1
|
Mancini A, Stoops E, Demeyer L, Bellomo G, Paolini Paoletti F, Gaetani L, Di Filippo M, Parnetti L. LRRK2 Quantification in Cerebrospinal Fluid of Patients with Parkinson's Disease and Atypical Parkinsonian Syndromes. Mov Disord 2023; 38:682-688. [PMID: 36808643 DOI: 10.1002/mds.29336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 02/20/2023] Open
Abstract
BACKGROUND The alteration of leucine-rich repeat kinase 2 (LRRK2) kinase activity is thought to be involved in Parkinson's disease (PD) pathogenesis beyond familiar cases, and LRRK2 inhibitors are currently under investigation. Preliminary data suggest a relationship between LRRK2 alteration and cognitive impairment in PD. OBJECTIVE To investigate cerebrospinal fluid (CSF) LRRK2 levels in PD and other parkinsonian disorders, also correlating them with cognitive impairment. METHODS In this study, we retrospectively investigated by means of a novel highly sensitive immunoassay the levels of total and phosphorylated (pS1292) LRRK2 in CSF of cognitively unimpaired PD (n = 55), PD with mild cognitive impairment (n = 49), PD with dementia (n = 18), dementia with Lewy bodies (n = 12), atypical parkinsonian syndromes (n = 35), and neurological controls (n = 30). RESULTS Total and pS1292 LRRK2 levels were significantly higher in PD with dementia with respect to PD with mild cognitive impairment and PD, and also showed a correlation with cognitive performances. CONCLUSIONS The tested immunoassay may represent a reliable method for assessing CSF LRRK2 levels. The results appear to confirm an association of LRRK2 alteration with cognitive impairment in PD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Giovanni Bellomo
- Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Federico Paolini Paoletti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.,Laboratory of Clinical Neurochemistry, Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Öksüz N, Öztürk Ş, Doğu O. Future Prospects in Parkinson's Disease Diagnosis and Treatment. Noro Psikiyatr Ars 2022; 59:S36-S41. [PMID: 36578989 PMCID: PMC9767134 DOI: 10.29399/npa.28169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/02/2022] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a rapidly increasing incidence and prevalence. Although it affects more than 6 million people worldwide, it is predicted to be doubled by 2040. Current criteria used in the diagnosis of PD include the presence of bradykinesia as well as the presence of rest tremor and/or rigidity, but the clinic is multifaceted and includes many non-motor symptoms. Non-motor symptoms may occur in the prodromal period, years before clinically evident Parkinson's disease. During this period, diagnosing the disease will likely be even more important when disease-modifying treatments are available. Currently, there is no single biomarker that can be used in the diagnosis of PD and no disease-modifying treatment is available. Identification of biomarkers in early diagnosis will enable the most effective use of disease-modifying therapies and will shed light on possible underlying pathologies, studies in this area have gained momentum in recent years. Molecular imaging methods, genetic studies, salivary gland and skin biopsies, metabolomics, lysosomal pathway are some of them. In this article, besides the current diagnosis and treatment methods of the disease, biomarkers and treatments that are expected to be better understood in the near future will be mentioned.
Collapse
Affiliation(s)
- Nevra Öksüz
- Mersin University School of Medicine, Department of Neurology, Mersin, Turkey,Correspondence Address: Nevra Öksüz, Mersin Üniversite Hastanesi, Çiftlik Köy Kampüsü, Kat:1 Yetişkin Nöroloji Polikliniği, Yenişehir, Mersin, Turkey • E-mail:
| | - Şeyda Öztürk
- Mersin City Training and Research Hospital, Department of Neurology, Mersin, Turkey
| | - Okan Doğu
- Mersin University School of Medicine, Department of Neurology, Mersin, Turkey
| |
Collapse
|
3
|
Imbriani P, Martella G, Bonsi P, Pisani A. Oxidative stress and synaptic dysfunction in rodent models of Parkinson's disease. Neurobiol Dis 2022; 173:105851. [PMID: 36007757 DOI: 10.1016/j.nbd.2022.105851] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/02/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial disorder involving a complex interplay between a variety of genetic and environmental factors. In this scenario, mitochondrial impairment and oxidative stress are widely accepted as crucial neuropathogenic mechanisms, as also evidenced by the identification of PD-associated genes that are directly involved in mitochondrial function. The concept of mitochondrial dysfunction is closely linked to that of synaptic dysfunction. Indeed, compelling evidence supports the role of mitochondria in synaptic transmission and plasticity, although many aspects have not yet been fully elucidated. Here, we will provide a brief overview of the most relevant evidence obtained in different neurotoxin-based and genetic rodent models of PD, focusing on mitochondrial impairment and synaptopathy, an early central event preceding overt nigrostriatal neurodegeneration. The identification of early deficits occurring in PD pathogenesis is crucial in view of the development of potential disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Paola Imbriani
