramatically reduced noradrenaline concentrations and tyrosine hydroxylase-positive afferents in the frontal cortex and hippocampus. This did not significantly alter numbers of Pu.1-positive microglia, Iba1-positive microglial morphology or mRNA expression of microglia-associated gene transcripts (Tyrobp, Sall1, Cd68, Sra2, Clec7a) in the hippocampus or frontal cortex and produced modest reductions in Cx3cr1 and P2ry12. LPS induced blood and brain cytokine levels, cFOS activation and locomotor responses that were highly similar in DSP-4- and vehicle-treated mice, although LPS-induced plasma TNF-α was significantly reduced in those treated with DSP-4. Importantly, prior noradrenergic depletion did not predispose to LPS-induced T-maze working memory deficits. The data demonstrate that significant depletion of noradrenaline in the hippocampus and frontal cortex does not prompt acutely exaggerated neuroinflammation or leave the brain vulnerable to acute, transient working memory deficits upon low dose LPS challenge. These findings have implications for our understanding of the impact of systemic inflammation on the aging and vulnerable brain during septic encephalopathy and delirium.
Collapse
Affiliation(s)
- Eoin O'Neill
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Éadaoin W Griffin
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Ruairi O'Sullivan
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Carol Murray
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Lucy Ryan
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Justin Yssel
- School of Pharmacy & Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew Harkin
- School of Pharmacy & Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Colm Cunningham
- School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
12
|
Chen L, Huang Y, Yu X, Lu J, Jia W, Song J, Liu L, Wang Y, Huang Y, Xie J, Li M. Corynoxine Protects Dopaminergic Neurons Through Inducing Autophagy and Diminishing Neuroinflammation in Rotenone-Induced Animal Models of Parkinson's Disease. Front Pharmacol 2021; 12:642900. [PMID: 33927622 PMCID: PMC8078868 DOI: 10.3389/fphar.2021.642900] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Recent studies have shown that impairment of autophagy is related to the pathogenesis of Parkinson's disease (PD), and small molecular autophagy enhancers are suggested to be potential drug candidates against PD. Previous studies identified corynoxine (Cory), an oxindole alkaloid isolated from the Chinese herbal medicine Uncaria rhynchophylla (Miq.) Jacks, as a new autophagy enhancer that promoted the degradation of α-synuclein in a PD cell model. In this study, two different rotenone-induced animal models of PD, one involving the systemic administration of rotenone at a low dosage in mice and the other involving the infusion of rotenone stereotaxically into the substantia nigra pars compacta (SNpc) of rats, were employed to evaluate the neuroprotective effects of Cory. Cory was shown to exhibit neuroprotective effects in the two rotenone-induced models of PD by improving motor dysfunction, preventing tyrosine hydroxylase (TH)-positive neuronal loss, decreasing α-synuclein aggregates through the mechanistic target of the rapamycin (mTOR) pathway, and diminishing neuroinflammation. These results provide preclinical experimental evidence supporting the development of Cory into a potential delivery system for the treatment of PD.
