1
|
Michałowski MA, Kłopotowski K, Wiera G, Czyżewska MM, Mozrzymas JW. Molecular mechanisms of the GABA type A receptor function. Q Rev Biophys 2025; 58:e3. [PMID: 39806800 DOI: 10.1017/s0033583524000179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The GABA type A receptor (GABAAR) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia. GABAAR is also a target for multiple physiologically and clinically relevant modulators, such as benzodiazepines (BDZs), general anesthetics, and neurosteroids. The first GABAAR structure appeared in 2014, but the past years have brought a particularly abundant surge in structural data for these receptors with various ligands and modulators. Although the open conformation remains elusive, this novel information has pushed the structure-function studies to an unprecedented level. Electrophysiology, mutagenesis, photolabeling, and in silico simulations, guided by novel structural information, shed new light on the molecular mechanisms of receptor functioning. The main goal of this review is to present the current knowledge of GABAAR functional and structural properties. The review begins with an outline of the functional and structural studies of GABAAR, accompanied by some methodological considerations, especially biophysical methods, enabling the reader to follow how major breakthroughs in characterizing GABAAR features have been achieved. The main section provides a comprehensive analysis of the functional significance of specific structural elements in GABAARs. We additionally summarize the current knowledge on the binding sites for major GABAAR modulators, referring to the molecular underpinnings of their action. The final chapter of the review moves beyond examining GABAAR as an isolated macromolecule and describes the interactions of the receptor with other proteins in a broader context of inhibitory plasticity. In the final section, we propose a general conclusion that agonist binding to the orthosteric binding sites appears to rely on local interactions, whereas conformational transitions of bound macromolecule (gating) and allosteric modulation seem to reflect more global phenomena involving vast portions of the macromolecule.
Collapse
Affiliation(s)
- Michał A Michałowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Karol Kłopotowski
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Grzegorz Wiera
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Marta M Czyżewska
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| | - Jerzy W Mozrzymas
- Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
2
|
Absalom NL, Lin SXN, Liao VWY, Chua HC, Møller RS, Chebib M, Ahring PK. GABA A receptors in epilepsy: Elucidating phenotypic divergence through functional analysis of genetic variants. J Neurochem 2024; 168:3831-3852. [PMID: 37621067 PMCID: PMC11591409 DOI: 10.1111/jnc.15932] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Normal brain function requires a tightly regulated balance between excitatory and inhibitory neurotransmissions. γ-Aminobutyric acid type A (GABAA) receptors represent the major class of inhibitory ion channels in the mammalian brain. Dysregulation of these receptors and/or their associated pathways is strongly implicated in the pathophysiology of epilepsy. To date, hundreds of different GABAA receptor subunit variants have been associated with epilepsy, making them a prominent cause of genetically linked epilepsy. While identifying these genetic variants is crucial for accurate diagnosis and effective genetic counselling, it does not necessarily lead to improved personalised treatment options. This is because the identification of a variant does not reveal how the function of GABAA receptors is affected. Genetic variants in GABAA receptor subunits can cause complex changes to receptor properties resulting in various degrees of gain-of-function, loss-of-function or a combination of both. Understanding how variants affect the function of GABAA receptors therefore represents an important first step in the ongoing development of precision therapies. Furthermore, it is important to ensure that functional data are produced using methodologies that allow genetic variants to be classified using clinical guidelines such as those developed by the American College of Medical Genetics and Genomics. This article will review the current knowledge in the field and provide recommendations for future functional analysis of genetic GABAA receptor variants.
