1
|
Zhang Y, Zhong C, Wang Q, Zhang J, Zhao H, Huang Y, Zhao D, Yang J. Nanoemulsions of Hydroxysafflor Yellow A for Enhancing Physicochemical and In Vivo Performance. Int J Mol Sci 2023; 24:ijms24108658. [PMID: 37240000 DOI: 10.3390/ijms24108658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/28/2023] Open
Abstract
Stroke was always a disease that threatened human life and health worldwide. We reported the synthesis of a new type of hyaluronic acid-modified multi-walled carbon nanotube. Then, we produced hydroxysafflor yellow A-hydroxypropyl-β-cyclodextrin phospholipid complex water-in-oil nanoemulsion with hyaluronic acid-modified multi-walled carbon nanotubes and chitosan (HC@HMC) for oral treatment of an ischemic stroke. We measured the intestinal absorption and pharmacokinetics of HC@HMC in rats. We found that the intestinal absorption and the pharmacokinetic behavior of HC@HMC was superior to that of HYA. We measured intracerebral concentrations after oral administration of HC@HMC and found that more HYA crossed the blood-brain barrier (BBB) in mice. Finally, we evaluated the efficacy of HC@HMC in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice. In MCAO/R mice, oral administration of HC@HMC demonstrated significant protection against cerebral ischemia-reperfusion injury (CIRI). Furthermore, we found HC@HMC may exert a protective effect on cerebral ischemia-reperfusion injury through the COX2/PGD2/DPs pathway. These results suggest that oral administration of HC@HMC may be a potential therapeutic strategy for the treatment of stroke.
Collapse
Affiliation(s)
- Yingjie Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Cailing Zhong
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Qiong Wang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jingqing Zhang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Hua Zhao
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yuru Huang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Dezhang Zhao
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Junqing Yang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Cheng L, Chen Y, Guo D, Zhong Y, Li W, Lin Y, Miao Y. mTOR-dependent TFEB activation and TFEB overexpression enhance autophagy-lysosome pathway and ameliorate Alzheimer's disease-like pathology in diabetic encephalopathy. Cell Commun Signal 2023; 21:91. [PMID: 37143104 PMCID: PMC10158341 DOI: 10.1186/s12964-023-01097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Diabetic encephalopathy (DE) is a complication of type 2 diabetes mellitus (T2DM) that features Alzheimer's disease (AD)-like pathology, which can be degraded by the autophagy-lysosome pathway (ALP). Since transcription factor EB (TFEB) is a master regulator of ALP, TFEB-mediated ALP activation might have a therapeutic effect on DE, but this has yet to be investigated. METHODS We established T2DM mouse models and cultured HT22 cells under high-glucose (HG) conditions to confirm the role of ALP in DE. To further investigate this, both mice and HT22 cells were treated with 3-methyladenine (3-MA). We also analyzed the content of TFEB in the nucleus and cytoplasm to evaluate its role in ALP. To confirm the effect of TFEB activation at the post-translational level in DE, we used rapamycin to inhibit the mechanistic target of rapamycin (mTOR). We transduced both mice and cells with TFEB vector to evaluate the therapeutic effect of TFEB overexpression on DE. Conversely, we conducted TFEB knockdown to verify its role in DE in another direction. RESULTS We found that T2DM mice experienced compromised cognitive function, while HG-cultured HT22 cells exhibited increased cell apoptosis. Additionally, both T2DM mice and HG-cultured HT22 cells showed impaired ALP and heavier AD-like pathology. This pathology worsened after treatment with 3-MA. We also observed decreased TFEB nuclear translocation in both T2DM mice and HG-cultured HT22 cells. However, inhibiting mTOR with rapamycin or overexpressing TFEB increased TFEB nuclear translocation, enhancing the clearance of ALP-targeted AD-like pathology. This contributed to protection against neuronal apoptosis and alleviation of cognitive impairment. Conversely, TFEB knockdown lessened ALP-targeted AD-like pathology clearance and had a negative impact on DE. CONCLUSION Our findings suggest that impaired ALP is responsible for the aggravation of AD-like pathology in T2DM. We propose that mTOR-dependent TFEB activation and TFEB overexpression are promising therapeutic strategies for DE, as they enhance the clearance of ALP-targeted AD-like pathology and alleviate neuronal apoptosis. Our study provides insight into the underlying mechanisms of DE and offers potential avenues for the development of new treatments for this debilitating complication of T2DM. Video abstract.