Collapse
Affiliation(s)
- Leilei Chen
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Yujv Huang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Xing Yu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wenting Jia
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Juxian Song
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Macau, China
| | - Liangfeng Liu
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Youcui Wang
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Yingyu Huang
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
- Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Min Li
- Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| |
Collapse
|
13
|
Li Y, Jiao Q, Du X, Jiang H. Sirt1/FoxO1-Associated MAO-A Upregulation Promotes Depressive-Like Behavior in Transgenic Mice Expressing Human A53T α-Synuclein. ACS Chem Neurosci 2020; 11:3838-3848. [PMID: 33155799 DOI: 10.1021/acschemneuro.0c00628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonmotor symptoms are of pivotal importance in Parkinson's disease (PD), among which depressive disorder occurs in more than 45% of PD cases. Decreased levels of noradrenaline (NA) and serotonin (5-HT) in the central nervous system are relevant to it; however, the underlying mechanism is largely unknown. To this end, we conducted behavioral assays to analyze the depressive phenotype in transgenic mice with overexpressed A53T human α-synuclein (A53T mice) and examined alterations of NAergic and 5-HTergic systems in the neuron degeneration, neurotransmitter production, and degradation aspects of the mouse. As compared to controls, A53T mice displayed elevated depressive-like behavior at 6 months, which presents earlier than motor deficits do at 12 months. We detected reduced levels of NA and 5-HT in the hippocampus and NA in the locus coeruleus of 6-month A53T mice. There was no loss of NAergic and 5-HTergic neurons or decreased neurotransmitter synthesis in the brain. However, the expression of MAO-A, an enzyme responsible for NA and 5-HT degradation, was upregulated in A53T mice. Mechanistically, Sirt1 was downregulated which lead to an increase in FoxO1 acetylation, which subsequently increased the transcription of MAO-A. Activation of Sirt1 by resveratrol or inhibition of MAO-A by moclobemide administration could restore brain NA and 5-HT levels and attenuate the depressive-like behavior of A53T mice. Taken together, our results provided a novel correlation between Sirt1 and MAO-A, and compounds targeting on these molecules are beneficial for improving depression in the A53T mouse model of PD.
Collapse
Affiliation(s)
- Yong Li
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, 266071 Qingdao, China
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042 Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, 266071 Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, 266071 Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, 266071 Qingdao, China
| |
Collapse
|
14
|
Yao JQ, Liu C, Jin ZL, Liu YQ, Yin YY, Fang XX, Ran YH, Zhang LM, Li YF. Serotonergic transmission is required for the anxiolytic-like behavioral effects of YL-IPA08, a selective ligand targeting TSPO. Neuropharmacology 2020; 178:108230. [PMID: 32693005 DOI: 10.1016/j.neuropharm.2020.108230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/24/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023]
Abstract
Anxiety disorders are the most prevalent group of mental disorders globally, leading to considerable losses in health, functioning and increase of medical costs. Till now, the search for novel pharmacological treatments is driven by the growing medical need to improve on the effectiveness and the side effect profile of existing drugs. In central nervous system, the mitochondrially located translocator protein (18 kDa, TSPO) serves as the rate-limiting step for neurosteroidogenesis and influences GABAergic transmission. Since 5-HT is one of the most comprehensively studied neurotransmitter systems in the anxiety field, in the present study, we want to investigate whether 5-HT system is involved in the anxiolytic-like effects of YL-IPA08, a novel TSPO ligand designed and synthesized at our institute. Our data showed that YL-IPA08 could potentiate the 5-HTP-induced head-twitch response, and the anxiolytic-like effect of YL-IPA08 was abolished by pCPA or 5,7-DHT pretreatment in mice. Furthermore, we found that YL-IPA08 increased the extracellular levels of 5-HT in the rat ventral hippocampus in freely moving rat using the rapid and validated HPLC coupled with microdialysis. In addition, 5-HT level was positively correlated with the level of allopregnanolone. The above results suggest that 5-HT neurotransmission may play a critical role in the anxiolytic-like effects of YL-IPA08.