Collapse
Affiliation(s)
- Nathan L. Absalom
- School of ScienceUniversity of Western SydneySydneyNew South WalesAustralia
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Susan X. N. Lin
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Vivian W. Y. Liao
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Han C. Chua
- Brain and Mind Centre, Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized MedicineThe Danish Epilepsy Centre, FiladelfiaDianalundDenmark
- Department of Regional Health ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Mary Chebib
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Philip K. Ahring
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Kłopotowski K, Michałowski MA, Gos M, Mosiądz D, Czyżewska MM, Mozrzymas JW. Mutation of valine 53 at the interface between extracellular and transmembrane domains of the β 2 principal subunit affects the GABA A receptor gating. Eur J Pharmacol 2023; 947:175664. [PMID: 36934960 DOI: 10.1016/j.ejphar.2023.175664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/09/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
GABAA receptors (gamma-aminobutyric acid type A receptors) are pentameric ligand-gated ion channels mediating inhibition in adult mammalian brains. Their static structure has been intensely studied in the past years but the underlying molecular activatory mechanisms remain obscure. The interface between extracellular and transmembrane domains has been recognized as a key player in the receptor gating. However, the role of the valine 53 in the β1-β2 loop of the principal subunit (β2) remains controversial showing differences compared to homologous residues in some cys-loop counterparts such as nAChR. To address the role of the β2V53 residue in the α1β2γ2L receptor gating, we performed high resolution macroscopic and single-channel recordings. To explore underlying molecular mechanisms a variety of substituting amino acids were investigated: Glutamate and Lysine (different electric charge), Alanine (aliphatic, larger than Valine) and Histidine (same residue as in homologous α1H55). We report that mutation of the β2V53 residue results in alterations of nearly all gating transitions including opening/closing, preactivation and desensitization. A dramatic gating impairment was observed for glutamate substitution (β2V53E) but β2V53K mutation had a weak effect. The impact of histidine substitution was also small while β2V53A markedly affected the receptor but to a smaller extent than β2V53E. Considering available structures in desensitized and bicuculline blocked shut states we propose that strongly detrimental effect of β2V53E mutation on receptor activation results from electrostatic interaction between the glutamate and β2K274 on the loop M2-M3 which stabilizes the receptor in the shut state. We conclude that β2V53 is strongly involved in mechanisms underlying the receptor gating.
Collapse
Affiliation(s)
- Karol Kłopotowski
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland.
| | - Michał A Michałowski
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland
| | - Michalina Gos
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland; University of Wroclaw, Department of Molecular Physiology and Neurobiology, Sienkiewicza 21, Wrocław, Dolnośląskie, Pl 50-335, Poland
| | - Daniela Mosiądz
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland
| | - Marta M Czyżewska
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland
| | - Jerzy W Mozrzymas
- Wroclaw Medical University, Department of Biophysics and Neuroscience, Chałubińskiego 3a, Wrocław, Dolnośląskie, PL 50-368, Poland; University of Wroclaw, Department of Molecular Physiology and Neurobiology, Sienkiewicza 21, Wrocław, Dolnośląskie, Pl 50-335, Poland.
| |
Collapse
|
4
|
Zhu J, Guo X, Ran N, Liang J, Liu F, Liu J, Wang R, Jiang L, Yang D, Liu M. Leukoencephalopathy hypomyelination with brainstem and spinal cord involvement and leg spasticity caused by DARS1 mutations. Front Genet 2023; 13:1009230. [PMID: 36712860 PMCID: PMC9878823 DOI: 10.3389/fgene.2022.1009230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/15/2022] [Indexed: 01/13/2023] Open
Abstract
Hypomyelination with brainstem and spinal cord involvement and leg spasticity (HBSL), caused by aspartyl-tRNA synthetase (DARS1) gene mutations, is extremely rare, with only a few cases reported worldwide; thus, reports on HBSL treatment are few. In this review, we summarized the clinical manifestations, imaging features, treatment methods, and gene mutations responsible for HBSL based on relevant studies and cases.
