1
|
Skóra B, Piechowiak T, Szychowski KA. Interaction Between Aging-Related Elastin-Derived Peptide (VGVAPG) and Sirtuin 2 and its Impact on Functions of Human Neuron Cells in an In Vitro Model. Mol Neurobiol 2025; 62:819-831. [PMID: 38914873 PMCID: PMC11711152 DOI: 10.1007/s12035-024-04298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
Elastin is a stable protein present in many tissues, including brain tissues, and is one of the most long-life proteins with a half-life of approximately 70 years. The peptide with a Val-Gly-Val-Ala-Pro-Gly (VGVAPG) amino acid sequence is released during elastin decay, which correlates with aging-related neurodegeneration. A recent study has shown enhanced protein expression of Sirtuin 2 (SIRT2 - one of the redox homeostatic factors) in aged rodent brains, while the correlation between VGVAPG and SIRT2 has never been evaluated so far. Therefore, the study aimed to determine the impact of the VGVAPG hexapeptide on SIRT2 and neuronal functions in differentiated SH-SY5Y cells at the gene and protein expression levels. The present results showed that VGVAPG caused a 52.69% decrease in the level of reactive oxygen species (ROS), as in the case of neurons treated with AGK2 (Sirtuin 2 inhibitor) after 24h and 48h. Furthermore, a decrease in superoxide dismutase (SOD) activity was observed. The SIRT2 gene expression was found to fluctuate after 6h and 24h as a result of the exposure to the VGVAPG peptide. In turn, a decrease in the PPARγ, P53, SOD2, and CAT mRNA expression was shown in VGVAPG-treated cells. Additionally, an increase in the Sirtuin 2 protein expression was recorded after 24h and 48h in the VGVAPG peptide-treated neurons. Last but not least, the decrease in the level of acetylation of α-tubulin after the hexapeptide treatment was correlated with shortening of neurites, which may indicate the destabilization of the microtubule and ROS-independent induction of neurodegeneration.
Collapse
Affiliation(s)
- Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, St. Sucharskiego 2, 35-225, Rzeszów, Poland.
| | - Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, St. Ćwiklinskiej 2, 35-601, Rzeszów, Poland
| | - Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, St. Sucharskiego 2, 35-225, Rzeszów, Poland
| |
Collapse
|
2
|
Talukdar S, Modanwal R, Chaubey GK, Dhiman A, Dilawari R, Raje CI, Raje M. Mycobacterium tuberculosis exploits SIRT2 to trap iron for its intracellular survival. Free Radic Biol Med 2024; 225:794-804. [PMID: 39490773 DOI: 10.1016/j.freeradbiomed.2024.10.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Iron is a critical nutrient for all organisms ranging from bacteria to humans. Ensuring control of this strategic vital resource significantly influences the dynamics of the struggle between host and invading pathogen. Mycobacterium tuberculosis (Mtb), the causative agent of the pulmonary disease tuberculosis (TB), has been plaguing humans for millennia and has evolved to successfully persist and multiply within host cells evading the mammalian immune defences. Invading Mtb appropriates host iron for its survival while the host innate immune response attempts to prevent its stores of this strategic mineral from being appropriated. SIRT2 is a member of the Sirtuin family. These are evolutionary conserved NAD+-dependent deacetylases involved in various cellular processes including regulation of cellular iron homeostasis. Upon Mtb infection of macrophages, SIRT2 expression is enhanced and it translocates from cytosol to nucleus. This is accompanied with a breakdown of the host's iron restriction strategy that compromises host defence mechanisms. However, the underlying mechanism as to how invading Mtb exploits SIRT2 for commandeering host iron remains unknown. In the current study, we report that the decreased bacillary load in cells wherein SIRT2 had been chemically inhibited or knocked down is due to diminished availability of iron. Inhibition or knockdown of SIRT2 in infected cells displays differential modulation of iron import and export proteins suggesting an ongoing struggle by host to limit the bioavailability of iron to pathogen. Flow cytometry analysis of infected macrophages revealed that these cells utilize a non-canonical pathway for evacuation of intracellular iron. This involves the recruitment of a specific pleioform of the moonlighting protein glyceraldehyde-3 phosphate dehydrogenase (GAPDH) to cell surface for capture of iron transporter protein apo-transferrin. Collectively, our findings reveal the process of SIRT2-mediated iron regulation in Mtb pathogenesis and could provide leads for design of novel host-targeted therapeutics.
