1
|
Bertomeu JB, Fioravanço LP, Ramis TR, Godinho DB, Nascimento AS, Lima GC, Furian AF, Oliveira MS, Fighera MR, Royes LFF. The Role of Ion-Transporting Proteins on Crosstalk Between the Skeletal Muscle and Central Nervous Systems Elicited by Physical Exercise. Mol Neurobiol 2024:10.1007/s12035-024-04613-7. [PMID: 39578339 DOI: 10.1007/s12035-024-04613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024]
Abstract
A paradigm shift in the understanding of bidirectional interactions between peripheral and central nervous systems is essential for development of rehabilitation and preventive interventions based on physical exercise. Although a causal relationship has not been completely established, modulation of voltage-dependent ion channels (Ca2+, Cl-, K+, Na+, lactate-, H+) in skeletal and neuronal cells provides opportunities to maintain force production during exercise and reduce the risk of disease. However, there are caveats to consider when interpreting the effects of physical exercise on this bidirectional axis, since exercise protocol details (e.g., duration and intensity) have variable effects on this crosstalk. Therefore, an integrative perspective of the skeletal muscle and brain's communication pathway is discussed, and the role of physical exercise on such communication highway is explained in this review.
Collapse
Affiliation(s)
- Judit Borràs Bertomeu
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Letícia Paiva Fioravanço
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Thiago Rozales Ramis
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Douglas Buchmann Godinho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Alexandre Seixas Nascimento
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriel Corrêa Lima
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Graduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Graduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Laboratory of Experimental and Clinical Neuropsychiatry, Department of Neuropsychiatry, Health Sciences Center, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Luiz Fernando Freire Royes
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center in Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Exercise Biochemistry Laboratory (BIOEX), Department of Sports Methods and Techniques, Physical Education and Sports Center, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Department of Sports Methods and Techniques, Center of Physical Education and , Sports, Federal University of Santa Maria - UFSM, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
2
|
Xu H, Sun Z, Wang G, Li R. The Impact of Depression on Detrimental Changes in Bone Microstructure in Female Mice. Neuropsychiatr Dis Treat 2024; 20:1421-1433. [PMID: 39049938 PMCID: PMC11268775 DOI: 10.2147/ndt.s454865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
Background Several clinical studies have examined the connection between depression and bone loss, but the cause-and-effect relationship between the two conditions, especially in animal models, is not well-studied. Methods A total of 32 female mice were, randomly divided into control group (CON, n=19) and depression group (DEP, n=13). The mice in the DEP group were subjected to 21 consecutive days of restraint stress, following depressive-like behaviors were assessment. The femurs were collected using Micro-Computed Tomography (μCT) and histochemical staining. In parallel, levels of serotonin-related proteins in the brain were measured using Western blot analysis, and sex hormone profiles were determined through liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Results The mice in the DEP group exhibited clear signs of depressive-like behaviors and an increase in serotonin transporter levels (t=-2.435, P< 0.05). In comparison to the CON mice, the DEP mice showed a decrease in bone mineral density (t =3.741, P< 0.05), bone surface area density (t =8.009, P<0.01), percent bone volume (t =4.293, P< 0.05), trabecular number (t =5.844, P<0.01), and connected density (t =11.000, P< 0.05). Additionally, there was an increase in trabecular separation (t =-7.436, P<0.01) in DEP mice. Furthermore, the DEP mice displayed a significant reduction in serum estrogen levels (t =4.340, P< 0.05) and changes in its metabolite (t =-3.325, P< 0.05), while the levels of androgens remained unchanged. Conclusion The restraint stress not only led to the development of depressive-like behaviors but also disrupted the estrogen metabolism pathway, resulting in damage to bone mass and microstructure in female mice. These findings suggest that stress-induced depression may pose a risk for bone loss in female mice by altering estrogen metabolism pathways.