Collapse
Affiliation(s)
- Jingyi Zhu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomin Guo
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ningjing Ran
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingtao Liang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fuyou Liu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junyan Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongyu Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lianyan Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongdong Yang
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Meijun Liu, ; Dongdong Yang,
| | - Meijun Liu
- Neurology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China,*Correspondence: Meijun Liu, ; Dongdong Yang,
| |
Collapse
|
5
|
Abdalla SS, Harb AA, Almasri IM, Bustanji YK. The interaction of TRPV1 and lipids: Insights into lipid metabolism. Front Physiol 2022; 13:1066023. [PMID: 36589466 PMCID: PMC9797668 DOI: 10.3389/fphys.2022.1066023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a non-selective ligand-gated cation channel with high permeability for Ca2+, has received considerable attention as potential therapeutic target for the treatment of several disorders including pain, inflammation, and hyperlipidemia. In particular, TRPV1 regulates lipid metabolism by mechanisms that are not completely understood. Interestingly, TRPV1 and lipids regulate each other in a reciprocal and complex manner. This review surveyed the recent literature dealing with the role of TRPV1 in the hyperlipidemia-associated metabolic syndrome. Besides TRPV1 structure, molecular mechanisms underlying the regulatory effect of TRPV1 on lipid metabolism such as the involvement of uncoupling proteins (UCPs), ATP-binding cassette (ABC) transporters, peroxisome proliferation-activated receptors (PPAR), sterol responsive element binding protein (SREBP), and hypoxia have been discussed. Additionally, this review extends our understanding of the lipid-dependent modulation of TRPV1 activity through affecting both the gating and the expression of TRPV1. The regulatory role of different classes of lipids such as phosphatidylinositol (PI), cholesterol, estrogen, and oleoylethanolamide (OEA), on TRPV1 has also been addressed.
Collapse
Affiliation(s)
- Shtaywy S. Abdalla
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan,*Correspondence: Shtaywy S. Abdalla,
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ihab M. Almasri
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Gaza, Palestine
| | - Yasser K. Bustanji
- Department of Biopharmaceuticals and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
6
|
Li M, Gao ZL, Zhang QP, Luo AX, Xu WY, Duan TQ, Wen XP, Zhang RQ, Zeng R, Huang JF. Autophagy in glaucoma pathogenesis: Therapeutic potential and future perspectives. Front Cell Dev Biol 2022; 10:1068213. [PMID: 36589756 PMCID: PMC9795220 DOI: 10.3389/fcell.2022.1068213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a common blinding eye disease characterized by progressive loss of retinal ganglion cells (RGCs) and their axons, progressive loss of visual field, and optic nerve atrophy. Autophagy plays a pivotal role in the pathophysiology of glaucoma and is closely related to its pathogenesis. Targeting autophagy and blocking the apoptosis of RGCs provides emerging guidance for the treatment of glaucoma. Here, we provide a systematic review of the mechanisms and targets of interventions related to autophagy in glaucoma and discuss the outlook of emerging ideas, techniques, and multidisciplinary combinations to provide a new basis for further research and the prevention of glaucomatous visual impairment.
Collapse
Affiliation(s)
- Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhao-Lin Gao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Quan-Peng Zhang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China,Anatomy Laboratory, Hainan Medical University, Haikou, China
| | - Ai-Xiang Luo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-Ye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Tian-Qi Duan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xu-Peng Wen
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ru-Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ru Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China,*Correspondence: Ju-Fang Huang,
| |
Collapse
|
7
|
Kaczor PT, Michałowski MA, Mozrzymas JW. α 1 Proline 277 Residues Regulate GABA AR Gating through M2-M3 Loop Interaction in the Interface Region. ACS Chem Neurosci 2022; 13:3044-3056. [PMID: 36219829 PMCID: PMC9634794 DOI: 10.1021/acschemneuro.2c00401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cys-loop receptors are a superfamily of transmembrane, pentameric receptors that play a crucial role in mammalian CNS signaling. Physiological activation of these receptors is typically initiated by neurotransmitter binding to the orthosteric binding site, located at the extracellular domain (ECD), which leads to the opening of the channel pore (gate) at the transmembrane domain (TMD). Whereas considerable knowledge on molecular mechanisms of Cys-loop receptor activation was gathered for the acetylcholine receptor, little is known with this respect about the GABAA receptor (GABAAR), which mediates cellular inhibition. Importantly, several static structures of GABAAR were recently described, paving the way to more in-depth molecular functional studies. Moreover, it has been pointed out that the TMD-ECD interface region plays a crucial role in transduction of conformational changes from the ligand binding site to the channel gate. One of the interface structures implicated in this transduction process is the M2-M3 loop with a highly conserved proline (P277) residue. To address this issue specifically for α1β2γ2L GABAAR, we choose to substitute proline α1P277 with amino acids with different physicochemical features such as electrostatic charge or their ability to change the loop flexibility. To address the functional impact of these mutations, we performed macroscopic and single-channel patch-clamp analyses together with modeling. Our findings revealed that mutation of α1P277 weakly affected agonist binding but was critical for all transitions of GABAAR gating: opening/closing, preactivation, and desensitization. In conclusion, we provide evidence that conservative α1P277 at the interface is strongly involved in regulating the receptor gating.