Collapse
Affiliation(s)
- Lizhen Cheng
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
| | - Yixin Chen
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
| | - Donghao Guo
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
- Division of Cardiology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuan Zhong
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
| | - Wei Li
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
| | - Yijia Lin
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
| | - Ya Miao
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
3
|
ZHANG YU, ZHOU XI, ZHANG CHUNYAN, LAI DENGNI, LIU DONGBO, WU YANYANG. Vitamin B3 inhibits apoptosis and promotes autophagy of islet β cells under high glucose stress. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
4
|
Zhang Y, Zhou XA, Liu C, Shen Q, Wu Y. Vitamin B6 Inhibits High Glucose-Induced Islet β Cell Apoptosis by Upregulating Autophagy. Metabolites 2022; 12:1048. [PMID: 36355132 PMCID: PMC9695582 DOI: 10.3390/metabo12111048] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/27/2023] Open
Abstract
Vitamin B6 may alleviate diabetes by regulating insulin secretion and increasing insulin sensitivity, but its mechanism remains to be explored. In this study, vitamin B6-mediated autophagy and high glucose-induced apoptosis were tested to investigate the mechanism by which vitamin B6 regulates insulin release. The results showed that 20 mM glucose increased the apoptosis rate from 10.39% to 22.44%. Vitamin B6 reduced the apoptosis rate of RIN-m5F cells from 22.44% to 11.31%. Our data also showed that the vitamin B6 content in processed eggs was decreased and that the hydrothermal process did not affect the bioactivity of vitamin B6. Vitamin B6 increased the number of autophagosomes and the ratio of autophagosome marker protein microtubule associated protein 1 light chain 3 beta to microtubule associated protein 1 light chain 3 alpha (LC3-II/LC3-I). It also decreased the amount of sequetosome 1 (SQSTM1/p62) and inhibited the phosphorylation of p70 ribosomal protein S6 kinase (p70S6K) under normal and high glucose stress. Another study showed that vitamin B6 inhibited the apoptosis rate, whereas the autophagy inhibitor 3-methyladenine (3-MA) blocked the protective effect of vitamin B6 against apoptosis induced by high glucose. The hydrothermal process decreased the vitamin B6 content in eggs but had no effect on the cytoprotective function of vitamin B6 in RIN-m5f cells. In conclusion, we demonstrated that vitamin B6-mediated autophagy protected RIN-m5f cells from high glucose-induced apoptosis might via the mTOR-dependent pathway. Our data also suggest that low temperatures and short-term hydrothermal processes are beneficial for dietary eggs.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Xi-an Zhou
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Chuxin Liu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Qingwu Shen
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Yanyang Wu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China
| |
Collapse
|
5
|
Maternal Inflammation Exaggerates Offspring Susceptibility to Cerebral Ischemia–Reperfusion Injury via the COX-2/PGD2/DP2 Pathway Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1571705. [PMID: 35437456 PMCID: PMC9013311 DOI: 10.1155/2022/1571705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 12/04/2022]
Abstract
The pathogenesis of cerebral ischemia–reperfusion (I/R) injury is complex and does not exhibit an effective strategy. Maternal inflammation represents one of the most important factors involved in the etiology of brain injury in newborns. We aimed to investigate the effect of maternal inflammation on offspring susceptibility to cerebral I/R injury and the mechanisms by which it exerts its effects. Pregnant SD rats were intraperitoneally injected with LPS (300 μg/kg/day) at gestational days 11, 14, and 18. Pups were subjected to MCAO/R on postnatal day 60. Primary neurons were obtained from postnatal day 0 SD rats and subjected to OGD/R. Neurological deficits, brain injury, neuronal viability, neuronal damage, and neuronal apoptosis were assessed. Oxidative stress and inflammation were evaluated, and the expression levels of COX-2/PGD2/DP pathway-related proteins and apoptotic proteins were detected. Maternal LPS exposure significantly increased the levels of oxidative stress and inflammation, significantly activated the COX-2/PGD2/DP2 pathway, and increased proapoptotic protein expression. However, maternal LPS exposure significantly decreased the antiapoptotic protein expression, which subsequently increased neurological deficits and cerebral I/R injury in offspring rats. The corresponding results were observed in primary neurons. Moreover, these effects of maternal LPS exposure were reversed by a COX-2 inhibitor and DP1 agonist but exacerbated by a DP2 agonist. In conclusion, maternal inflammatory exposure may increase offspring susceptibility to cerebral I/R injury. Moreover, the underlying mechanism might be related to the activation of the COX-2/PGD2/DP2 pathway. These findings provide a theoretical foundation for the development of therapeutic drugs for cerebral I/R injury.
Collapse
|
6
|
Cheng LZ, Li W, Chen YX, Lin YJ, Miao Y. Autophagy and Diabetic Encephalopathy: Mechanistic Insights and Potential Therapeutic Implications. Aging Dis 2022; 13:447-457. [PMID: 35371595 PMCID: PMC8947837 DOI: 10.14336/ad.2021.0823] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
Diabetic Encephalopathy (DE) is one of the complications of diabetes mellitus (DM) in the central nervous system. Up to now, the mechanisms of DE are not fully discussed by the field. Autophagy is an intracellular degradation pathway crucial to maintain cellular homeostasis by clearing damaged organelles, pathogens, and unwanted protein aggregates. Increasing evidence has demonstrated that autophagy might play an essential role in DE progress. In this review, we summarize the current evidence on autophagy dysfunction under the condition of DE, and provide novel insights of possibly biological mechanisms linking autophagy impairment to DE, as well as discuss autophagy-targeted therapies as potential treatments for DE.
