1
|
Adinolfi A, Di Sante G, Rivignani Vaccari L, Tredicine M, Ria F, Bonvissuto D, Corvino V, Sette C, Geloso MC. Regionally restricted modulation of Sam68 expression and Arhgef9 alternative splicing in the hippocampus of a murine model of multiple sclerosis. Front Mol Neurosci 2023; 15:1073627. [PMID: 36710925 PMCID: PMC9878567 DOI: 10.3389/fnmol.2022.1073627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Multiple sclerosis (MS) and its preclinical models are characterized by marked changes in neuroplasticity, including excitatory/inhibitory imbalance and synaptic dysfunction that are believed to underlie the progressive cognitive impairment (CI), which represents a significant clinical hallmark of the disease. In this study, we investigated several parameters of neuroplasticity in the hippocampus of the experimental autoimmune encephalomyelitis (EAE) SJL/J mouse model, characterized by rostral inflammatory and demyelinating lesions similar to Relapsing-Remitting MS. By combining morphological and molecular analyses, we found that the hippocampus undergoes extensive inflammation in EAE-mice, more pronounced in the CA3 and dentate gyrus (DG) subfields than in the CA1, associated with changes in GABAergic circuitry, as indicated by the increased expression of the interneuron marker Parvalbumin selectively in CA3. By laser-microdissection, we investigated the impact of EAE on the alternative splicing of Arhgef9, a gene encoding a post-synaptic protein playing an essential role in GABAergic synapses and whose mutations have been related to CI and epilepsy. Our results indicate that EAE induces a specific increase in inclusion of the alternative exon 11a only in the CA3 and DG subfields, in line with the higher local levels of inflammation. Consistently, we found a region-specific downregulation of Sam68, a splicing-factor that represses this splicing event. Collectively, our findings confirm a regionalized distribution of inflammation in the hippocampus of EAE-mice. Moreover, since neuronal circuit rearrangement and dynamic remodeling of structural components of the synapse are key processes that contribute to neuroplasticity, our study suggests potential new molecular players involved in EAE-induced hippocampal dysfunction.
Collapse
Affiliation(s)
- Annalisa Adinolfi
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Di Sante
- Section of Human, Clinic and Forensic Anatomy, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luca Rivignani Vaccari
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Tredicine
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Ria
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Davide Bonvissuto
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Corvino
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Sette
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy,GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy,*Correspondence: Claudio Sette, ✉
| | - Maria Concetta Geloso
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy,Maria Concetta Geloso, ✉
| |
Collapse
|
2
|
Banerjee T, Pati S, Tiwari P, Vaidya VA. Chronic hM3Dq-DREADD-mediated chemogenetic activation of parvalbumin-positive inhibitory interneurons in postnatal life alters anxiety and despair-like behavior in adulthood in a task- and sex-dependent manner. J Biosci 2022. [DOI: 10.1007/s12038-022-00308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Desai D, Shende P. β-Cyclodextrin-crosslinked synthetic neuropeptide Y-based nanosponges in epilepsy by contributing GABAergic signal. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 45:102594. [PMID: 35934306 DOI: 10.1016/j.nano.2022.102594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Neuropeptide Y (NPY) is a polypeptide sequence useful in regulating physiological functions like homeostasis, feeding, etc., but its usage is restricted due to its short half-life. β-cyclodextrin-crosslinked nanosponges improve the drug release and stability due to its wide cavity, which is helpful to deliver therapeutics. The present work aimed to formulate synthetic NPY-based nanocarriers as sponges by polymer condensation mechanism using design experiment to improve the peptide release and stability. The validated nanosponges exhibited a particle size of 423.42 ± 5.32 nm, 75.82 ± 7.43 % entrapment efficiency and 83.50 ± 6.54 % NPY release for 24 h. The NPY and β-cyclodextrin interaction was confirmed by X-ray diffraction, Fourier transform infrared and nuclear magnetic resonance spectroscopy. The NPY-loaded nanosponges were found stable for 6 months at two conditions (5 ± 2 °C and 25 ± 2 °C). The cross-linked nanocarriers of synthetic peptide-based nanosponges powder at different doses were administered intranasally using a metered-dose inhaler in the animal model to check its antiepileptic activity. The synthetic NPY-loaded nanosponges at higher doses showed significant antiepileptic effects equivalent to the standard drug (administered orally) in maximal electroshock and chemically-induced seizures with an increase of NPY in the brain directly proportional to GABAergic signalling by increase in GABA levels resulting in convulsions attenuation.
Collapse
Affiliation(s)
- Drashti Desai
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta road, Vile Parle (W), Mumbai, India.