Collapse
Affiliation(s)
- Sharmila Talukdar
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Radheshyam Modanwal
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | | | - Asmita Dhiman
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Rahul Dilawari
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | - Chaaya Iyengar Raje
- National Institute of Pharmaceutical Education & Research, Phase X, Sector 67, SAS Nagar, Punjab, India, 160062
| | - Manoj Raje
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India.
| |
Collapse
|
3
|
Dhiman S, Mannan A, Taneja A, Mohan M, Singh TG. Sirtuin dysregulation in Parkinson's disease: Implications of acetylation and deacetylation processes. Life Sci 2024; 342:122537. [PMID: 38428569 DOI: 10.1016/j.lfs.2024.122537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition that primarily affects motor function and is caused by a gradual decline of dopaminergic neurons in the brain's substantia pars compacta (Snpc) region. Multiple molecular pathways are involved in the pathogenesis, which results in impaired cellular functions and neuronal degeneration. However, the role of sirtuins, a type of NAD+-dependent deacetylase, in the pathogenesis of Parkinson's disease has recently been investigated. Sirtuins are essential for preserving cellular homeostasis because they control a number of biological processes, such as metabolism, apoptosis, and DNA repair. This review shed lights on the dysregulation of sirtuin activity in PD, highlighting the role that acetylation and deacetylation processes play in the development of the disease. Key regulators of protein acetylation, sirtuins have been found to be involved in the aberrant acetylation of vital substrates linked to PD pathology when their balance is out of balance. The hallmark characteristics of PD such as neuroinflammation, oxidative stress, and mitochondrial dysfunction have all been linked to the dysregulation of sirtuin expression and activity. Furthermore, we have also explored how the modulators of sirtuins can be a promising therapeutic intervention in the treatment of PD.
Collapse
Affiliation(s)
- Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ayushi Taneja
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
4
|
Zhao P, Malik S. The phosphorylation to acetylation/methylation cascade in transcriptional regulation: how kinases regulate transcriptional activities of DNA/histone-modifying enzymes. Cell Biosci 2022; 12:83. [PMID: 35659740 PMCID: PMC9164400 DOI: 10.1186/s13578-022-00821-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Transcription factors directly regulate gene expression by recognizing and binding to specific DNA sequences, involving the dynamic alterations of chromatin structure and the formation of a complex with different kinds of cofactors, like DNA/histone modifying-enzymes, chromatin remodeling factors, and cell cycle factors. Despite the significance of transcription factors, it remains unclear to determine how these cofactors are regulated to cooperate with transcription factors, especially DNA/histone modifying-enzymes. It has been known that DNA/histone modifying-enzymes are regulated by post-translational modifications. And the most common and important modification is phosphorylation. Even though various DNA/histone modifying-enzymes have been classified and partly explained how phosphorylated sites of these enzymes function characteristically in recent studies. It still needs to find out the relationship between phosphorylation of these enzymes and the diseases-associated transcriptional regulation. Here this review describes how phosphorylation affects the transcription activity of these enzymes and other functions, including protein stability, subcellular localization, binding to chromatin, and interaction with other proteins.
Collapse
|
5
|
Fagerli E, Escobar I, Ferrier FJ, Jackson CW, Perez-Lao EJ, Perez-Pinzon MA. Sirtuins and cognition: implications for learning and memory in neurological disorders. Front Physiol 2022; 13:908689. [PMID: 35936890 PMCID: PMC9355297 DOI: 10.3389/fphys.2022.908689] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuins are an evolutionarily conserved family of regulatory proteins that function in an NAD+ -dependent manner. The mammalian family of sirtuins is composed of seven histone deacetylase and ADP-ribosyltransferase proteins (SIRT1-SIRT7) that are found throughout the different cellular compartments of the cell. Sirtuins in the brain have received considerable attention in cognition due to their role in a plethora of metabolic and age-related diseases and their ability to induce neuroprotection. More recently, sirtuins have been shown to play a role in normal physiological cognitive function, and aberrant sirtuin function is seen in pathological cellular states. Sirtuins are believed to play a role in cognition through enhancing synaptic plasticity, influencing epigenetic regulation, and playing key roles in molecular pathways involved with oxidative stress affecting mitochondrial function. This review aims to discuss recent advances in the understanding of the role of mammalian sirtuins in cognitive function and the therapeutic potential of targeting sirtuins to ameliorate cognitive deficits in neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Miguel A. Perez-Pinzon
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
6
|
Xu H, Liu YY, Li LS, Liu YS. Sirtuins at the Crossroads between Mitochondrial Quality Control and Neurodegenerative Diseases: Structure, Regulation, Modifications, and Modulators. Aging Dis 2022; 14:794-824. [PMID: 37191431 DOI: 10.14336/ad.2022.1123] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/23/2022] [Indexed: 04/03/2023] Open
Abstract
Sirtuins (SIRT1-SIRT7), a family of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes, are key regulators of life span and metabolism. In addition to acting as deacetylates, some sirtuins have the properties of deacylase, decrotonylase, adenosine diphosphate (ADP)-ribosyltransferase, lipoamidase, desuccinylase, demalonylase, deglutarylase, and demyristolyase. Mitochondrial dysfunction occurs early on and acts causally in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Sirtuins are implicated in the regulation of mitochondrial quality control, which is highly associated with the pathogenesis of neurodegenerative diseases. There is growing evidence indicating that sirtuins are promising and well-documented molecular targets for the treatment of mitochondrial dysfunction and neurodegenerative disorders by regulating mitochondrial quality control, including mitochondrial biogenesis, mitophagy, mitochondrial fission/fusion dynamics, and mitochondrial unfolded protein responses (mtUPR). Therefore, elucidation of the molecular etiology of sirtuin-mediated mitochondrial quality control points to new prospects for the treatment of neurodegenerative diseases. However, the mechanisms underlying sirtuin-mediated mitochondrial quality control remain obscure. In this review, we update and summarize the current understanding of the structure, function, and regulation of sirtuins with an emphasis on the cumulative and putative effects of sirtuins on mitochondrial biology and neurodegenerative diseases, particularly their roles in mitochondrial quality control. In addition, we outline the potential therapeutic applications for neurodegenerative diseases of targeting sirtuin-mediated mitochondrial quality control through exercise training, calorie restriction, and sirtuin modulators in neurodegenerative diseases.