Collapse
Affiliation(s)
| | | | | | | | - Ya Miao
- Correspondence should be addressed to: Dr. Ya Miao, Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China.
| |
Collapse
|
7
|
Yang Y, Xiang P, Chen Q, Luo Y, Wang H, Li H, Yang L, Hu C, Zhang J, Li Y, Xia H, Chen Z, Yang J. The imbalance of PGD2-DPs pathway is involved in the type 2 diabetes brain injury by regulating autophagy. Int J Biol Sci 2021; 17:3993-4004. [PMID: 34671214 PMCID: PMC8495389 DOI: 10.7150/ijbs.60149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
Prostaglandin D2 (PGD2) is the most abundant prostaglandin in the brain, but its involvement in brain damage caused by type 2 diabetes (T2D) has not been reported. In the present study, we found that increased PGD2 content is related to the inhibition of autophagy, which aggravates brain damage in T2D, and may be involved in the imbalanced expression of the corresponding PGD2 receptors DP1 and DP2. We demonstrated that DP2 inhibited autophagy and promotedT2D-induced brain damage by activating the PI3K/AKT/mTOR pathway, whereas DP1enhanced autophagy and amelioratedT2D brain damage by activating the cAMP/PKA pathway. In a T2D rat model, DP1 expression was decreased, and DP2 expression was increased; therefore, the imbalance in PGD2-DPs may be involved in T2D brain damage through the regulation of autophagy. However, there have been no reports on whether PKA can directly inhibit mTOR. The PKA catalytic subunit (PKA-C) has three subtypes (α, β and γ), and γ is not expressed in the brain. Subsequently, we suggested that PKA could directly interact with mTOR through PKA-C(α) and PKA-C(β). Our results suggest that the imbalance in PGD2-DPs is related to changes in autophagy levels in T2D brain damage, and PGD2 is involved in T2D brain damage by promoting autophagy via DP1-PKA/mTOR and inhibiting autophagy via DP2-PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China.,Department of Pharmacology, Chongqing Health Center for Women and Children Chongqing 400016, China
| | - Pu Xiang
- Department of pharmacy,Dianjiang People's Hospital of Chongqing, Dianjiang, Chongqing 408300, China
| | - Qi Chen
- Pharmacy department of GuiZhou Provincial People,s Hospital, Guiyang 550000, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hong Wang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Huan Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Lu Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Congli Hu
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jiahua Zhang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yuke Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hui Xia
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Zhihao Chen
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| |
Collapse
|
8
|
Peng Z, Li M, Tan X, Xiang P, Wang H, Luo Y, Yang Y, Huang H, Chen Z, Xia H, Li Y, Zhang J, Gu C, Liu M, Wang Q, Chen M, Yang J. miR-211-5p alleviates focal cerebral ischemia-reperfusion injury in rats by down-regulating the expression of COX2. Biochem Pharmacol 2020; 177:113983. [PMID: 32311346 DOI: 10.1016/j.bcp.2020.113983] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
The present study was to investigate the role of microRNA (miR)-211-5p on cerebral ischemia-reperfusion injury (CIRI) and clarify its underlying mechanisms. Middle cerebral artery occlusion/reperfusion (MCAO/R) was operated on male Sprague Dawley (SD) rats, oxygen-glucose deprivation/reperfusion (OGD/R) was conducted on pheochromocytoma-12 (PC12) cells. Here, we found that miR-211-5p and Cyclooxygenase (COX2) expressions were altered in the plasma, cortex and hippocampus of MCAO/R-treated rats, as well as in the OGD/R-treaded PC12 cells. In vivo, overexpression of miR-211-5p resulted in decrease of infarct volumes, neurological deficit scores and histopathological damage. In vitro, miR-211-5p overexpression significantly decreased cell apoptosis and Lactate dehydrogenase (LDH) release rate, increased cell viability. Furthermore, our data showed that miR-211-5p overexpression markedly reduced the expressions of COX2 mRNA and protein, and the contents of Prostaglandin D2 (PGD2), PGE2, tumor necrosis factor-α (TNF-α) and Interleukin-1β (IL-1β). In addition, inhibition of COX2 significantly rescued the effects of miR-211-5p inhibitor. At last, dual luciferase experimental data showed that miR-211-5p regulated the mRNA stability of COX2 by directly binding to the 3'-untranslated region (3'-UTR) of COX2. In conclusion, our data suggested the neuroprotective effects of miR-211-5p on CIRI by targeting COX2.
Collapse
Affiliation(s)
- Zhe Peng
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Miaomiao Li
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Xiaodan Tan
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Pu Xiang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hong Wang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Ying Luo
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yang Yang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Haifeng Huang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Zhihao Chen
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hui Xia
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yuke Li
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jiahua Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Chao Gu
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Maozhu Liu
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Qiong Wang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Mengyuan Chen
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Junqing Yang
- College of Pharmacy, Chongqing Medical University, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China.
| |
Collapse
|