Collapse
Affiliation(s)
- Hong Xu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Gang Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, People’s Republic of China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Kim JM, Kim HK, Cho HJ, Moon SA, Kim Y, Hong JY, Lee SH, Kim K, Koh JM. Extracellular C1qbp inhibits myogenesis by suppressing NFATc1. Sci Rep 2024; 14:15678. [PMID: 38977785 PMCID: PMC11231330 DOI: 10.1038/s41598-024-66549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Aging and lack of exercise are the most important etiological factors for muscle loss. We hypothesized that new factors that contribute to muscle loss could be identified from ones commonly altered in expression in aged and exercise-limited skeletal muscles. Mouse gastrocnemius muscles were subjected to mass spectrometry-based proteomic analysis. The muscle proteomes of hindlimb-unloaded and aged mice were compared to those of exercised and young mice, respectively. C1qbp expression was significantly upregulated in the muscles of both hindlimb-unloaded and aged mice. In vitro myogenic differentiation was not affected by altering intracellular C1qbp expression but was significantly suppressed upon recombinant C1qbp treatment. Additionally, recombinant C1qbp repressed the protein level but not the mRNA level of NFATc1. NFATc1 recruited the transcriptional coactivator p300, leading to the upregulation of acetylated histone H3 levels. Furthermore, NFATc1 silencing inhibited p300 recruitment, downregulated acetylated histone H3 levels, and consequently suppressed myogenic differentiation. The expression of C1qbp was inversely correlated with that of NFATc1 in the gastrocnemius muscles of exercised or hindlimb-unloaded, and young or aged mice. These findings demonstrate a novel role of extracellular C1qbp in suppressing myogenesis by inhibiting the NFATc1/p300 complex. Thus, C1qbp can serve as a novel therapeutic target for muscle loss.
Collapse
Affiliation(s)
- Jin-Man Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Ho Kyoung Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Han Jin Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Sung-Ah Moon
- AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Yewon Kim
- AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Jeong Yeon Hong
- Department of Biomedical Science, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
4
|
Dai Y, Cheng Y, Ge R, Chen K, Yang L. Exercise-induced adaptation of neurons in the vertebrate locomotor system. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 13:160-171. [PMID: 37914153 PMCID: PMC10980905 DOI: 10.1016/j.jshs.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/03/2023]
Abstract
Vertebrate neurons are highly dynamic cells that undergo several alterations in their functioning and physiologies in adaptation to various external stimuli. In particular, how these neurons respond to physical exercise has long been an area of active research. Studies of the vertebrate locomotor system's adaptability suggest multiple mechanisms are involved in the regulation of neuronal activity and properties during exercise. In this brief review, we highlight recent results and insights from the field with a focus on the following mechanisms: (a) alterations in neuronal excitability during acute exercise; (b) alterations in neuronal excitability after chronic exercise; (c) exercise-induced changes in neuronal membrane properties via modulation of ion channel activity; (d) exercise-enhanced dendritic plasticity; and (e) exercise-induced alterations in neuronal gene expression and protein synthesis. Our hope is to update the community with a cellular and molecular understanding of the recent mechanisms underlying the adaptability of the vertebrate locomotor system in response to both acute and chronic physical exercise.
Collapse
Affiliation(s)
- Yue Dai
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China; Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China.
| | - Yi Cheng
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| | - Renkai Ge
- School of Physical Education and Health Care, East China Jiaotong University, Nanchang 330013, China
| | - Ke Chen
- Key Laboratory of High Confidence Software Technologies of Ministry of Education, School of Computer Science, Peking University, Beijing 100871, China
| | - Liming Yang
- Key Lab of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, College of Physical Education and Health Care, East China Normal University, Shanghai 200241, China
| |
Collapse
|
5
|
Goreau V, Hug F, Jannou A, Dernoncourt F, Crouzier M, Cattagni T. Estimates of persistent inward currents in lower limb muscles are not different between inactive, resistance-trained, and endurance-trained young males. J Neurophysiol 2024; 131:166-175. [PMID: 38116611 DOI: 10.1152/jn.00278.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/20/2023] [Accepted: 12/17/2023] [Indexed: 12/21/2023] Open
Abstract
Persistent inward currents (PICs) increase the intrinsic excitability of α-motoneurons. The main objective of this study was to compare estimates of α-motoneuronal PICs between inactive, chronic resistance-trained, and chronic endurance-trained young individuals. We also aimed to investigate whether there is a relationship in the estimates of α-motoneuronal PIC magnitude between muscles. Estimates of PIC magnitude were obtained in three groups of young individuals: resistance-trained (n = 12), endurance-trained (n = 12), and inactive (n = 13). We recorded high-density surface electromyography (HDsEMG) signals from tibialis anterior (TA), gastrocnemius medialis (GM), soleus (SOL), vastus medialis (VM), and vastus lateralis (VL). Then, signals were decomposed with convolutive blind source separation to identify motor unit (MU) spike trains. Participants performed triangular isometric contractions to a peak of 20% of their maximum voluntary contraction. A paired-motor-unit analysis was used to calculate ΔF, which is assumed to be proportional to PIC magnitude. Despite the substantial differences in physical training experience between groups, we found no differences in ΔF, regardless of the muscle. Significant correlations of estimates of PIC magnitude were found between muscles of the same group (VL-VM, SOL-GM). Only two correlations (out of 8) between muscles of different groups were found (TA-GM and VL-GM). Overall, our findings suggest that estimates of PIC magnitude from lower-threshold MUs at low contraction intensities in the lower limb muscles are not influenced by physical training experience in healthy young individuals. They also suggest muscle-specific and muscle group-specific regulations of the estimates of PIC magnitude.NEW & NOTEWORTHY Chronic resistance and endurance training can lead to specific adaptations in motor unit activity. The contribution of α-motoneuronal persistent inward currents (PICs) to these adaptations is currently unknown in healthy young individuals. Therefore, we studied whether estimates of α-motoneuronal PIC magnitude are higher in chronically trained endurance- and resistance-trained individuals. We also studied whether there is a relationship between the estimates of α-motoneuronal PIC magnitude of different lower limb muscles.