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
4
|
Beck P, Selle B, Madenach L, Jones DTW, Vokuhl C, Gopisetty A, Nabbi A, Brecht IB, Ebinger M, Wegert J, Graf N, Gessler M, Pfister SM, Jäger N. The genomic landscape of pediatric renal cell carcinomas. iScience 2022; 25:104167. [PMID: 35445187 PMCID: PMC9014386 DOI: 10.1016/j.isci.2022.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 12/08/2022] Open
Abstract
Pediatric renal cell carcinomas (RCC) differ from their adult counterparts not only in histologic subtypes but also in clinical characteristics and outcome. However, the underlying biology is still largely unclear. For this reason, we performed whole-exome and transcriptome sequencing analyses on a cohort of 25 pediatric RCC patients with various histologic subtypes, including 10 MiT family translocation (MiT) and 10 papillary RCCs. In this cohort of pediatric RCC, we find only limited genomic overlap with adult RCC, even within the same histologic subtype. Recurrent somatic mutations in genes not previously reported in RCC were detected, such as in CCDC168, PLEKHA1, VWF, and MAP3K9. Our papillary pediatric RCCs, which represent the largest cohort to date with comprehensive molecular profiling in this age group, appeared as a distinct genomic subtype differing in terms of gene mutations and gene expression patterns not only from MiT-RCC but also from their adult counterparts. WES and RNA-seq of 25 pediatric RCCs with various histologic subtypes Detected only limited genomic overlap with adult RCC Revealed recurrent somatic mutations in genes not previously reported in RCC Discovery of a CRK-PITPNA fusion gene in a pediatric papillary RCC
Collapse
Affiliation(s)
- Pengbo Beck
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Barbara Selle
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lukas Madenach
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Apurva Gopisetty
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Arash Nabbi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ines B Brecht
- Department of Pediatric Oncology and Hematology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Martin Ebinger
- Department of Pediatric Oncology and Hematology, University Children's Hospital Tübingen, Tübingen, Germany
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Würzburg University & Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Norbert Graf
- Department of Pediatric Oncology and Hematology, Saarland University, Homburg, Germany
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Würzburg University & Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ) & Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
5
|
Tönges L, Kwon EH, Klebe S. Monogenetic Forms of Parkinson’s Disease – Bridging the Gap Between Genetics and Biomarkers. Front Aging Neurosci 2022; 14:822949. [PMID: 35317530 PMCID: PMC8934414 DOI: 10.3389/fnagi.2022.822949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The therapy of neurodegenerative diseases such as Parkinson’s disease (PD) is still limited to the treatment of symptoms and primarily aimed at compensating for dopaminergic hypofunction. Numerous disease-modifying therapies currently in the pipeline attempt to modify the underlying pathomechanisms. In recent decades, the results of molecular genetics and biomarker research have raised hopes of earlier diagnosis and new neuroprotective therapeutic approaches. As the disease-causing processes in monogenetic forms of PD are better understood than in sporadic PD, these disease subsets are likely to benefit first from disease-modifying therapies. Recent studies have suggested that disease-relevant changes found in genetically linked forms of PD (i.e., PARK-LRRK2, PARK-GBA) can also be reproduced in patients in whom no genetic cause can be found, i.e., those with sporadic PD. It can, therefore, be assumed that as soon as the first causal therapy for genetic forms of PD is approved, more patients with PD will undergo genetic testing and counseling. Regarding future neuroprotective trials in neurodegenerative diseases and objective parameters such as biomarkers with high sensitivity and specificity for the diagnosis and course of the disease are needed. These biomarkers will also serve to monitor treatment success in clinical trials. Promising examples in PD, such as alpha-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain, are under investigation in blood and CSF. This paper provides an overview of the opportunities and current limitations of monogenetic diagnostic and biomarker research in PD and aims to build a bridge between current knowledge and association with PD genetics and biomarkers.