Collapse
Affiliation(s)
- Jun-Qi Yao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Chang Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; Nanlou Pharmacy, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zeng-Liang Jin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China; School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yan-Qin Liu
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Xin-Xin Fang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Yu-Hua Ran
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| |
Collapse
|
15
|
Transcriptomic profiling of differentially expressed genes and related pathways in different brain regions in Parkinson’s disease. Neurosci Lett 2020; 732:135074. [DOI: 10.1016/j.neulet.2020.135074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
|
16
|
Cinar E, Yalcin-Cakmakli G, Saka E, Ulusoy A, Yuruker S, Elibol B, Tel BC. Modelling cognitive deficits in Parkinson's disease: Is CA2 a gateway for hippocampal synucleinopathy? Exp Neurol 2020; 330:113357. [PMID: 32437708 DOI: 10.1016/j.expneurol.2020.113357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/01/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Cognitive dysfunction is one of the most disabling non-motor symptoms of Parkinson's disease (PD), though its pathological correlates still remain elusive. Hippocampal Lewy pathology has recently been correlated by compelling evidence from post-mortem and imaging studies. Animal models recapitulating cognitive impairment in PD are essential to better understand the underlying pathophysiology. To investigate the hippocampal involvement in cognitive dysfunction of PD, we generated an experimental model by inducing midbrain and hippocampal α-synuclein pathology simultaneously. METHODS Rats were injected either with human α-synuclein or green fluorescent protein (GFP) expressing adeno-associated viral vectors (AAV), or saline bilaterally into substantia nigra (SN) and dentate gyrus (DG). A group of untreated animals were used as naïve controls. Cognitive and behavioral changes were evaluated with tests probing for spatial learning, short-term memory, anxiety and hedonistic behavior. Immunohistochemical staining, immunoblotting and stereological analysis were performed for pathological characterization. RESULTS Bilateral α-synuclein overexpression in SN and DG led to mild but significant motor impairment as well as dysfunctions in short-term memory and spatial learning. There was no hedonistic deficit, whereas a hypo-anxious state was induced. While stereological analysis revealed no significant neuronal loss in any sectors of cornu ammonis, there was considerable decrease (43%) in TH+-neurons in SN pars compacta supporting the well-known vulnerability of nigral dopaminergic neurons to α-synuclein mediated neurodegeneration. On the other hand, synaptophysin levels decreased in similar amounts both in striatum and hippocampus, suggesting comparable synaptic loss in target areas. Interestingly, phosphorylated-S129-α-synuclein staining revealed significant expression in CA2 characterized by more mature and dense cellular accumulations compared to CA1-CA3 sub-regions displaying more diffuse grain-like aggregates, suggesting preferential susceptibility of CA2 to produce α-synuclein induced pathology. CONCLUSION Bilateral α-synuclein overexpression in DG and SN reproduced partial motor and hippocampus related cognitive deficits. Using this model, we showed a predisposition of CA2 for pathological α-synuclein accumulation, which may provide further insights for future experimental and clinical studies.
Collapse
Affiliation(s)
- Elif Cinar
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | | | - Esen Saka
- Department of Neurology, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Sinan Yuruker
- Usak University Faculty of Medicine, Department of Histology and Embryology, Usak, Turkey
| | - Bulent Elibol
- Department of Neurology, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Banu C Tel
- Department of Pharmacology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
17
|
Paredes-Rodriguez E, Vegas-Suarez S, Morera-Herreras T, De Deurwaerdere P, Miguelez C. The Noradrenergic System in Parkinson's Disease. Front Pharmacol 2020; 11:435. [PMID: 32322208 PMCID: PMC7157437 DOI: 10.3389/fphar.2020.00435] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Nowadays it is well accepted that in Parkinson’s disease (PD), the neurodegenerative process occurs in stages and that damage to other areas precedes the neuronal loss in the substantia nigra pars compacta, which is considered a pathophysiological hallmark of PD. This heterogeneous and progressive neurodegeneration may explain the diverse symptomatology of the disease, including motor and non-motor alterations. In PD, one of the first areas undergoing degeneration is the locus coeruleus (LC). This noradrenergic nucleus provides extensive innervation throughout the brain and plays a fundamental neuromodulator role, participating in stress responses, emotional memory, and control of motor, sensory, and autonomic functions. Early in the disease, LC neurons suffer modifications that can condition the effectiveness of pharmacological treatments, and importantly, can lead to the appearance of common non-motor symptomatology. The noradrenergic system also exerts anti-inflammatory and neuroprotective effect on the dopaminergic degeneration and noradrenergic damage can consequently condition the progress of the disease. From the pharmacological point of view, it is also important to understand how the noradrenergic system performs in PD, since noradrenergic medication is often used in these patients, and drug interactions can take place when combining them with the gold standard drug therapy in PD, L-3,4-dihydroxyphenylalanine (L-DOPA). This review provides an overview about the functional status of the noradrenergic system in PD and its contribution to the efficacy of pharmacological-based treatments. Based on preclinical and clinical publications, a special attention will be dedicated to the most prevalent non-motor symptoms of the disease.