Collapse
Affiliation(s)
- Valentin Goreau
- Movement - Interactions - Performance (MIP, UR 4334), Nantes Université, Nantes, France
| | | | - Anthony Jannou
- Movement - Interactions - Performance (MIP, UR 4334), Nantes Université, Nantes, France
| | - François Dernoncourt
- Movement - Interactions - Performance (MIP, UR 4334), Nantes Université, Nantes, France
- LAMHESS, Université Côte d'Azur, Nice, France
| | - Marion Crouzier
- Movement - Interactions - Performance (MIP, UR 4334), Nantes Université, Nantes, France
- Department of Movement Science, Human Movement Biomechanics Research Group, KU Leuven, Leuven, Belgium
| | - Thomas Cattagni
- Movement - Interactions - Performance (MIP, UR 4334), Nantes Université, Nantes, France
| |
Collapse
|
6
|
Orssatto LBR, Blazevich AJ, Trajano GS. Ageing reduces persistent inward current contribution to motor neurone firing: Potential mechanisms and the role of exercise. J Physiol 2023; 601:3705-3716. [PMID: 37488952 DOI: 10.1113/jp284603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/26/2023] [Indexed: 07/26/2023] Open
Abstract
Nervous system deterioration is a primary driver of age-related motor impairment. The motor neurones, which act as the interface between the central nervous system and the muscles, play a crucial role in amplifying excitatory synaptic input to produce the desired motor neuronal firing output. For this, they utilise their ability to generate persistent (long-lasting) depolarising currents that increase cell excitability, and both amplify and prolong the output activity of motor neurones for a given synaptic input. Modulation of these persistent inward currents (PICs) contributes to the motor neurones' capacities to attain the required firing frequencies and rapidly modulate them to competently complete most tasks. Thus, PICs are crucial for adequate movement generation. Impairments in intrinsic motor neurone properties can impact motor unit firing capacity, with convincing evidence indicating that the PIC contribution to motor neurone firing is reduced in older adults. Indeed, this could be an important mechanism underpinning the age-related reductions in strength and physical function. Furthermore, resistance training has emerged as a promising intervention to counteract age-associated PIC impairments, with changes in PICs being correlated with improvements in muscular strength and physical function after training. In this review, we present the current knowledge of the PIC magnitude decline during ageing and discuss whether reduced serotonergic and noradrenergic input onto the motor neurones, voltage-gated calcium channel dysfunction or inhibitory input impairments are candidates that: (i) explain age-related reductions in the PIC contribution to motor neurone firing and (ii) underpin the enhanced PIC contribution to motor neurone firing following resistance training in older adults.