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
4
|
Stekic A, Zeljkovic M, Zaric Kontic M, Mihajlovic K, Adzic M, Stevanovic I, Ninkovic M, Grkovic I, Ilic TV, Nedeljkovic N, Dragic M. Intermittent Theta Burst Stimulation Ameliorates Cognitive Deficit and Attenuates Neuroinflammation via PI3K/Akt/mTOR Signaling Pathway in Alzheimer’s-Like Disease Model. Front Aging Neurosci 2022; 14:889983. [PMID: 35656538 PMCID: PMC9152158 DOI: 10.3389/fnagi.2022.889983] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegeneration implies progressive neuronal loss and neuroinflammation further contributing to pathology progression. It is a feature of many neurological disorders, most common being Alzheimer’s disease (AD). Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive stimulation which modulates excitability of stimulated brain areas through magnetic pulses. Numerous studies indicated beneficial effect of rTMS in several neurological diseases, including AD, however, exact mechanism are yet to be elucidated. We aimed to evaluate the effect of intermittent theta burst stimulation (iTBS), an rTMS paradigm, on behavioral, neurochemical and molecular level in trimethyltin (TMT)-induced Alzheimer’s-like disease model. TMT acts as a neurotoxic agent targeting hippocampus causing cognitive impairment and neuroinflammation, replicating behavioral and molecular aspects of AD. Male Wistar rats were divided into four experimental groups–controls, rats subjected to a single dose of TMT (8 mg/kg), TMT rats subjected to iTBS two times per day for 15 days and TMT sham group. After 3 weeks, we examined exploratory behavior and memory, histopathological and changes on molecular level. TMT-treated rats exhibited severe and cognitive deficit. iTBS-treated animals showed improved cognition. iTBS reduced TMT-induced inflammation and increased anti-inflammatory molecules. We examined PI3K/Akt/mTOR signaling pathway which is involved in regulation of apoptosis, cell growth and learning and memory. We found significant downregulation of phosphorylated forms of Akt and mTOR in TMT-intoxicated animals, which were reverted following iTBS stimulation. Application of iTBS produces beneficial effects on cognition in of rats with TMT-induced hippocampal neurodegeneration and that effect could be mediated via PI3K/Akt/mTOR signaling pathway, which could candidate this protocol as a potential therapeutic approach in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Andjela Stekic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milica Zeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marina Zaric Kontic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Mihajlovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Adzic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Milica Ninkovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Ivana Grkovic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tihomir V. Ilic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Milorad Dragic,
| |
Collapse
|
5
|
Sinomenine Attenuates Trimethyltin-Induced Cognitive Decline via Targeting Hippocampal Oxidative Stress and Neuroinflammation. J Mol Neurosci 2022; 72:1609-1621. [PMID: 35543800 DOI: 10.1007/s12031-022-02021-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Sinomenine is the main bioactive ingredient of the medicinal plant Sinomenium acutum with neuroprotective potential. This study was designed to assess beneficial effect of sinomenine in alleviation of trimethyltin (TMT)-induced cognitive dysfunction. TMT was administered i.p. (8 mg/kg, once) and sinomenine was daily given p.o. 1 h after TMT for 3 weeks at doses of 25 or 100 mg/kg. Cognitive performance was assessed in various behavioral tests. In addition, oxidative stress- and inflammation-associated factors were measured and histochemical evaluation of the hippocampus was conducted. Sinomenine at a dose of 100 mg/kg significantly and partially increased discrimination index in novel object recognition (NOR), improved alternation in short-term Y maze, increased step-through latency in passive avoidance paradigm, and also reduced probe trial errors and latency in the Barnes maze task. Moreover, sinomenine somewhat prevented inappropriate hippocampal changes of malondialdehyde (MDA), reactive oxygen species (ROS), protein carbonyl, nitrite, superoxide dismutase (SOD), tumor necrosis factor α (TNFα), interleukin 6 (IL 6), acetylcholinesterase (AChE) activity, beta secretase 1 (BACE 1) activity, and mitochondrial membrane potential (MMP) with no significant effect on glutathione (GSH), catalase, glutathione reductase, glutathione peroxidase, and myeloperoxidase (MPO). In addition, lower reactivity (IRA) for glial fibrillary acidic protein (GFAP) as an index of astrocyte activity was observed and loss of CA1 pyramidal neurons was attenuated following sinomenine treatment. This study demonstrated that sinomenine could lessen TMT-induced cognitive dysfunction which is partly due to its attenuation of hippocampal oxidative stress and neuroinflammation.
Collapse
|
6
|
Lee JH, Cho SH, Jang EH, Kim SA. Sex-specific Changes in Brain Estrogen Metabolism Induced by Acute Trimethyltin Exposure. In Vivo 2021; 35:793-797. [PMID: 33622871 DOI: 10.21873/invivo.12319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND/AIM In this study, we investigated sex-specific effects of acute exposure to trimethyltin, a known neurotoxicant on metabolic steroids. MATERIALS AND METHODS We administered intraperitoneally 2.3 mg/kg trimethyltin to 4-week-old male mice and measured the levels of metabolic steroids 24 h after treatment. We also measured mRNA and protein levels of cytochrome P450 1B1 using real-time polymerase chain reaction and western blotting. RESULTS Cortisol levels in the cortex increased in both sexes following acute trimethyltin exposure. The estradiol levels decreased, and the 4-hydroxyestradiol levels increased only in females. We also observed increased cytochrome P450 1B1 mRNA and protein levels only in the female cortex. CONCLUSION Acute trimethyltin exposure induces distinct sex-specific metabolic changes in the brain before significant sexual maturation.