Collapse
|
8
|
GABA A receptor proline 273 at the interdomain interface of the β 2 subunit regulates entry into desensitization and opening/closing transitions. Life Sci 2022; 308:120943. [PMID: 36096246 DOI: 10.1016/j.lfs.2022.120943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/23/2022]
Abstract
AIMS GABAA receptors belong to Cys-loop ion channel family and mediate inhibition in the brain. Despite the abundance of structural data on receptor structure, the molecular scenarios of activation are unknown. In this study we investigated the role of a β2P273 residue in channel gating transitions. This residue is located in a central position of the M2-M3 linker of the interdomain interface, expected to be predisposed to interact with another interfacial element, the β1-β2 loop of the extracellular side. The interactions occurring on this interface have been reported to couple agonist binding to channel gating. MAIN METHODS We recorded micro- and macroscopic current responses of recombinant GABAA receptors mutated at the β2P273 residue (to A, K, E) to saturating GABA. Electrophysiological data served as basis to kinetic modeling, used to decipher which gating transition were affected by mutations. KEY FINDINGS Mutations of this residue impaired macroscopic desensitization and accelerated current deactivation with P273E mutant showing greatest deviation from wild-type. Single-channel analysis revealed alterations mainly in short-lived shut times and shortening of openings, resulting in dramatic changes in intraburst open probability. Kinetic modeling indicated that β2P273 mutants show diminished entry into desensitized and open states as well as faster channel closing transitions. SIGNIFICANCE In conclusion, we demonstrate that β2P273 of the M2-M3 linker is a crucial element of the ECD-TMD interface regulating the receptor's ability to undergo late gating transitions. Henceforth, this region could be an important target for new pharmacological tools affecting GABAAR-mediated inhibition.
Collapse
|
9
|
Noviello CM, Kreye J, Teng J, Prüss H, Hibbs RE. Structural mechanisms of GABA A receptor autoimmune encephalitis. Cell 2022; 185:2469-2477.e13. [PMID: 35803245 DOI: 10.1016/j.cell.2022.06.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/22/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Autoantibodies targeting neuronal membrane proteins can cause encephalitis, seizures, and severe behavioral abnormalities. While antibodies for several neuronal targets have been identified, structural details on how they regulate function are unknown. Here we determined cryo-electron microscopy structures of antibodies derived from an encephalitis patient bound to the γ-aminobutyric acid type A (GABAA) receptor. These antibodies induced severe encephalitis by directly inhibiting GABAA function, resulting in nervous-system hyperexcitability. The structures reveal mechanisms of GABAA inhibition and pathology. One antibody directly competes with a neurotransmitter and locks the receptor in a resting-like state. The second antibody targets the subunit interface involved in binding benzodiazepines and antagonizes diazepam potentiation. We identify key residues in these antibodies involved in specificity and affinity and confirm structure-based hypotheses for functional effects using electrophysiology. Together these studies define mechanisms of direct functional antagonism of neurotransmission underlying autoimmune encephalitis in a human patient.
