1
|
Dubový P, Hradilová-Svíženská I, Brázda V, Jambrichová A, Svobodová V, Joukal M. The Intrinsic Neuronal Activation of the CXCR4 Signaling Axis Is Associated with a Pro-Regenerative State in Cervical Primary Sensory Neurons Conditioned by a Sciatic Nerve Lesion. Int J Mol Sci 2024; 26:193. [PMID: 39796050 PMCID: PMC11720091 DOI: 10.3390/ijms26010193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/04/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion. Intrathecal application of the CXCR4 inhibitor AMD3100 following CSNT reduced CXCL12 and CXCR4 protein levels in cervical DRG neurons, as well as the length of afferent axons regenerated distal to the ulnar nerve crush. Furthermore, treatment with the CXCR4 inhibitor decreased levels of activated Signal Transducer and Activator of Transcription 3 (STAT3), a critical transforming factor in the neuronal regeneration program. Administration of IL-6 increased CXCR4 levels, whereas the JAK2-dependent STAT3 phosphorylation inhibitor (AG490) conversely decreased CXCR4 levels. This indicates a link between the CXCL12/CXCR4 signaling axis and IL-6-induced activation of STAT3 in the sciatic nerve injury-induced pro-regenerative state of cervical DRG neurons. The role of CXCR4 signaling in the axon-promoting state of DRG neurons was confirmed through in vitro cultivation of primary sensory neurons in a medium supplemented with CXCL12, with or without AMD3100. The potential involvement of conditioned cervical DRG neurons in the induction of neuropathic pain is discussed.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| | - Ivana Hradilová-Svíženská
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| | - Václav Brázda
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
- Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Anna Jambrichová
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| | - Viktorie Svobodová
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic
| |
Collapse
|
2
|
Xu CX, Qiu XY, Guo Y, Xu TM, Traub RJ, Feng HN, Cao DY. Valproate attenuates somatic hyperalgesia induced by orofacial inflammation combined with stress through inhibiting spinal IL-6 and STAT1 phosphorylation. Brain Res Bull 2024; 208:110889. [PMID: 38290590 PMCID: PMC10926348 DOI: 10.1016/j.brainresbull.2024.110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/01/2024]
Abstract
Temporomandibular disorder (TMD) and fibromyalgia syndrome (FMS) may present as comorbid conditions, but treatment options are ineffective. The purpose of this study was to investigate whether valproate (VPA) attenuates somatic hyperalgesia induced by orofacial inflammation combined with stress, which represents a model of pain associated with TMD and FMS comorbidity, and to explore the potential mechanisms. The results showed that VPA inhibited somatic hyperalgesia induced by orofacial inflammation combined with stress, and down-regulated the interleukin-6 (IL-6) expression in the L4-L5 spinal dorsal horn of female rats. The anti-nociceptive effect of VPA was blocked by single or 5 consecutive day intrathecal administration of recombinant rat IL-6. Orofacial inflammation combined with stress up-regulated the ratio of phosphorylated signal transducer and activator of transcription 1 (p-STAT1) to STAT1 (p-STAT1/STAT1) in the spinal cord. VPA did not affect the STAT1 expression, while it down-regulated the ratio of p-STAT1/STAT1. The expression of STAT3 and the ratio of p-STAT3/STAT3 were not affected by orofacial inflammation combined with stress and VPA treatment. Intrathecal administration of exogenous IL-6 up-regulated the ratio of p-STAT1/STAT1. These data indicate that VPA attenuated somatic hyperalgesia induced by orofacial inflammation combined with stress via inhibiting spinal IL-6 in female rats, and the mechanism may involve the alteration of activation status of spinal STAT1. Thus, VPA may be a new candidate analgesic that targets IL-6 and STAT1 for the treatment of pain associated with the comorbidity of TMD and FMS.