Collapse
Affiliation(s)
- Jung Ho Lee
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Sung-Hee Cho
- Chemical Analysis Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Eun Hye Jang
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon, Republic of Korea;
| |
Collapse
|
7
|
Marchese E, Valentini M, Di Sante G, Cesari E, Adinolfi A, Corvino V, Ria F, Sette C, Geloso MC. Alternative splicing of neurexins 1-3 is modulated by neuroinflammation in the prefrontal cortex of a murine model of multiple sclerosis. Exp Neurol 2020; 335:113497. [PMID: 33058888 DOI: 10.1016/j.expneurol.2020.113497] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/21/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
Mounting evidence points to immune-mediated synaptopathy and impaired plasticity as early pathogenic events underlying cognitive decline (CD) in Multiple sclerosis (MS) and in the experimental autoimmune encephalomyelitis (EAE) mouse model of the disease. However, knowledge of the neurobiology of synaptic dysfunction is still incomplete. Splicing regulation represents a flexible and powerful mechanism involved in dynamic remodeling of the synapse, which allows the expression of synaptic protein variants that dynamically control the specificity of contacts between neurons. The pre-synaptic adhesion molecules neurexins (NRXNs) 1-3 play a relevant role in cognition and are alternatively spliced to yield variants that differentially cluster specific ligands in the postsynaptic compartment and modulate functional properties of the synaptic contact. Notably, mutations in these genes or disruption of their splicing program are associated with neuropsychiatric disorders. Herein, we have investigated how inflammatory changes imposed by EAE impact on alternative splicing of the Nrxn 1-3 mouse genes in the acute phase of disease. Due to its relevance in cognition, we focused on the prefrontal cortex (PFC) of SJL/J mice, in which EAE-induced inflammatory lesions extend to the rostral forebrain. We found that inclusion of the Nrxn 1-3 AS4 exon is significantly increased in the PFC of EAE mice and that splicing changes are correlated with local Il1β-expression levels. This correlation is sustained by the concomitant downregulation of SLM2, the main splicing factor involved in skipping of the AS4 exon, in EAE mice displaying high levels of Il1β- expression. We also observed that Il1β-expression levels correlate with changes in parvalbumin (PV)-positive interneuron connectivity. Moreover, exposure to environmental enrichment (EE), a condition known to stimulate neuronal connectivity and to improve cognitive functions in mice and humans, modified PFC phenotypes of EAE mice with respect to Il1β-, Slm2-expression, Nrxn AS4 splicing and PV-expression, by limiting changes associated with high levels of inflammation. Our results reveal that local inflammation results in early splicing modulation of key synaptic proteins and in remodeling of GABAergic circuitry in the PFC of SJL/J mice. We also suggest EE as a tool to counteract these inflammation-associated events, thus highlighting potential therapeutic targets for limiting the progressive CD occurring in MS.
Collapse
Affiliation(s)
- Elisa Marchese
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Mariagrazia Valentini
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Annalisa Adinolfi
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Valentina Corvino
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Maria Concetta Geloso
- Department of Neuroscience, Section of Human Anatomy, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| |
Collapse
|
8
|
Luo J, Liu D. Does GPER Really Function as a G Protein-Coupled Estrogen Receptor in vivo? Front Endocrinol (Lausanne) 2020; 11:148. [PMID: 32296387 PMCID: PMC7137379 DOI: 10.3389/fendo.2020.00148] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Estrogen can elicit pleiotropic cellular responses via a diversity of estrogen receptors (ERs)-mediated genomic and rapid non-genomic mechanisms. Unlike the genomic responses, where the classical nuclear ERα and ERβ act as transcriptional factors following estrogen binding to regulate gene transcription in estrogen target tissues, the non-genomic cellular responses to estrogen are believed to start at the plasma membrane, leading to rapid activation of second messengers-triggered cytoplasmic signal transduction cascades. The recently acknowledged ER, GPR30 or GPER, was discovered in human breast cancer cells two decades ago and subsequently in many other cells. Since its discovery, it has been claimed that estrogen, ER antagonist fulvestrant, as well as some estrogenic compounds can directly bind to GPER, and therefore initiate the non-genomic cellular responses. Various recently developed genetic tools as well as chemical ligands greatly facilitated research aimed at determining the physiological roles of GPER in different tissues. However, there is still lack of evidence that GPER plays a significant role in mediating endogenous estrogen action in vivo. This review summarizes current knowledge about GPER, including its tissue expression and cellular localization, with emphasis on the research findings elucidating its role in health and disease. Understanding the role of GPER in estrogen signaling will provide opportunities for the development of new therapeutic strategies to strengthen the benefits of estrogen while limiting the potential side effects.
Collapse
Affiliation(s)
- Jing Luo
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
- *Correspondence: Dongmin Liu
| |
Collapse
|