Collapse
|
7
|
Chamberlain KA, Huang N, Xie Y, LiCausi F, Li S, Li Y, Sheng ZH. Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2. Neuron 2021; 109:3456-3472.e8. [PMID: 34506725 PMCID: PMC8571020 DOI: 10.1016/j.neuron.2021.08.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Neurons require mechanisms to maintain ATP homeostasis in axons, which are highly vulnerable to bioenergetic failure. Here, we elucidate a transcellular signaling mechanism by which oligodendrocytes support axonal energy metabolism via transcellular delivery of NAD-dependent deacetylase SIRT2. SIRT2 is undetectable in neurons but enriched in oligodendrocytes and released within exosomes. By deleting sirt2, knocking down SIRT2, or blocking exosome release, we demonstrate that transcellular delivery of SIRT2 is critical for axonal energy enhancement. Mass spectrometry and acetylation analyses indicate that neurons treated with oligodendrocyte-conditioned media from WT, but not sirt2-knockout, mice exhibit strong deacetylation of mitochondrial adenine nucleotide translocases 1 and 2 (ANT1/2). In vivo delivery of SIRT2-filled exosomes into myelinated axons rescues mitochondrial integrity in sirt2-knockout mouse spinal cords. Thus, our study reveals an oligodendrocyte-to-axon delivery of SIRT2, which enhances ATP production by deacetylating mitochondrial proteins, providing a target for boosting axonal bioenergetic metabolism in neurological disorders.
Collapse
Affiliation(s)
- Kelly A Chamberlain
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Yuxiang Xie
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Francesca LiCausi
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Yan Li
- Proteomics Core Facility, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 1B-1014, 35 Convent Drive, Bethesda, MD 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
8
|
Ko P, Choi JH, Song S, Keum S, Jeong J, Hwang YE, Kim JW, Rhee S. Microtubule Acetylation Controls MDA-MB-231 Breast Cancer Cell Invasion through the Modulation of Endoplasmic Reticulum Stress. Int J Mol Sci 2021; 22:ijms22116018. [PMID: 34199510 PMCID: PMC8199658 DOI: 10.3390/ijms22116018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/27/2022] Open
Abstract
During aggressive cancer progression, cancer cells adapt to unique microenvironments by withstanding various cellular stresses, including endoplasmic reticulum (ER) stress. However, the mechanism whereby cancer cells overcome the ER stress to survive remains to be elucidated. Herein, we demonstrated that microtubule acetylation in cancer cells grown on a stiff matrix promotes cancer progression by preventing excessive ER stress. Downregulation of microtubule acetylation using shRNA or CRSIPR/Cas9 techniques targeting ATAT1, which encodes α-tubulin N-acetyltransferase (αTAT1), resulted in the upregulation of ER stress markers, changes in ER morphology, and enhanced tunicamycin-induced UPR signaling in cancer cells. A set of genes involved in cancer progression, especially focal adhesion genes, were downregulated in both ATAT1-knockout and tunicamycin-treated cells, whereas ATAT1 overexpression restored the gene expression inhibited by tunicamycin. Finally, the expression of ATAT1 and ER stress marker genes were negatively correlated in various breast cancer types. Taken together, our results suggest that disruption of microtubule acetylation is a potent therapeutic tool for preventing breast cancer progression through the upregulation of ER stress. Moreover, ATAT1 and ER stress marker genes may be useful diagnostic markers in various breast cancer types.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sangmyung Rhee
- Correspondence: ; Tel.: +82-2-820-5818; Fax: +82-2-825-5206
| |
Collapse
|