Collapse
Affiliation(s)
- Chen-Xi Xu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, China
| | - Xin-Yi Qiu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, China
| | - Yi Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, China
| | - Tian-Ming Xu
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Richard J Traub
- Department of Neural and Pain Sciences, School of Dentistry, The UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Hai-Nan Feng
- Department of Stomatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi 710061, China.
| | - Dong-Yuan Cao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Testing Center of Stomatology, Xi'an Jiaotong University College of Stomatology, 98 West 5th Road, Xi'an, Shaanxi 710004, China; Department of Neural and Pain Sciences, School of Dentistry, The UM Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD 21201, USA.
| |
Collapse
|
3
|
Grooms NW, Fitzgerald MQ, Zuckerman B, Ureña SE, Weinberger LS, Chung SH. Expression of thioredoxin-1 in the ASJ neuron corresponds with and enhances intrinsic regenerative capacity under lesion conditioning in C. elegans. FEBS Lett 2023; 597:1880-1893. [PMID: 37300530 PMCID: PMC10526644 DOI: 10.1002/1873-3468.14684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
A conditioning lesion of the peripheral sensory axon triggers robust central axon regeneration in mammals. We trigger conditioned regeneration in the Caenorhabditis elegans ASJ neuron by laser surgery or genetic disruption of sensory pathways. Conditioning upregulates thioredoxin-1 (trx-1) expression, as indicated by trx-1 promoter-driven expression of green fluorescent protein and fluorescence in situ hybridization (FISH), suggesting trx-1 levels and associated fluorescence indicate regenerative capacity. The redox activity of trx-1 functionally enhances conditioned regeneration, but both redox-dependent and -independent activity inhibit non-conditioned regeneration. Six strains isolated in a forward genetic screen for reduced fluorescence, which suggests diminished regenerative potential, also show reduced axon outgrowth. We demonstrate an association between trx-1 expression and the conditioned state that we leverage to rapidly assess regenerative capacity.
Collapse
Affiliation(s)
- Noa W.F. Grooms
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Michael Q. Fitzgerald
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Binyamin Zuckerman
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Samuel E. Ureña
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02115, USA
| | - Leor S. Weinberger
- Gladstone/UCSF Center for Cell Circuitry, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Samuel H. Chung
- Department of Bioengineering, Northeastern University, Boston, Massachusetts, 02115, USA
| |
Collapse
|
4
|
Resurgent neuropathic discharge: an obstacle to the therapeutic use of neuroma resection? Pain 2023; 164:349-361. [PMID: 35639421 DOI: 10.1097/j.pain.0000000000002704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Ectopic discharge ("ectopia") in damaged afferent axons is a major contributor to chronic neuropathic pain. Clinical opinion discourages surgical resection of nerves proximal to the original injury site for fear of resurgence of ectopia and exacerbated pain. We tested this concept in a well-established animal neuroma model. Teased-fiber recordings were made of ectopic spontaneous discharge originating in the experimental nerve-end neuroma and associated dorsal root ganglia in rats that underwent either a single transection (with ligation) of the sciatic nerve or 2 consecutive transections separated by 7, 14, 21, or 30 days. Ectopia emerged in afferent A and C fibers after a single cut with kinetics anticipated from previous studies. When resection was performed during the early period of intense A-fiber activity, a brief period of resurgence was observed. However, resection of neuromas of more than 14 days was followed by low levels of activity with no indication of resurgence. This remained the case in trials out to 60 days after the first cut. Similarly, we saw no indication of resurgent ectopia originating in axotomized dorsal root ganglion neuronal somata and no behavioral reflection of resurgence. In summary, we failed to validate the concern that proximal resection of a problematic nerve would lead to intense resurgent ectopic discharge and pain. As the well-entrenched concept of resurgence is based more on case reports and anecdotes than on solid evidence, it may be justified to relax the stricture against resecting neuromas as a therapeutic strategy, at least within the framework of controlled clinical trials.
Collapse
|
5
|
Zhang N, Lin J, Chin JS, Wiraja C, Xu C, McGrouther DA, Chew SY. Delivery of Wnt inhibitor WIF1 via engineered polymeric microspheres promotes nerve regeneration after sciatic nerve crush. J Tissue Eng 2022; 13:20417314221087417. [PMID: 35422984 PMCID: PMC9003641 DOI: 10.1177/20417314221087417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/27/2022] [Indexed: 01/09/2023] Open
Abstract
Injuries within the peripheral nervous system (PNS) lead to sensory and motor deficits, as well as neuropathic pain, which strongly impair the life quality of patients. Although most current PNS injury treatment approaches focus on using growth factors/small molecules to stimulate the regrowth of the injured nerves, these methods neglect another important factor that strongly hinders axon regeneration-the presence of axonal inhibitory molecules. Therefore, this work sought to explore the potential of pathway inhibition in promoting sciatic nerve regeneration. Additionally, the therapeutic window for using pathway inhibitors was uncovered so as to achieve the desired regeneration outcomes. Specifically, we explored the role of Wnt signaling inhibition on PNS regeneration by delivering Wnt inhibitors, sFRP2 and WIF1, after sciatic nerve transection and sciatic nerve crush injuries. Our results demonstrate that WIF1 promoted nerve regeneration (p < 0.05) after sciatic nerve crush injury. More importantly, we revealed the therapeutic window for the treatment of Wnt inhibitors, which is 1 week post sciatic nerve crush when the non-canonical receptor tyrosine kinase (Ryk) is significantly upregulated.