Collapse
Affiliation(s)
- Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Bochum, Germany
| | - Eun Hae Kwon
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
- *Correspondence: Stephan Klebe,
| |
Collapse
|
6
|
Modeling Parkinson's disease in LRRK2 mice: focus on synaptic dysfunction and the autophagy-lysosomal pathway. Biochem Soc Trans 2022; 50:621-632. [PMID: 35225340 DOI: 10.1042/bst20211288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/18/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with familial and sporadic forms of Parkinson's disease (PD), for which the LRRK2 locus itself represents a risk factor. Idiopathic and LRRK2-related PD share the main clinical and neuropathological features, thus animals harboring the most common LRRK2 mutations, i.e. G2019S and R1441C/G, have been generated to replicate the parkinsonian phenotype and investigate the underlying pathological mechanisms. Most LRRK2 rodent models, however, fail to show the main neuropathological hallmarks of the disease i.e. the degeneration of dopaminergic neurons in the substantia nigra pars compacta and presence of Lewy bodies or Lewy body-like aggregates of α-synuclein, lacking face validity. Rather, they manifest dysregulation in cellular pathways and functions that confer susceptibility to a variety of parkinsonian toxins/triggers and model the presymptomatic/premotor stages of the disease. Among such susceptibility factors, dysregulation of synaptic activity and proteostasis are evident in LRRK2 mutants. These abnormalities are also manifest in the PD brain and represent key events in the development and progression of the pathology. The present minireview covers recent articles (2018-2021) investigating the role of LRRK2 and LRRK2 mutants in the regulation of synaptic activity and autophagy-lysosomal pathway. These articles confirm a perturbation of synaptic vesicle endocytosis and glutamate release in LRRK2 mutants. Likewise, LRRK2 mutants show a marked impairment of selective forms of autophagy (i.e. mitophagy and chaperone-mediated autophagy) and lysosomal function, with minimal perturbations of nonselective autophagy. Thus, LRRK2 rodents might help understand the contribution of these pathways to PD.
Collapse
|
7
|
Kwon EH, Tennagels S, Gold R, Gerwert K, Beyer L, Tönges L. Update on CSF Biomarkers in Parkinson's Disease. Biomolecules 2022; 12:biom12020329. [PMID: 35204829 PMCID: PMC8869235 DOI: 10.3390/biom12020329] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Progress in developing disease-modifying therapies in Parkinson’s disease (PD) can only be achieved through reliable objective markers that help to identify subjects at risk. This includes an early and accurate diagnosis as well as continuous monitoring of disease progression and therapy response. Although PD diagnosis still relies mainly on clinical features, encouragingly, advances in biomarker discovery have been made. The cerebrospinal fluid (CSF) is a biofluid of particular interest to study biomarkers since it is closest to the brain structures and therefore could serve as an ideal source to reflect ongoing pathologic processes. According to the key pathophysiological mechanisms, the CSF status of α-synuclein species, markers of amyloid and tau pathology, neurofilament light chain, lysosomal enzymes and markers of neuroinflammation provide promising preliminary results as candidate biomarkers. Untargeted approaches in the field of metabolomics provide insights into novel and interconnected biological pathways. Markers based on genetic forms of PD can contribute to identifying subgroups suitable for gene-targeted treatment strategies that might also be transferable to sporadic PD. Further validation analyses in large PD cohort studies will identify the CSF biomarker or biomarker combinations with the best value for clinical and research purposes.
Collapse
Affiliation(s)
- Eun Hae Kwon
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
| | - Sabrina Tennagels
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
| | - Klaus Gerwert
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Léon Beyer
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
- Faculty of Biology and Biotechnology, Department of Biophysics, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, D-44791 Bochum, Germany; (E.H.K.); (S.T.); (R.G.)
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, D-44801 Bochum, Germany; (K.G.); (L.B.)
- Correspondence: ; Tel.: +49-234-509-2420; Fax: +49-234-509-2439
| |
Collapse
|
8
|
Nakagaki T, Nishida N, Satoh K. Development of α-Synuclein Real-Time Quaking-Induced Conversion as a Diagnostic Method for α-Synucleinopathies. Front Aging Neurosci 2021; 13:703984. [PMID: 34650422 PMCID: PMC8510559 DOI: 10.3389/fnagi.2021.703984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy are characterized by aggregation of abnormal α-synuclein (α-syn) and collectively referred to as α-synucleinopathy. Because these diseases have different prognoses and treatments, it is desirable to diagnose them early and accurately. However, it is difficult to accurately diagnose these diseases by clinical symptoms because symptoms such as muscle rigidity, postural dysreflexia, and dementia sometimes overlap among these diseases. The process of conformational conversion and aggregation of α-syn has been thought similar to that of abnormal prion proteins that cause prion diseases. In recent years, in vitro conversion methods, such as real-time quaking-induced conversion (RT-QuIC), have been developed. This method has succeeded in amplifying and detecting trace amounts of abnormal prion proteins in tissues and central spinal fluid of patients by inducing conversion of recombinant prion proteins via shaking. Additionally, it has been used for antemortem diagnosis of prion diseases. Recently, aggregated α-syn has also been amplified and detected in patients by applying this method and many clinical studies have examined diagnosis using tissues or cerebral spinal fluid from patients. In this review, we discuss the utility and problems of α-syn RT-QuIC for antemortem diagnosis of α-synucleinopathies.