Collapse
Affiliation(s)
- Elena Paredes-Rodriguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Sergio Vegas-Suarez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Philippe De Deurwaerdere
- Centre National de la Recherche scientifique, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA UMR 5287), Bordeaux, France
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
18
|
Pan YP, Liu C, Liu MF, Wang Y, Bian K, Xue Y, Chen L. Involvement of orexin-A in the regulation of neuronal activity and emotional behaviors in central amygdala in rats. Neuropeptides 2020; 80:102019. [PMID: 31980205 DOI: 10.1016/j.npep.2020.102019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
Abstract
The amygdala is a complex structure involved in the regulation of emotional behaviors including fear and anxiety. The central amygdala is the main output of the amygdala and plays an important role in emotional processing. Recent studies indicate that orexin, a kind of neuropeptides responsible for maintaining wakefulness, is also associated with emotion-related behaviors, such as depression- and anxiety-like behaviors. Central amygdala receives orexinergic fibers originating from the lateral hypothalamus and expresses OX1 receptors in rats. To test the electrophysiological and behavioral effects of orexins in the central amygdala, single unit in vivo extracellular recordings, open field and elevated plus maze tests were performed in rats. Micro-pressure administration of orexin-A (0.01 mmol/L) increased the firing rate in 18 out of the 31 central amygdala neurons, while the other 13 neurons were not excited by orexin-A. The excitatory effects of orexin-A on central amygdala neurons were mainly mediated by OX1 receptors rather than OX2 receptors. Orexin-B (0.01 mmol/L) did not change the firing activity in all recorded central amygdala neurons. Selectively blocking OX1 receptors by SB-334867 (0.01 mmol/L) significantly decreased the spontaneous firing rate in 14 out of the 33 central amygdala neurons, leaving the remaining 19 neurons were not affected. However, blocking OX2 receptors by TCS-OX2-29 (0.01 mmol/L) did not change the firing activity. Finally, both open field test and elevated plus maze test showed that bilateral microinjection of orexin-A into the central amygdala induced significantly anxiolytic-like behaviors. The specific OX1 receptor antagonist tended to produce opposite effects although there was no statistical difference. The present electrophysiological and behavioral studies suggested that orexin-A participates in anxiety-like behaviors by modulating the spontaneous firing activity of central amygdala neurons.