Collapse
Affiliation(s)
- Na Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Junquan Lin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jiah Shin Chin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China
| | - Duncan Angus McGrouther
- Department of Hand and Reconstructive Microsurgery, Singapore General Hospital, Singapore, Singapore
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
The Conditioning Lesion Response in Dorsal Root Ganglion Neurons Is Inhibited in Oncomodulin Knock-Out Mice. eNeuro 2022; 9:ENEURO.0477-21.2022. [PMID: 35131866 PMCID: PMC8874952 DOI: 10.1523/eneuro.0477-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 11/21/2022] Open
Abstract
Regeneration can occur in peripheral neurons after injury, but the mechanisms involved are not fully delineated. Macrophages in dorsal root ganglia (DRGs) are involved in the enhanced regeneration that occurs after a conditioning lesion (CL), but how macrophages stimulate this response is not known. Oncomodulin (Ocm) has been proposed as a proregenerative molecule secreted by macrophages and neutrophils, is expressed in the DRG after axotomy, and stimulates neurite outgrowth by DRG neurons in culture. Wild-type (WT) and Ocm knock-out (KO) mice were used to investigate whether Ocm plays a role in the CL response in DRG neurons after sciatic nerve transection. Neurite outgrowth was measured after 24 and 48 h in explant culture 7 d after a CL. Sciatic nerve regeneration was also measured in vivo 7 d after a CL and 2 d after a subsequent sciatic nerve crush. The magnitude of the increased neurite outgrowth following a CL was significantly smaller in explants from Ocm KO mice than in explants from WT mice. In vivo after a CL, increased regeneration was found in WT animals but not in KO animals. Macrophage accumulation and levels of interleukin-6 (IL-6) mRNA were measured in axotomized DRG from WT and Ocm KO animals, and both were significantly higher than in sham-operated ganglia. At 6 h after axotomy, Il-6 mRNA was higher in WT than in Ocm KO mice. Our data support the hypothesis that Ocm plays a necessary role in producing a normal CL response and that its effects possibly result in part from stimulation of the expression of proregenerative macrophage cytokines such as IL-6.
Collapse
|
7
|
Dubový P, Hradilová-Svíženská I, Brázda V, Joukal M. Toll-Like Receptor 9-Mediated Neuronal Innate Immune Reaction Is Associated with Initiating a Pro-Regenerative State in Neurons of the Dorsal Root Ganglia Non-Associated with Sciatic Nerve Lesion. Int J Mol Sci 2021; 22:ijms22147446. [PMID: 34299065 PMCID: PMC8304752 DOI: 10.3390/ijms22147446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022] Open
Abstract
One of the changes brought about by Wallerian degeneration distal to nerve injury is disintegration of axonal mitochondria and consequent leakage of mitochondrial DNA (mtDNA)—the natural ligand for the toll-like receptor 9 (TLR9). RT-PCR and immunohistochemical or Western blot analyses were used to detect TLR9 mRNA and protein respectively in the lumbar (L4-L5) and cervical (C7-C8) dorsal root ganglia (DRG) ipsilateral and contralateral to a sterile unilateral sciatic nerve compression or transection. The unilateral sciatic nerve lesions led to bilateral increases in levels of both TLR9 mRNA and protein not only in the lumbar but also in the remote cervical DRG compared with naive or sham-operated controls. This upregulation of TLR9 was linked to activation of the Nuclear Factor kappa B (NFκB) and nuclear translocation of the Signal Transducer and Activator of Transcription 3 (STAT3), implying innate neuronal immune reaction and a pro-regenerative state in uninjured primary sensory neurons of the cervical DRG. The relationship of TLR9 to the induction of a pro-regenerative state in the cervical DRG neurons was confirmed by the shorter lengths of regenerated axons distal to ulnar nerve crush following a previous sciatic nerve lesion and intrathecal chloroquine injection compared with control rats. The results suggest that a systemic innate immune reaction not only triggers the regenerative state of axotomized DRG neurons but also induces a pro-regenerative state further along the neural axis after unilateral nerve injury.