Collapse
Affiliation(s)
- Takehiro Nakagaki
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Noriyuki Nishida
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsuya Satoh
- Department of Health Sciences, Unit of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
9
|
Bellingacci L, Mancini A, Gaetani L, Tozzi A, Parnetti L, Di Filippo M. Synaptic Dysfunction in Multiple Sclerosis: A Red Thread from Inflammation to Network Disconnection. Int J Mol Sci 2021; 22:ijms22189753. [PMID: 34575917 PMCID: PMC8469646 DOI: 10.3390/ijms22189753] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) has been clinically considered a chronic inflammatory disease of the white matter; however, in the last decade growing evidence supported an important role of gray matter pathology as a major contributor of MS-related disability and the involvement of synaptic structures assumed a key role in the pathophysiology of the disease. Synaptic contacts are considered central units in the information flow, involved in synaptic transmission and plasticity, critical processes for the shaping and functioning of brain networks. During the course of MS, the immune system and its diffusible mediators interact with synaptic structures leading to changes in their structure and function, influencing brain network dynamics. The purpose of this review is to provide an overview of the existing literature on synaptic involvement during experimental and human MS, in order to understand the mechanisms by which synaptic failure eventually leads to brain networks alterations and contributes to disabling MS symptoms and disease progression.
Collapse
Affiliation(s)
- Laura Bellingacci
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.B.); (A.M.); (L.G.); (L.P.)
| | - Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.B.); (A.M.); (L.G.); (L.P.)
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.B.); (A.M.); (L.G.); (L.P.)
| | - Alessandro Tozzi
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.B.); (A.M.); (L.G.); (L.P.)
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.B.); (A.M.); (L.G.); (L.P.)
- Correspondence: ; Tel.: +39-075-578-3830
| |
Collapse
|
10
|
Age-related LRRK2 G2019S Mutation Impacts Microglial Dopaminergic Fiber Refinement and Synaptic Pruning Involved in Abnormal Behaviors. J Mol Neurosci 2021; 72:527-543. [PMID: 34409578 DOI: 10.1007/s12031-021-01896-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of autosomal dominant Parkinson's disease (PD), producing psychiatric and motor symptoms. We conducted this study to explore whether microglial dopaminergic (DAergic) fiber refinement and synaptic pruning are involved in the abnormal behavioral phenotypes of carriers of the LRRK2 G2019S mutation, by employing young and middle-aged PD model mice. The results revealed a characteristic late-onset hyperactivity and a progressive decline in the motor coordination of the LRRK2 G2019S mutation mice. LRRK2 G2019S mutation-induced aberrant microglial morphogenesis, with more branches and junctions per cell, resulted in excessive microglial refinement of dopaminergic (DAergic) fibers. Moreover, aberrant synaptic pruning distinctly impacted the prefrontal cortex (PFC) and dorsal striatum (DS), with significantly higher spine density in the PFC but the opposite effects in the DS region. Furthermore, LRRK2 G2019S mutation remodeled the inflammatory transcription landscape of microglia, rendering certain cerebral areas highly susceptible to microglial immune response. These findings indicate that LRRK2 G2019S mutation induces the production of inflammatory cytokines and mediates abnormal microglial morphogenesis and activity, resulting in abnormal phagocytosis, synaptic pruning and loss of DAergic fibers during aging, and, eventually, PD-related behavioral abnormalities.