Collapse
Affiliation(s)
- Lucas B R Orssatto
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, VIC, Australia
| | - Anthony J Blazevich
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, WA, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
7
|
Illesca-Matus R, Ardiles NM, Munoz F, Moya PR. Implications of Physical Exercise on Episodic Memory and Anxiety: The Role of the Serotonergic System. Int J Mol Sci 2023; 24:11372. [PMID: 37511128 PMCID: PMC10379296 DOI: 10.3390/ijms241411372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
There is a growing interest in investigating the effects of physical exercise on cognitive performance, particularly episodic memory. Similarly, an increasing number of studies in recent decades have studied the effects of physical activity on mood and anxiety disorders. Moreover, the COVID-19 pandemic has raised awareness of the importance of regular physical activity for both mental and physical health. Nevertheless, the exact mechanisms underlying these effects are not fully understood. Interestingly, recent findings suggest that the serotonergic system may play a key role in mediating the effects of physical exercise on episodic memory and anxiety. In this review, we discuss the impact of physical exercise on both episodic memory and anxiety in human and animal models. In addition, we explore the accumulating evidence that supports a role for the serotonergic system in the effects of physical exercise on episodic memory and anxiety.
Collapse
Affiliation(s)
- Ricardo Illesca-Matus
- Laboratorio de Neurodinámica Básica y Aplicada, Escuela de Psicología, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
- Centro de Investigación Avanzada en Educación (CIAE), Universidad de Chile, Santiago 8320000, Chile
| | - Nicolás M Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Felipe Munoz
- Programa de Doctorado en Ciencias e Ingeniería para la Salud, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua 2820000, Chile
| | - Pablo R Moya
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
8
|
Orssatto LBR, Rodrigues P, Mackay K, Blazevich AJ, Borg DN, Souza TRD, Sakugawa RL, Shield AJ, Trajano GS. Intrinsic motor neuron excitability is increased after resistance training in older adults. J Neurophysiol 2023; 129:635-650. [PMID: 36752407 DOI: 10.1152/jn.00462.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
This study investigated the effects of high-intensity resistance training on estimates of the motor neuron persistent inward current (PIC) in older adults. Seventeen participants (68.5 ± 2.8 yr) completed a 2-wk nonexercise control period followed by 6 wk of resistance training. Surface electromyographic signals were collected with two 32-channel electrodes placed over soleus to investigate motor unit discharge rates. Paired motor unit analysis was used to calculate delta frequency (ΔF) as an estimate of PIC amplitudes during 1) triangular-shaped contractions to 20% of maximum torque capacity and 2) trapezoidal- and triangular-shaped contractions to 20% and 40% of maximum torque capacity, respectively, to understand their ability to modulate PICs as contraction intensity increases. Maximal strength and functional capacity tests were also assessed. For the 20% triangular-shaped contractions, ΔF [0.58-0.87 peaks per second (pps); P ≤ 0.015] and peak discharge rates (0.78-0.99 pps; P ≤ 0.005) increased after training, indicating increased PIC amplitude. PIC modulation also improved after training. During the control period, mean ΔF differences between 20% trapezoidal-shaped and 40% triangular-shaped contractions were 0.09-0.18 pps (P = 0.448 and 0.109, respectively), which increased to 0.44 pps (P < 0.001) after training. Also, changes in ΔF showed moderate to very large correlations (r = 0.39-0.82) with changes in peak discharge rates and broad measures of motor function. Our findings indicate that increased motor neuron excitability is a potential mechanism underpinning training-induced improvements in motor neuron discharge rate, strength, and motor function in older adults. This increased excitability is likely mediated by enhanced PIC amplitudes, which are larger at higher contraction intensities.NEW & NOTEWORTHY Resistance training elicited important alterations in soleus intrinsic motor neuronal excitability, likely mediated by enhanced persistent inward current (PIC) amplitude, in older adults. Estimates of PICs increased after the training period, accompanied by an enhanced ability to increase PIC amplitudes at higher contraction intensities. Our data also suggest that changes in PIC contribution to self-sustained discharging may contribute to increases in motor neuron discharge rates, maximal strength, and functional capacity in older adults after resistance training.