Collapse
Affiliation(s)
- Yi-Peng Pan
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mei-Fang Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ying Wang
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kang Bian
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
19
|
O'Neill E, Yssel JD, McNamara C, Harkin A. Pharmacological targeting of β 2 -adrenoceptors is neuroprotective in the LPS inflammatory rat model of Parkinson's disease. Br J Pharmacol 2020; 177:282-297. [PMID: 31506926 PMCID: PMC6989960 DOI: 10.1111/bph.14862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/20/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Chronic inflammation may play a role in the pathogenesis of Parkinson's disease (PD). Noradrenaline is an endogenous neurotransmitter with anti-inflammatory properties. In the present investigation, we assessed the immunomodulatory and neuroprotective efficacy of pharmacologically targeting the CNS noradrenergic system in a rat model of PD. EXPERIMENTAL APPROACH The impact of treatment with the β2 -adrenoceptor agonists clenbuterol and formoterol was assessed in the intranigral LPS rat model of PD. The immunomodulatory potential of formoterol to influence the CNS response to systemic inflammation was also assessed. KEY RESULTS LPS-induced deficits in motor function (akinesia and forelimb-use asymmetry) and nigrostriatal dopamine loss were rescued by both agents. Treatment with the noradrenaline reuptake inhibitor atomoxetine reduced striatal dopamine loss and motor deficits following intranigral LPS injection. Co-treatment with the β2 -adrenoceptor antagonist ICI 118,551 attenuated the protective effects of atomoxetine. Systemic LPS challenge exacerbated reactive microgliosis, IL-1β production, dopamine cell loss in the substantia nigra, nerve terminal degeneration in the striatum, and associated motor impairments in animals that previously received intranigral LPS. This exacerbation was attenuated by formoterol treatment. CONCLUSION AND IMPLICATIONS The results indicate that pharmacologically targeting β2 -adrenoceptors has the propensity to regulate the neuroinflammatory phenotype in vivo and may be a potential neuroprotective strategy where inflammation contributes to the progression of dopaminergic neurodegeneration. In accordance with this, clinical agents such as β2 -adrenoceptor agonists may prove useful as immunomodulatory agents in the treatment of neurodegenerative conditions associated with brain inflammation.
Collapse
Affiliation(s)
- Eoin O'Neill
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of NeuroscienceTrinity College DublinDublin 2Ireland
| | - Justin D. Yssel
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of NeuroscienceTrinity College DublinDublin 2Ireland
| | - Caoimhe McNamara
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of NeuroscienceTrinity College DublinDublin 2Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of NeuroscienceTrinity College DublinDublin 2Ireland
| |
Collapse
|
20
|
Shen Y, Dai L, Tian H, Xu R, Li F, Li Z, Zhou J, Wang L, Dong J, Sun L. Treatment Of Magnesium-L-Threonate Elevates The Magnesium Level In The Cerebrospinal Fluid And Attenuates Motor Deficits And Dopamine Neuron Loss In A Mouse Model Of Parkinson's disease. Neuropsychiatr Dis Treat 2019; 15:3143-3153. [PMID: 31806980 PMCID: PMC6857673 DOI: 10.2147/ndt.s230688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Epidemiology research has demonstrated that magnesium (Mg) deficiency is associated with a high incidence of Parkinson's disease (PD). It is known that the systemic administration of MgSO4 is not able to elevate the Mg concentration in cerebrospinal fluid (CSF). This study aims to verify the protective effect of magnesium-L-threonate (MgT) in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) mouse model. METHODS C57BL/6J mice were orally administered MgT or MgSO4 for 4 weeks, and received MPTP in the third week. After analysis of open-field and rotarod tests on the last day, tyrosine hydroxylase (TH) immunopositive cells and protein levels were quantified in the substantia nigra pars compacta (SNpc) and striatum. The expression of inducible nitric oxide synthase (iNOS) level was evaluated. Mg concentration in serum and CSF was measured after oral administration of MgSO4 or MgT in normal mice. Mg concentration in the CSF was increased in the mice treated with MgT but not MgSO4. RESULTS The total distance and mean speed in open-field tests, and the time spent on rotarod in the MgT group were increased, compared with MPTP group. The MgT treatment but not MgSO4 dose-dependently attenuated the loss of TH-positive neurons, and the reduction of the TH expression in the SNpc. The MgT treatment also inhibited the expression of iNOS as measured by immunohistochemistry and Western blots. Double-immunofluorescence staining of TH and iNOS showed iNOS-positive cells were collocalized for TH-positive cells. CONCLUSION The treatment with MgT is associated with an increase of Mg in the CSF. MgT, rather than MgSO4, can significantly attenuate MPTP-induced motor deficits and dopamine (DA) neuron loss.