Collapse
|
8
|
Komirishetty P, Zubkow K, Areti A, Ong H, Zochodne DW. Delayed manipulation of regeneration within injured peripheral axons. Neurobiol Dis 2021; 155:105383. [PMID: 33945876 DOI: 10.1016/j.nbd.2021.105383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022] Open
Abstract
While several new translational strategies to enhance regrowth of peripheral axons have been identified, combined approaches with different targets are rare. Moreover, few have been studied after a significant delay when growth programs are already well established and regeneration-related protein expression has waned. Here we study two approaches, Rb1 (Retinoblastoma 1) knockdown that targets overall neuron plasticity, and near nerve insulin acting as a growth factor. Both are validated to boost regrowth only at the outset of regeneration. We show that local delivery of Rb1 siRNA alone, with electroporation to an area of prior sciatic nerve injury generated knockdown of Rb1 mRNA in ipsilateral lumbar dorsal root ganglia. While mice treated with Rb1-targeted siRNA, compared with scrambled control siRNA, starting 2 weeks after the onset of regeneration, had only limited behavioural or electrophysiological benefits, they had enhanced reinnervation of epidermal axons. We next confirmed that intrinsic Rb1 knockdown combined with exogenous insulin had dramatic synergistic impacts on the growth patterns of adult sensory neurons studied in vitro, prompting analysis of a combined approach in vivo. Using an identical delayed post-injury protocol, we noted that added insulin not only augmented epidermal reinnervation rendered by Rb1 knockdown alone but also improved indices of mechanical sensation and motor axon recovery. The findings illustrate that peripheral neurons that are well into attempted regrowth retain their responsiveness to both intrinsic and exogenous approaches that improve their recovery. We also identify a novel local approach to manipulate gene expression and outcome in regrowing axons.
Collapse
Affiliation(s)
- P Komirishetty
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - K Zubkow
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - A Areti
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - H Ong
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - D W Zochodne
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada.
| |
Collapse
|
9
|
The Mechanisms of Peripheral Nerve Preconditioning Injury on Promoting Axonal Regeneration. Neural Plast 2021; 2021:6648004. [PMID: 33505458 PMCID: PMC7806370 DOI: 10.1155/2021/6648004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Two major factors contribute to the failure of axonal regrowth in the central nervous system (CNS), namely, the neuronal intrinsic regenerative capacity and the extrinsic local inhibitory microenvironments. However, a preconditioning peripheral nerve lesion could substantially enhance the regeneration of central axons following a subsequent spinal cord injury. In the present review, we summarize the molecular mechanisms of the preconditioning injury effect on promoting axonal regeneration. The injury signal transduction resulting from preconditioning peripheral nerve injury regulates the RAG expression to enhance axonal regeneration. Importantly, preconditioning peripheral nerve injury triggers interactions between neurons and nonneuronal cells to amplify and maintain their effects. Additionally, the preconditioning injury impacts mitochondria, protein, and lipid synthesis. All these coordinated changes endow axonal regeneration.
Collapse
|
10
|
Bernal L, Cisneros E, Roza C. Activation of the regeneration-associated gene STAT3 and functional changes in intact nociceptors after peripheral nerve damage in mice. Eur J Pain 2021; 25:886-901. [PMID: 33345380 DOI: 10.1002/ejp.1718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In the context of neuropathic pain, the contribution of regeneration to the development of positive symptoms is not completely understood. Several efforts have been done to described changes in axotomized neurons, however, there is scarce data on changes occurring in intact neurons, despite experimental evidence of functional changes. To address this issue, we analysed by immunohistochemistry the presence of phosphorylated signal transducer and activator of transcription 3 (pSTAT3), an accepted marker of regeneration, within DRGs where axotomized neurons were retrogradely labelled following peripheral nerve injury. Likewise, we have characterized abnormal electrophysiological properties in intact fibres after partial nerve injury. METHODS/RESULTS We showed that induction of pSTAT3 in sensory neurons was similar after partial or total transection of the sciatic nerve and to the same extent within axotomized and non-axotomized neurons. We also examined pSTAT3 presence on non-peptidergic and peptidergic nociceptors. Whereas the percentage of neurons marked by IB4 decrease after injury, the proportion of CGRP neurons did not change, but its expression switched from small- to large-diameter neurons. Besides, the percentage of CGRP+ neurons expressing pSTAT3 increased significantly 2.5-folds after axotomy, preferentially in neurons with large diameters. Electrophysiological recordings showed that after nerve damage, most of the neurons with ectopic spontaneous activity (39/46) were non-axotomized C-fibres with functional receptive fields in the skin far beyond the site of damage. CONCLUSIONS Neuronal regeneration after nerve injury, likely triggered from the site of injury, may explain the abnormal functional properties gained by intact neurons, reinforcing their role in neuropathic pain. SIGNIFICANCE Positive symptoms in patients with peripheral neuropathies correlate to abnormal functioning of different subpopulations of primary afferents. Peripheral nerve damage triggers regenerating programs in the cell bodies of axotomized but also in non-axotomized nociceptors which is in turn, develop abnormal spontaneous and evoked discharges. Therefore, intact nociceptors have a significant role in the development of neuropathic pain due to their hyperexcitable peripheral terminals. Therapeutical targets should focus on inhibiting peripheral hyperexcitability in an attempt to limit peripheral and central sensitization.