Collapse
Affiliation(s)
- Colleen M Noviello
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Department of Pediatric Neurology and Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jinfeng Teng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany; Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Terejko K, Michałowski MA, Iżykowska I, Dominik A, Brzóstowicz A, Mozrzymas JW. Mutations at the M2 and M3 Transmembrane Helices of the GABA ARs α 1 and β 2 Subunits Affect Primarily Late Gating Transitions Including Opening/Closing and Desensitization. ACS Chem Neurosci 2021; 12:2421-2436. [PMID: 34101432 PMCID: PMC8291490 DOI: 10.1021/acschemneuro.1c00151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
![]()
GABA type A receptors
(GABAARs) belong to the pentameric
ligand-gated ion channel (pLGIC) family and play a crucial role in
mediating inhibition in the adult mammalian brain. Recently, a major
progress in determining the static structure of GABAARs
was achieved, although precise molecular scenarios underlying conformational
transitions remain unclear. The ligand binding sites (LBSs) are located
at the extracellular domain (ECD), very distant from the receptor
gate at the channel pore. GABAAR gating is complex, comprising
three major categories of transitions: openings/closings, preactivation,
and desensitization. Interestingly, mutations at, e.g., the ligand
binding site affect not only binding but often also more than one
gating category, suggesting that structural determinants for distinct
conformational transitions are shared. Gielen and co-workers (2015)
proposed that the GABAAR desensitization gate is located
at the second and third transmembrane segment. However, studies of
our and others’ groups indicated that other parts of the GABAAR macromolecule might be involved in this process. In the
present study, we asked how selected point mutations (β2G254V, α1G258V, α1L300V,
and β2L296V) at the M2 and M3 transmembrane segments
affect gating transitions of the α1β2γ2 GABAAR. Using high resolution macroscopic
and single-channel recordings and analysis, we report that these substitutions,
besides affecting desensitization, also profoundly altered openings/closings,
having some minor effect on preactivation and agonist binding. Thus,
the M2 and M3 segments primarily control late gating transitions of
the receptor (desensitization, opening/closing), providing a further
support for the concept of diffuse gating mechanisms for conformational
transitions of GABAAR.
Collapse
Affiliation(s)
- Katarzyna Terejko
- Department of Biophysics and Neuroscience, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland
| | - Michał A. Michałowski
- Department of Biophysics and Neuroscience, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland
- Department of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland
| | - Ilona Iżykowska
- Department of Biophysics and Neuroscience, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland
| | - Anna Dominik
- Department of Biophysics and Neuroscience, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland
| | - Aleksandra Brzóstowicz
- Department of Biophysics and Neuroscience, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland
| | - Jerzy W. Mozrzymas
- Department of Biophysics and Neuroscience, Wrocław Medical University, ul. Chałubińskiego 3A, 50-368 Wrocław, Poland
- Department of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland
| |
Collapse
|
11
|
The β 2 subunit E155 residue as a proton sensor at the binding site on GABA type A receptors. Eur J Pharmacol 2021; 906:174293. [PMID: 34214584 DOI: 10.1016/j.ejphar.2021.174293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
GABA type A receptor plays a key role in inhibitory signaling in the adult central nervous system. This receptor can be modulated by protons but the underlying molecular mechanisms have not been fully explored. To find possible pH-sensor residues, a comparative study for proton-activated GLIC channel and α1β2γ2 GABA receptor was performed and pK 's of respective residues were estimated by numerical algorithms which consider local interactions. β E155, located at the GABA binding site, showed pKa values close to physiological values and dependence on the receptor state and ligation, suggesting a role in modulation by pH. To validate this prediction, pH sensitivity of current responses to GABA was investigated using patch-clamp technique for WT and mutated (β2E155[C, S, Q, L]) GABA receptors. Cysteine mutation preserved pH sensitivity. However, for remaining mutants, the sensitivity to acidification (pH = 6.0) was reduced becoming not statistically significant. The effect of alkaline pH (8.0) was maintained for all mutants with exception for β2E155L for which it was nearly abolished. To further explore the impact of considered mutations, molecular docking was performed which indicated that pH modulation is probably affected by interplay between binding site residues, zwitterion GABA and protons. These data, altogether, indicate that mutation of β2E155 to hydrophobic residue (L) maximally impaired pH modulation while for polar substitutions the effect was smaller. In conclusion, our data provide evidence that a key binding site residue β2E155 plays an important role in proton sensitivity of GABA receptor.