Collapse
|
11
|
Dorszewska J, Kowalska M, Prendecki M, Piekut T, Kozłowska J, Kozubski W. Oxidative stress factors in Parkinson's disease. Neural Regen Res 2021; 16:1383-1391. [PMID: 33318422 PMCID: PMC8284265 DOI: 10.4103/1673-5374.300980] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/24/2020] [Accepted: 10/21/2020] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) is the second most common cause of neurodegeneration. Over the last two decades, various hypotheses have been proposed to explain the etiology of PD. Among these is the oxidant-antioxidant theory, which asserts that local and systemic oxidative damage triggered by reactive oxygen species and other free radicals may promote dopaminergic neuron degeneration. Excessive reactive oxygen species formation, one of the underlying causes of pathology in the course of PD has been evidenced by various studies showing that oxidized macromolecules including lipids, proteins, and nucleic acids accumulate in brain tissues of PD patients. DNA oxidation may produce various lesions in the course of PD. Mutations incurred as a result of DNA oxidation may further enhance reactive oxygen species production in the brains of PD patients, exacerbating neuronal loss due to defects in the mitochondrial electron transport chain, antioxidant depletion, and exposure to toxic oxidized dopamine. The protein products of SNCA, PRKN, PINK1, DJ1, and LRRK2 genes are associated with disrupted oxidoreductive homeostasis in PD. SNCA is the first gene linked with familial PD and is currently known to be affected by six mutations correlated with the disorder: A53T, A30P, E46K, G51D, H50Q and A53E. PRKN encodes Parkin, an E3 ubiquitin ligase which mediates the proteasome degradation of redundant and disordered proteins such as glycosylated α-synuclein. Over 100 mutations have been found among the 12 exons of PRKN. PINK1, a mitochondrial kinase highly expressed in the brain, may undergo loss of function mutations which constitute approximately 1-8% of early onset PD cases. More than 50 PD-promoting mutations have been found in PINK1. Mutations in DJ-1, a neuroprotective protein, are a rare cause of early onset PD and constitute only 1% of cases. Around 20 mutations have been found in DJ1 among PD patients thus far. Mutations in the LRRK2 gene are the most common known cause of familial autosomal dominant PD and sporadic PD. Treatment of PD patients, especially in the advanced stages of the disease, is very difficult. The first step in managing progressive PD is to optimize dopaminergic therapy by increasing the doses of dopamine agonists and L-dopa. The next step is the introduction of advanced therapies, such as deep brain stimulation. Genetic factors may influence the response to L-dopa and deep brain stimulation therapy and the regulation of oxidative stress. Consequently, research into minimally invasive surgical interventions, as well as therapies that target the underlying etiology of PD is warranted.
Collapse
Affiliation(s)
- Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Kozłowska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
12
|
Gcwensa NZ, Russell DL, Cowell RM, Volpicelli-Daley LA. Molecular Mechanisms Underlying Synaptic and Axon Degeneration in Parkinson's Disease. Front Cell Neurosci 2021; 15:626128. [PMID: 33737866 PMCID: PMC7960781 DOI: 10.3389/fncel.2021.626128] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/05/2021] [Indexed: 01/13/2023] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disease that impairs movement as well as causing multiple other symptoms such as autonomic dysfunction, rapid eye movement (REM) sleep behavior disorder, hyposmia, and cognitive changes. Loss of dopamine neurons in the substantia nigra pars compacta (SNc) and loss of dopamine terminals in the striatum contribute to characteristic motor features. Although therapies ease the symptoms of PD, there are no treatments to slow its progression. Accumulating evidence suggests that synaptic impairments and axonal degeneration precede neuronal cell body loss. Early synaptic changes may be a target to prevent disease onset and slow progression. Imaging of PD patients with radioligands, post-mortem pathologic studies in sporadic PD patients, and animal models of PD demonstrate abnormalities in presynaptic terminals as well as postsynaptic dendritic spines. Dopaminergic and excitatory synapses are substantially reduced in PD, and whether other neuronal subtypes show synaptic defects remains relatively unexplored. Genetic studies implicate several genes that play a role at the synapse, providing additional support for synaptic dysfunction in PD. In this review article we: (1) provide evidence for synaptic defects occurring in PD before neuron death; (2) describe the main genes implicated in PD that could contribute to synapse dysfunction; and (3) show correlations between the expression of Snca mRNA and mouse homologs of PD GWAS genes demonstrating selective enrichment of Snca and synaptic genes in dopaminergic, excitatory and cholinergic neurons. Altogether, these findings highlight the need for novel therapeutics targeting the synapse and suggest that future studies should explore the roles for PD-implicated genes across multiple neuron types and circuits.
Collapse
Affiliation(s)
- Nolwazi Z Gcwensa
- Department of Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Civitan International Research Center, Birmingham, AL, United States
| | - Drèson L Russell
- Department of Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Civitan International Research Center, Birmingham, AL, United States
| | - Rita M Cowell
- Department of Neuroscience, Southern Research, Birmingham, AL, United States
| | - Laura A Volpicelli-Daley
- Department of Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, Civitan International Research Center, Birmingham, AL, United States
| |
Collapse
|