Collapse
Affiliation(s)
- Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Patrick Rodrigues
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Karen Mackay
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - David N Borg
- Australian Centre for Health Services Innovation (AusHSI), School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Tiago Rosa de Souza
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Raphael L Sakugawa
- Department of Physical Education, Federal University of Mato Grosso, Cuiaba, Mato Grosso, Brazil
| | - Anthony J Shield
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Zhao G, Zhang D, Qiao D, Liu X. Exercise improves behavioral dysfunction and inhibits the spontaneous excitatory postsynaptic current of D2-medium spiny neurons. Front Aging Neurosci 2022; 14:1001256. [PMID: 36533169 PMCID: PMC9752814 DOI: 10.3389/fnagi.2022.1001256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/15/2022] [Indexed: 10/17/2023] Open
Abstract
The abnormal function of striatal medium spiny neurons (MSNs) leads to the excitation-inhibition imbalance of the basal ganglia, which is an important pathogenic factor of Parkinson's disease (PD). Exercise improves the dysfunction of basal ganglia through neuroprotective and neuroreparative effects, which may be related to the functional changes of expresses D2 receptors MSNs (D2-MSNs). In this study, D2-Cre mice were selected as the research objects, the PD model was induced by unilateral injection of 6-hydroxydopamine (6-OHDA) in the striatum, and the 4-week treadmill training method was used for exercise intervention. Using optogenetics and behavioral tests, we determined that the average total movement distance of PD and PD + Ex groups was significantly lower than that of the Control group, while that of the PD + Ex and PD + Laser groups was significantly higher than that of the PD group, and the two intervention methods of exercise and optogenetic-stimulation of the D2-MSNs had basically similar effects on improving the autonomic behavior of PD mice. To further investigate the cellular mechanisms, whole-cell patch clamp recordings were carried out on D2-MSNs. We found that exercise decreased the frequency and amplitude of spontaneous excitatory postsynaptic current (sEPSC) and increased the paired-pulse radio of D2-MSNs while leaving basic electrophysiological properties of MSNs unaffected. Combined with behavioral improvement and enhanced D2R protein expression, our findings suggest the inhibited sEPSC of D2-MSNs may contribute to the behavioral improvement after exercise.
Collapse
Affiliation(s)
- Gang Zhao
- Physical Education College, Soochow University, Suzhou, China
- Physical Education and Sports College, Beijing Normal University, Beijing, China
| | - Danyu Zhang
- Physical Education and Sports College, Beijing Normal University, Beijing, China
| | - Decai Qiao
- Physical Education and Sports College, Beijing Normal University, Beijing, China
| | - Xiaoli Liu
- Physical Education and Sports College, Beijing Normal University, Beijing, China
| |
Collapse
|
10
|
Chen K, Dai Y. Chronic exercise increases excitability of lamina X neurons through enhancement of persistent inward currents and dendritic development in mice. J Physiol 2022; 600:3775-3793. [PMID: 35848453 DOI: 10.1113/jp283037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Chronic exercise alters adaptability of spinal motor system in rodents. Multiple mechanisms are responsible for the adaptation, including regulation of neuronal excitability and change in dendritic morphology. Spinal interneurons in lamina X are a cluster of heterogeneous neurons playing multifunctional roles in the spinal cord, especially in regulating locomotor activity. Chronic exercise in juvenile mice increased excitability of these interneurons and facilitated dendritic development. Mechanisms underlying these changes remain unknown. Lamina X neurons expressed persistent inward currents (PICs) composed of calcium (Ca-PIC) and sodium (Na-PIC) components. The exercise-increased excitability of lamina X neurons was mediated by enhancing Ca-PIC and Na-PIC components and facilitating dendritic length. Na-PIC contributed more to lowering of PIC onset and Ca-PIC to increase of PIC amplitude. This study unveiled novel morphological and ionic mechanisms underlying adaptation of lamina X neurons in rodents during chronic exercise. ABSTRACT Chronic exercise has been shown to enhance excitability of spinal interneurons in rodents. However, the mechanisms underlying this enhancement remain unclear. In this study we investigated adaptability of lamina X neurons with three-week treadmill exercise in mice of P21-P24. Whole-cell path-clamp recording was performed on the interneurons from slices of T12-L4. The experimental results included: (1) Treadmill exercise reduced rheobase by 7.4±2.2 pA (control: 11.3±6.1 pA, n = 12; exercise: 3.8±4.6 pA, n = 13; P = 0.002) and hyperpolarized voltage threshold by 7.1±1.5 mV (control: -36.6±4.6 mV, exercise: -43.7±2.7 mV; P = 0.001). (2) Exercise enhanced persistent inward currents (PICs) with increase of amplitude (control: 140.6±56.3 pA, n = 25; exercise: 225.9±62.5 pA, n = 17; P = 0.001) and hyperpolarization of onset (control: -50.3±3.6 mV, exercise: -56.5±5.5 mV; P = 0.001). (3) PICs consisted of dihydropyridine-sensitive calcium (Ca-PIC) and tetrodotoxin-sensitive sodium (Na-PIC) components. Exercise increased amplitude of both components but hyperpolarized onset of Na-PIC only. (4) Exercise reduced derecruitment current of repetitive firing evoked by current