Collapse
|
12
|
Kaczor PT, Wolska AD, Mozrzymas JW. α 1 Subunit Histidine 55 at the Interface between Extracellular and Transmembrane Domains Affects Preactivation and Desensitization of the GABA A Receptor. ACS Chem Neurosci 2021; 12:562-572. [PMID: 33471498 PMCID: PMC7875458 DOI: 10.1021/acschemneuro.0c00781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
![]()
The
GABAA receptor is a member of the Cys-loop family
and plays a crucial role in the adult mammalian brain inhibition.
Although the static structure of this receptor is emerging, the molecular
mechanisms underlying its conformational transitions remain elusive.
It is known that in the Cys-loop receptors, the interface between
extracellular and transmembrane domains plays a key role in transmitting
the “activation wave” down to the channel gate in the
pore. It has been previously reported that histidine 55 (H55), located
centrally at the interfacial β1−β2 loop of the
α1 subunit, is important in the receptor activation,
but it is unknown which specific gating steps it is affecting. In
the present study, we addressed this issue by taking advantage of
the state-of-the-art macroscopic and single-channel recordings together
with extensive modeling. Considering that H55 is known to affect the
local electrostatic landscape and because it is neighbored by two
negatively charged aspartates, a well conserved feature in the α
subunits, we considered substitution with negative (E) and positive
(K) residues. We found that these mutations markedly affected the
receptor gating, altering primarily preactivation and desensitization
transitions. Importantly, opposite effects were observed for these
two mutations strongly suggesting involvement of electrostatic interactions.
Single-channel recordings suggested also a minor effect on opening/closing
transitions which did not depend on the electric charge of the substituting
amino acid. Altogether, we demonstrate that H55 mutations affect primarily
preactivation and desensitization most likely by influencing local
electrostatic interactions at the receptor interface.
Collapse
Affiliation(s)
- Przemyslaw T. Kaczor
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Chalubinskiego 3a, Wroclaw, Dolnoślaskie 50-368, Poland
| | - Aleksandra D. Wolska
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Chalubinskiego 3a, Wroclaw, Dolnoślaskie 50-368, Poland
| | - Jerzy W. Mozrzymas
- Department of Biophysics and Neuroscience, Wroclaw Medical University, Chalubinskiego 3a, Wroclaw, Dolnoślaskie 50-368, Poland
| |
Collapse
|
13
|
Interaction between GABA A receptor α 1 and β 2 subunits at the N-terminal peripheral regions is crucial for receptor binding and gating. Biochem Pharmacol 2020; 183:114338. [PMID: 33189674 DOI: 10.1016/j.bcp.2020.114338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023]
Abstract
Pentameric ligand gated ion channels (pLGICs) are crucial in electrochemical signaling but exact molecular mechanisms of their activation remain elusive. So far, major effort focused on the top-down molecular pathway between the ligand binding site and the channel gate. However, recent studies revealed that pLGIC activation is associated with coordinated subunit twisting in the membrane plane. This suggests a key role of intersubunit interactions but the underlying mechanisms remain largely unknown. Herein, we investigated a "peripheral" subunit interface region of GABAA receptor where structural modeling indicated interaction between N-terminal α1F14 and β2F31 residues. Our experiments underscored a crucial role of this interaction in ligand binding and gating, especially preactivation and opening, showing that the intersubunit cross-talk taking place outside (above) the top-down pathway can be strongly involved in receptor activation. Thus, described here intersubunit interaction appears to operate across a particularly long distance, affecting vast portions of the macromolecule.
Collapse
|