Collapse
Affiliation(s)
- Yanling Shen
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin541004, Guangxi, People’s Republic of China
- Department of Pathology, Affiliated Chenggong Hospital, Xiamen University, Xiamen, Fujian361000, People’s Republic of China
| | - Ling Dai
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin541004, Guangxi, People’s Republic of China
| | - Haibo Tian
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin541004, Guangxi, People’s Republic of China
- Department of Pathology, Fuling Central Hospital of Chongqing City, Chongqing408099, People’s Republic of China
| | - Runnan Xu
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin541004, Guangxi, People’s Republic of China
| | - Fuying Li
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Zhuohang Li
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin541004, Guangxi, People’s Republic of China
| | - Jeremy Zhou
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA5001, Australia
| | - Liping Wang
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA5001, Australia
| | - Jianghui Dong
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin541004, Guangxi, People’s Republic of China
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA5001, Australia
| | - Liyuan Sun
- Department of Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin541004, Guangxi, People’s Republic of China
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
21
|
Abstract
Noradrenergic system of brain supplies the neurotransmitter noradrenalin throughout the brain through widespread efferent projections and play pivotal role in cognitive activities and could be involve in motor and non-motor symptoms of Parkinson's disease (PD) pathology. Profound loss of noradrenergic pathways has been reported in both Parkinson's and Alzheimer's disease (AD) pathology however their employment in therapeutics is still scarce. Therefore the present review is providing the various aspects for involvement on noradrenergic pathways in PD and AD pathology as well as the imaging of locus coeruleus as indicative diagnostic marker for disease. The present review is describing about the role of tiny nucleus locus coeruleus located noradrenergic pathways in said pathologies and discussing the past research as well as lacunas in this regard.
Collapse
Affiliation(s)
- Sarika Singh
- Toxicology and Experimental Medicine Division, CDRI-CSIR, Lucknow, UP, India
| |
Collapse
|
22
|
Wang Y, Chen AQ, Xue Y, Liu MF, Liu C, Liu YH, Pan YP, Diao HL, Chen L. Orexins alleviate motor deficits via increasing firing activity of pallidal neurons in a mouse model of Parkinson's disease. Am J Physiol Cell Physiol 2019; 317:C800-C812. [PMID: 31365289 DOI: 10.1152/ajpcell.00125.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Orexin is a peptide neurotransmitter released in the globus pallidus. Morphological evidence reveals that both orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) exist in the globus pallidus. Here we showed that bilateral microinjection of both orexin-A and orexin-B into the globus pallidus alleviated motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonian mice. Further in vivo extracellular single-unit recording revealed that the basal spontaneous firing rate of the globus pallidus neurons in MPTP parkinsonian mice was slower than that of normal mice. Application of orexin-A or orexin-B significantly increased the spontaneous firing rate of pallidal neurons. The influx of Ca2+ through the L-type Ca2+ channel is the major mechanism involved in orexin-induced excitation in the globus pallidus. Orexin-A-induced increase in firing rate of pallidal neurons in MPTP parkinsonian mice was stronger than that of normal mice. Orexin-A exerted both electrophysiological and behavioral effects mainly via OX1R, and orexin-B exerted the effects via OX2R. Endogenous orexins modulated the excitability of globus pallidus neurons mainly through OX1R. The present behavioral and electrophysiological results suggest that orexins ameliorate parkinsonian motor deficits through increasing the spontaneous firing of globus pallidus neurons.