Collapse
Affiliation(s)
- Laura Bernal
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain
| | - Elsa Cisneros
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain.,Health Sciences School, Centro Universitario Internacional de Madrid (CUNIMAD), Madrid, Spain.,Health Sciences School, Universidad Internacional de La Rioja (UNIR), Logroño, Spain
| | - Carolina Roza
- Department of System's Biology, Medical School, University of Alcala, Alcalá de Henares, Spain
| |
Collapse
|
11
|
Liu Y, Wang H. Peripheral nerve injury induced changes in the spinal cord and strategies to counteract/enhance the changes to promote nerve regeneration. Neural Regen Res 2020; 15:189-198. [PMID: 31552884 PMCID: PMC6905333 DOI: 10.4103/1673-5374.265540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peripheral nerve injury leads to morphological, molecular and gene expression changes in the spinal cord and dorsal root ganglia, some of which have positive impact on the survival of neurons and nerve regeneration, while the effect of others is the opposite. It is crucial to take prompt measures to capitalize on the positive effects of these reactions and counteract the negative impact after peripheral nerve injury at the level of spinal cord, especially for peripheral nerve injuries that are severe, located close to the cell body, involve long distance for axons to regrow and happen in immature individuals. Early nerve repair, exogenous supply of neurotrophic factors and Schwann cells can sustain the regeneration inductive environment and enhance the positive changes in neurons. Administration of neurotrophic factors, acetyl-L-carnitine, N-acetyl-cysteine, and N-methyl-D-aspartate receptor antagonist MK-801 can help counteract axotomy-induced neuronal loss and promote regeneration, which are all time-dependent. Sustaining and reactivation of Schwann cells after denervation provides another effective strategy. FK506 can be used to accelerate axonal regeneration of neurons, especially after chronic axotomy. Exploring the axotomy-induced changes after peripheral nerve injury and applying protective and promotional measures in the spinal cord which help to retain a positive functional status for neuron cell bodies will inevitably benefit regeneration of the peripheral nerve and improve functional outcomes.
Collapse
Affiliation(s)
- Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Huan Wang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Verge VMK, Hasmatali JCD, Misra V. When the left side knows something happened to the right - sensing injury in neurons contralateral and remote to injury. Neural Regen Res 2020; 15:1854-1855. [PMID: 32246633 PMCID: PMC7513984 DOI: 10.4103/1673-5374.280316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Valerie M K Verge
- Department of Anatomy, Physiology and Pharmacology, Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jovan C D Hasmatali
- Department of Anatomy, Physiology and Pharmacology, Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, Saskatchewan; Department of Critical Care Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Vikram Misra
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
13
|
Liao CF, Chen CC, Lu YW, Yao CH, Lin JH, Way TD, Yang TY, Chen YS. Effects of endogenous inflammation signals elicited by nerve growth factor, interferon-γ, and interleukin-4 on peripheral nerve regeneration. J Biol Eng 2019; 13:86. [PMID: 31754373 PMCID: PMC6854735 DOI: 10.1186/s13036-019-0216-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Background Large gap healing is a difficult issue in the recovery of peripheral nerve injury. The present study provides in vivo trials of silicone rubber chambers filled with collagen containing IFN-γ or IL-4 to bridge a 15 mm sciatic nerve defect in rats. Fillings of NGF and normal saline were used as the positive and negative controls. Neuronal electrophysiology, neuronal connectivity, macrophage infiltration, location and expression levels of calcitonin gene-related peptide and histology of the regenerated nerves were evaluated. Results At the end of 6 weeks, animals from the groups of NGF and IL-4 had dramatic higher rates of successful regeneration (100 and 80%) across the wide gap as compared to the groups of IFN-γ and saline controls (30 and 40%). In addition, the NGF group had significantly higher NCV and shorter latency compared to IFN-γ group (P < 0.05). The IL-4 group recruited significantly more macrophages in the nerves as compared to the saline controls and the NGF-treated animals (P < 0.05). Conclusions The current study demonstrated that NGF and IL-4 show potential growth-promoting capability for peripheral nerve regeneration. These fillings in the bridging conduits may modulate local inflammatory conditions affecting recovery of the nerves.
