1
|
Lou J, Wu F, He W, Hu R, Cai Z, Chen G, Zhao W, Zhang Z, Si Y. Hesperidin activates Nrf2 to protect cochlear hair cells from cisplatin-induced damage. Redox Rep 2024; 29:2341470. [PMID: 38629504 PMCID: PMC11025410 DOI: 10.1080/13510002.2024.2341470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Cisplatin is widely employed in clinical oncology as an anticancer chemotherapy drug in clinical practice and is known for its severe ototoxic side effects. Prior research indicates that the accumulation of reactive oxygen species (ROS) plays a pivotal role in cisplatin's inner ear toxicity. Hesperidin is a flavanone glycoside extracted from citrus fruits that has anti-inflammatory and antioxidant effects. Nonetheless, the specific pharmacological actions of hesperidin in alleviating cisplatin-induced ototoxicity remain elusive. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical mediator of the cellular oxidative stress response, is influenced by hesperidin. Activation of Nrf2 was shown to have a protective effect against cisplatin-induced ototoxicity. The potential of hesperidin to stimulate Nrf2 in attenuating cisplatin's adverse effects on the inner ear warrants further investigation. This study employs both in vivo and in vitro models of cisplatin ototoxicity to explore this possibility. Our results reveal that hesperidin mitigates cisplatin-induced ototoxicity by activating the Nrf2/NQO1 pathway in sensory hair cells, thereby reducing ROS accumulation, preventing hair cell apoptosis, and alleviating hearing loss.
Collapse
Affiliation(s)
- Jintao Lou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wuhui He
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Rui Hu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenji Zhao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhigang Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yu Si
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Lyu AR, Kim SJ, Park MJ, Park YH. CORM‑2 reduces cisplatin accumulation in the mouse inner ear and protects against cisplatin-induced ototoxicity. J Adv Res 2024; 64:183-194. [PMID: 38030129 PMCID: PMC11464639 DOI: 10.1016/j.jare.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION Cisplatin is a life-saving anticancer compound used to treat multiple solid malignant tumors, while it causes permanent hearing loss. There is no known cure, and the FDA has not approved any preventative treatment for cisplatin-based ototoxicity. OBJECTIVES This study investigated whether the carbon monoxide (CO)-releasing tricarbonyldichlororuthenium (II) dimer, CORM-2, reverses cisplatin-induced hearing impairment and reduces cisplatin accumulation in the mouse inner ear. METHODS Male 6-week-old BALB/c mice were randomly assigned to one of the following groups: control (saline-treated, i.p.), CORM-2 only (30 mg/kg, i.p., four doses), cisplatin only (20 mg/kg, i.p., one dose), and CORM-2 + cisplatin, to determine whether cisplatin-based hearing impairment was alleviated by CORM-2 treatment. RESULTS Our results revealed CORM-2 significantly attenuated cisplatin-induced hearing loss in young adult mice. CORM-2 co-treatment significantly decreased platinum accumulation in the inner ear and activated the plasma membrane repair system of the stria vascularis. Moreover, CORM-2 co-treatment significantly decreased cisplatin-induced inflammation, apoptosis, and cochlear necroptosis. Because the stria vascularis is the likely cochlear entry point of cisplatin, we next focused on the microvasculature. Cisplatin induced increased extravasation of a chromatic tracer (fluorescein isothiocyanate [FITC]-dextran, MW 75 kDa) around the cochlear microvessels at 4 days post-treatment; this extravasation was completely inhibited by CORM-2 co-therapy. CORM-2 co-treatment effectively maintained the integrity of stria vascularis components including endothelial cells, pericytes, and perivascular-resident macrophage-type melanocytes. CONCLUSION CORM-2 co-therapy substantially protects against cisplatin-induced ototoxicity by reducing platinum accumulation and toxic cellular stress responses. These data indicate that CORM-2 co-treatment may be translated into clinical strategy to reduce cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Ah-Ra Lyu
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Soo Jeong Kim
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Min Jung Park
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.
| | - Yong-Ho Park
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.