Collapse
Affiliation(s)
- Ying Wang
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - An-Qi Chen
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mei-Fang Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yun-Hai Liu
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yi-Peng Pan
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hui-Ling Diao
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Chen
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Huang N, Zhang Y, Chen M, Jin H, Nie J, Luo Y, Zhou S, Shi J, Jin F. Resveratrol delays 6-hydroxydopamine-induced apoptosis by activating the PI3K/Akt signaling pathway. Exp Gerontol 2019; 124:110653. [PMID: 31295526 DOI: 10.1016/j.exger.2019.110653] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/30/2019] [Accepted: 07/05/2019] [Indexed: 01/10/2023]
Abstract
This study aimed to determine whether resveratrol (Res) delays the progression of 6-hydroxydopamine (6-OHDA)-induced apoptosis via activating the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Sprague-Dawley (SD) rats were unilaterally injected with 6-OHDA (8 μg/4 μL) into the substantia nigra of the midbrain. Res (15 and 30 mg/kg) was given orally to the rats for a total of 36 days to examine its protective effects. We first tested whether Res can delay the progression of 6-OHDA-induced damage by measuring weight and performance on behavioral tests (rotarod, open field test and grid test) and further explored whether this effect is related to the activation of the PI3K/Akt signaling pathway using immunohistochemistry (IHC) and Western blotting (WB). Our results showed that the damage induced by 6-OHDA gradually worsened, while Res 30 mg/kg treatment significantly improved motor function and increased body weight. Compared with those in the model group, the number of dopaminergic neurons cells and the expression of PI3K-110α, p-Akt Ser473, and pro-caspase-3 in the Res 30 mg/kg group were significantly increased, and the Bax/Bcl-2 ratio and the level of activated caspase-3 was decreased. The results indicate that Res ameliorates 6-OHDA-induced apoptosis and motor dysfunction via activating the PI3K/Akt signaling pathway, delaying the progression of Parkinson's disease (PD) symptoms in this model.
Collapse
Affiliation(s)
- Nanqu Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China; Drug Clinical Trial Institution, The First People's Hospital of Zunyi & The Third Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Ying Zhang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Mingji Chen
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Hai Jin
- Institute of Digestive Diseases of Affiliated Hospital, Zunyi Medical University, Guizhou, China
| | - Jing Nie
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Yong Luo
- Department of Neurology, The First People's Hospital of Zunyi & The Third Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China; Department of Environmental Health, Indiana University Bloomington, IN, United States
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China
| | - Feng Jin
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Guizhou, China.
| |
Collapse
|
24
|
Yan DY, Liu C, Tan X, Ma Z, Wang C, Deng Y, Liu W, Xu ZF, Xu B. Mn-Induced Neurocytes Injury and Autophagy Dysfunction in Alpha-Synuclein Wild-Type and Knock-Out Mice: Highlighting the Role of Alpha-Synuclein. Neurotox Res 2019; 36:66-80. [PMID: 30796692 DOI: 10.1007/s12640-019-00016-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/29/2018] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Overexposure to manganese (Mn) is an important environmental risk factor for Parkinsonian-like symptoms referred to as manganism. Alpha-synuclein (α-Syn) oligomerization is a major cause in Mn-induced neurotoxicity. Autophagy, as an adjust response to control intracellular protein homeostasis, is involved in the degradation of α-Syn monomers or oligomers. Furthermore, autophagy dysregulation is also related to development of neurodegenerative disorders. Hence, we speculated that there was an interaction effect between α-Syn oligomerization and autophagy upon Mn exposure. In this study, we applied α-Syn gene knockout mice (α-Syn-/-) and wild-type mice (α-Syn+/+) treated with three different concentrations of MnCl2 (50, 100, and 200 μmol/kg) to elucidate the physiological role of α-Syn in Mn-induced autophagy dysregulation and neurocytes injury. We found that activation of chaperone-mediated autophagy (CMA) pathway by Mn was independent of α-Syn. Additionally, α-Syn could ameliorate excessive autophagy induced by high dose Mn (200 μmol/kg). Next, we used 5 mg/kg Rapamycin (Rap) or 3-methyladenine (3-MA) to regulate autophagy. The study revealed that autophagy is involved in Mn-induced α-Syn oligomerization and neurocytes injury. Taken together, these findings indicated that α-Syn oligomerization might be the major responsible for the Mn-induced autophagy dysregulation and neurocytes injury.
Collapse
Affiliation(s)
- Dong-Ying Yan
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Chang Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Xuan Tan
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Can Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Zhao-Fa Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|