bi-ramp and prolonged firing in falling phase of the bi-ramp. The derecruitment reduction was eliminated by bath application of 3 μM riluzole or 25 μM nimodipine, suggesting that both Na-PIC and Ca-PIC contributed to the exercise-prolonged hysteresis of firing. (5) Exercise facilitated dendritic development with significant increase in dendritic length by 285.1±113 μm (control: 457.8±171.8 μm, n = 12; exercise: 742.9±357 μm, n = 14; P = 0.019). We concluded that three-week treadmill exercise increased excitability of lamina X interneurons through enhancement of PICs and increase of dendritic length. This study provided insight into cellular and channel mechanisms underlying adaptation of the spinal motor system in exercise. Abstract figure legend A. B6 mice were randomly divided into control group and exercise group. Control group mice remained sedentary in the cage; exercise group mice completed 60 min treadmill runs each day (6 days/week) for a period of 3 weeks. B. Whole-cell patch clamp recordings were made from lumbar lamina X neurons after three-weeks exercise. C. Exercise facilitated development of dendrites of lamina X neurons. D. Exercise enhanced persistent inward currents. E. Exercise increased excitability of lamina X neurons by hyperpolarizing voltage threshold for action potential generation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ke Chen
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China
| | - Yue Dai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, 200241, China.,Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
11
|
Zong B, Yu F, Zhang X, Zhao W, Sun P, Li S, Li L. Understanding How Physical Exercise Improves Alzheimer’s Disease: Cholinergic and Monoaminergic Systems. Front Aging Neurosci 2022; 14:869507. [PMID: 35663578 PMCID: PMC9158463 DOI: 10.3389/fnagi.2022.869507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, characterized by the accumulation of proteinaceous aggregates and neurofibrillary lesions composed of β-amyloid (Aβ) peptide and hyperphosphorylated microtubule-associated protein tau, respectively. It has long been known that dysregulation of cholinergic and monoaminergic (i.e., dopaminergic, serotoninergic, and noradrenergic) systems is involved in the pathogenesis of AD. Abnormalities in neuronal activity, neurotransmitter signaling input, and receptor function exaggerate Aβ deposition and tau hyperphosphorylation. Maintenance of normal neurotransmission is essential to halt AD progression. Most neurotransmitters and neurotransmitter-related drugs modulate the pathology of AD and improve cognitive function through G protein-coupled receptors (GPCRs). Exercise therapies provide an important alternative or adjunctive intervention for AD. Cumulative evidence indicates that exercise can prevent multiple pathological features found in AD and improve cognitive function through delaying the degeneration of cholinergic and monoaminergic neurons; increasing levels of acetylcholine, norepinephrine, serotonin, and dopamine; and modulating the activity of certain neurotransmitter-related GPCRs. Emerging insights into the mechanistic links among exercise, the neurotransmitter system, and AD highlight the potential of this intervention as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Boyi Zong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Xiaoyou Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Wenrui Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Peng Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shichang Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Lin Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
- *Correspondence: Lin Li,
| |
Collapse
|
12
|
Power KE, Lockyer EJ, Botter A, Vieira T, Button DC. Endurance-exercise training adaptations in spinal motoneurones: potential functional relevance to locomotor output and assessment in humans. Eur J Appl Physiol 2022; 122:1367-1381. [PMID: 35226169 DOI: 10.1007/s00421-022-04918-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
It is clear from non-human animal work that spinal motoneurones undergo endurance training (chronic) and locomotor (acute) related changes in their electrical properties and thus their ability to fire action potentials in response to synaptic input. The functional implications of these changes, however, are speculative. In humans, data suggests that similar chronic and acute changes in motoneurone excitability may occur, though the work is limited due to technical constraints. To examine the potential influence of chronic changes in human motoneurone excitability on the acute changes that occur during locomotor output, we must develop more sophisticated recording techniques or adapt our current methods. In this review, we briefly discuss chronic and acute changes in motoneurone excitability arising from non-human and human work. We then discuss the potential interaction effects of chronic and acute changes in motoneurone excitability and the potential impact on locomotor output. Finally, we discuss the use of high-density surface electromyogram recordings to examine human motor unit firing patterns and thus, indirectly, motoneurone excitability. The assessment of single motor units from high-density recording is mainly limited to tonic motor outputs and minimally dynamic motor output such as postural sway. Adapting this technology for use during locomotor outputs would allow us to gain a better understanding of the potential functional implications of endurance training-induced changes in human motoneurone excitability on motor output.