| |
Collapse
|
3
|
Zhao W, Wu F, Hu R, Lou J, Chen G, Cai Z, Chen S. The Antioxidant Ergothioneine Alleviates Cisplatin-Induced Hearing Loss through the Nrf2 Pathway. Antioxid Redox Signal 2024. [PMID: 38770822 DOI: 10.1089/ars.2024.0648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Aims: Cisplatin (CDDP) is a commonly used chemotherapeutic agent for treating head and neck tumors. However, there is high incidence of ototoxicity in patients treated with CDDP, which may be caused by the excessive reactive oxygen species (ROS) generation in the inner ear. Many studies have demonstrated the strong antioxidant effects of ergothioneine (EGT). Therefore, we assumed that EGT could also attenuate cisplatin-induced hearing loss (CIHL) as well. However, the protective effect and mechanism of EGT on CIHL have not been elucidated as so far. In this study, we investigated whether EGT could treat CIHL and the mechanism. Results: In our study, we confirmed the protective effect of EGT on preventing CDDP-induced toxicity both in vitro and in vivo. The auditory brainstem response threshold shift in the EGT + CDDP treatment mice was 30 dB less than that in the CDDP treatment mice. EGT suppressed production of ROS and proapoptotic proteins both in tissue and cells. By silencing nuclear factor erythroid 2-related factor 2 (Nrf2), we confirmed that EGT protected against CIHL via the Nrf2 pathway. We also found that SLC22A4 (OCTN1), an important molecule involved in transporting EGT, was expressed in the cochlea. Innovation: Our results revealed the role of EGT in the prevention of CIHL by activating Nrf2/HO-1/NQO-1 pathway, and broadened a new perspective therapeutic target of EGT. Conclusion: EGT decreased ROS production and promoted the expression of antioxidative enzymes to maintain redox homeostasis in sensory hair cells. Overall, our results indicated that EGT may serve as a novel treatment drug to attenuate CIHL.
Collapse
Affiliation(s)
- Wenji Zhao
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Rui Hu
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Shenshan Medical Center, Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Jintao Lou
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| | - Suijun Chen
- Department of Otolaryngology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
4
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
5
|
Lee J, Fernandez K, Cunningham LL. Hear and Now: Ongoing Clinical Trials to Prevent Drug-Induced Hearing Loss. Annu Rev Pharmacol Toxicol 2024; 64:211-230. [PMID: 37562496 DOI: 10.1146/annurev-pharmtox-033123-114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Each year over half a million people experience permanent hearing loss caused by treatment with therapeutic drugs with ototoxic side effects. There is a major unmet clinical need for therapies that protect against this hearing loss without reducing the therapeutic efficacy of these lifesaving drugs. At least 17 clinical trials evaluating 10 therapeutics are currently underway for therapies aimed at preventing aminoglycoside- and/or cisplatin-induced ototoxicity. This review describes the preclinical and clinical development of each of these approaches, provides updates on the status of ongoing trials, and highlights the importance of appropriate outcome measures in trial design and the value of reporting criteria in the dissemination of results.
Collapse
Affiliation(s)
- John Lee
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA;
| | - Katharine Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lisa L Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
6
|
Nacher-Soler G, Marteyn A, Barenzung N, Sgroi S, Krause KH, Senn P, Rousset F. Development and in vivo validation of small interfering RNAs targeting NOX3 to prevent sensorineural hearing loss. Front Neurol 2022; 13:993017. [PMID: 36188374 PMCID: PMC9523672 DOI: 10.3389/fneur.2022.993017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The reactive oxygen species (ROS)-generating enzyme NOX3 has recently been implicated in the pathophysiology of several acquired forms of sensorineural hearing loss, including cisplatin-, noise- and age-related hearing loss. NOX3 is highly and specifically expressed in the inner ear and therefore represents an attractive target for specific intervention aiming at otoprotection. Despite the strong rationale to inhibit NOX3, there is currently no specific pharmacological inhibitor available. Molecular therapy may represent a powerful alternative. In this study, we developed and tested a collection of small interfering (si) RNA constructs to establish a proof of concept of NOX3 inhibition through local delivery in the mouse inner ear. The inhibitory potential of 10 different siRNA constructs was first assessed in three different cells lines expressing the NOX3 complex. Efficacy of the most promising siRNA construct to knock-down NOX3 was then further assessed in vivo, comparing middle ear delivery and direct intracochlear delivery through the posterior semi-circular canal. While hearing was completely preserved through the intervention, a significant downregulation of NOX3 expression in the mouse inner ear and particularly in the spiral ganglion area at clinically relevant levels (>60%) was observed 48 h after treatment. In contrast to successful intracochlear delivery, middle ear administration of siRNA failed to significantly inhibit Nox3 mRNA expression. In conclusion, intracochlear delivery of NOX3-siRNAs induces a robust temporal NOX3 downregulation, which could be of relevance to prevent predictable acute insults such as cisplatin chemotherapy-mediated ototoxicity and other forms of acquired hearing loss, including post-prevention of noise-induced hearing loss immediately after trauma. Successful translation of our concept into an eventual clinical use in humans will depend on the development of atraumatic and efficient delivery routes into the cochlea without a risk to induce hearing loss through the intervention.
Collapse
Affiliation(s)
- German Nacher-Soler
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Antoine Marteyn
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Natasha Barenzung
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphanie Sgroi
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pascal Senn
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Clinical Neurosciences, Service of ORL and Head and Neck Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Francis Rousset
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|