Collapse
Affiliation(s)
- Chien-Fu Liao
- 1Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chung-Chia Chen
- Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Yu-Wen Lu
- 3Department of Chinese Medicine, Show Chwan Memorial Hospital, Chunaghua, Taiwan.,4Department of Chinese Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chun-Hsu Yao
- 5Lab of Biomaterials, School of Chinese Medicine, China Medical University , Taichung, Taiwan.,6Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan.,7Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Jia-Horng Lin
- 8Department of Fiber and Composite Materials, Feng Chia University, Taichung, Taiwan
| | - Tzong-Der Way
- 1Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Tse-Yen Yang
- 9Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,10Center for General Education & Master Program of Digital Health Innovation, China Medical University, Taichung, Taiwan
| | - Yueh-Sheng Chen
- 5Lab of Biomaterials, School of Chinese Medicine, China Medical University , Taichung, Taiwan.,6Biomaterials Translational Research Center, China Medical University Hospital, Taichung, Taiwan.,7Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.,10Center for General Education & Master Program of Digital Health Innovation, China Medical University, Taichung, Taiwan.,11College of Humanities and Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
14
|
Lin B, Dun G, Jin D, Du Y. Development of polypyrrole/collagen/nano-strontium substituted bioactive glass composite for boost sciatic nerve rejuvenation in vivo. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3423-3430. [DOI: 10.1080/21691401.2019.1638794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Bo Lin
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Guoqing Dun
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Dongzhu Jin
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yaowu Du
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
15
|
Dubový P, Hradilová-Svíženská I, Klusáková I, Brázda V, Joukal M. Interleukin-6 contributes to initiation of neuronal regeneration program in the remote dorsal root ganglia neurons after sciatic nerve injury. Histochem Cell Biol 2019; 152:109-117. [PMID: 30927067 DOI: 10.1007/s00418-019-01779-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2019] [Indexed: 01/18/2023]
Abstract
To assess the potential role of IL-6 in sciatic nerve injury-induced activation of a pro-regenerative state in remote dorsal root ganglia (DRG) neurons, we compared protein levels of SCG-10 and activated STAT3, as well as axon regeneration in IL-6 knockout (IL-6ko) mice and their wild-type (WT) counterparts. Unilateral sciatic nerve compression and transection upregulated SCG-10 protein levels and activated STAT3 in DRG neurons not only in lumbar but also in cervical segments of WT mice. A pro-regenerative state induced by prior sciatic nerve lesion in cervical DRG neurons of WT mice was also shown by testing for axon regeneration in crushed ulnar nerve. DRG neurons from IL-6ko mice also displayed bilaterally increased levels of SCG-10 and STAT3 in both lumbar and cervical segments after sciatic nerve lesions. However, levels of SCG-10 protein in lumbar and cervical DRG of IL-6ko mice were significantly lower than those of their WT counterparts. Sciatic nerve injury induced a lower level of SCG-10 in cervical DRG of IL-6ko than WT mice, and this correlates with significantly shorter regeneration of axons distal to the crushed ulnar nerve. These results suggest that IL-6 contributes, at the very least, to initiation of the neuronal regeneration program in remote DRG neurons after unilateral sciatic nerve injury.
Collapse
Affiliation(s)
- Petr Dubový
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic
| | - Ivana Hradilová-Svíženská
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic
| | - Ilona Klusáková
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic
| | - Václav Brázda
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, 62500, Brno, Czech Republic.
| |
Collapse
|