Collapse
Affiliation(s)
- Kevin E Power
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada. .,Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Evan J Lockyer
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Alberto Botter
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy.,PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Taian Vieira
- Laboratory for Engineering of the Neuromuscular System (LISiN), Department of Electronics and Telecommunication, Politecnico di Torino, Turin, Italy.,PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Duane C Button
- Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.,Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
13
|
Cheng Y, Song N, Ge R, Dai Y. Serotonergic Modulation of Persistent Inward Currents in Serotonergic Neurons of Medulla in ePet-EYFP Mice. Front Neural Circuits 2021; 15:657445. [PMID: 33889077 PMCID: PMC8055846 DOI: 10.3389/fncir.2021.657445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/15/2021] [Indexed: 11/23/2022] Open
Abstract
Serotonergic (5-HT) neurons in the medulla play multiple functional roles associated with many symptoms and motor activities. The descending serotonergic pathway from medulla is essential for initiating locomotion. However, the ionic properties of 5-HT neurons in the medulla remain unclear. Using whole-cell patch-clamp technique, we studied the biophysical and modulatory properties of persistent inward currents (PICs) in 5-HT neurons of medulla in ePet-EYFP transgenic mice (P3–P6). PICs were recorded by a family of voltage bi-ramps (10-s duration, 40-mV peak step), and the ascending and descending PICs were mirrored to analyze the PIC hysteresis. PICs were found in 77% of 5-HT neurons (198/258) with no significant difference between parapyramidal region (n = 107) and midline raphe nuclei (MRN) (n = 91) in either PIC onset (−47.4 ± 10 mV and −48.7 ± 7 mV; P = 0.44) or PIC amplitude (226.9 ± 138 pA and 259.2 ± 141 pA; P = 0.29). Ninety-six percentage (191/198) of the 5-HT neurons displayed counterclockwise hysteresis and four percentage (7/198) exhibited the clockwise hysteresis. The composite PICs could be differentiated as calcium component (Ca_PIC) by bath application of nimodipine (25 μM), sodium component (Na_PIC) by tetrodotoxin (TTX, 2 μM), and TTX- and dihydropyridine-resistance component (TDR_PIC) by TTX and nimodipine. Ca_PIC, Na_PIC and TDR_PIC all contributed to upregulation of excitability of 5-HT neurons. 5-HT (15 μM) enhanced the PICs, including a 26% increase in amplitude of the compound currents of Ca_PIC and TDR_PIC (P < 0.001, n = 9), 3.6 ± 5 mV hyperpolarization of Na_PIC and TDR_PIC onset (P < 0.05, n = 12), 30% increase in amplitude of TDR_PIC (P < 0.01), and 2.0 ± 3 mV hyperpolarization of TDR_PIC onset (P < 0.05, n = 18). 5-HT also facilitated repetitive firing of 5-HT neurons through modulation of composite PIC, Na_PIC and TDR_PIC, and Ca_PIC and TDR_PIC, respectively. In particular, the high voltage-activated TDR_PIC facilitated the repetitive firing in higher membrane potential, and this facilitation could be amplified by 5-HT. Morphological data analysis indicated that the dendrites of 5-HT neurons possessed dense spherical varicosities intensively crossing 5-HT neurons in medulla. We characterized the PICs in 5-HT neurons and unveiled the mechanism underlying upregulation of excitability of 5-HT neurons through serotonergic modulation of PICs. This study provided insight into channel mechanisms responsible for the serotonergic modulation of serotonergic neurons in brainstem.
Collapse
Affiliation(s)
- Yi Cheng
- School of Physical Education, Yunnan University, Kunming, China
| | - Nan Song
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, China
| | - Renkai Ge
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China.,School of Physical Education and Health Care, East China Jiaotong University, Nanchang, China
| | - Yue Dai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, China.,Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
14
|
Latella C. Pick me, Pick me! Rationale for investigating persistent inward currents (PICs) and associated exercise effects in the ageing neuromuscular system. J Physiol 2021; 599:1957-1959. [PMID: 33491208 DOI: 10.1113/jp281324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Christopher Latella
- Neurophysiology Research Laboratory, Edith Cowan University, Joondalup, Australia.,Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|