1
|
Milioto C, Carcolé M, Giblin A, Coneys R, Attrebi O, Ahmed M, Harris SS, Lee BI, Yang M, Ellingford RA, Nirujogi RS, Biggs D, Salomonsson S, Zanovello M, de Oliveira P, Katona E, Glaria I, Mikheenko A, Geary B, Udine E, Vaizoglu D, Anoar S, Jotangiya K, Crowley G, Smeeth DM, Adams ML, Niccoli T, Rademakers R, van Blitterswijk M, Devoy A, Hong S, Partridge L, Coyne AN, Fratta P, Alessi DR, Davies B, Busche MA, Greensmith L, Fisher EMC, Isaacs AM. PolyGR and polyPR knock-in mice reveal a conserved neuroprotective extracellular matrix signature in C9orf72 ALS/FTD neurons. Nat Neurosci 2024; 27:643-655. [PMID: 38424324 PMCID: PMC11001582 DOI: 10.1038/s41593-024-01589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Dipeptide repeat proteins are a major pathogenic feature of C9orf72 amyotrophic lateral sclerosis (C9ALS)/frontotemporal dementia (FTD) pathology, but their physiological impact has yet to be fully determined. Here we generated C9orf72 dipeptide repeat knock-in mouse models characterized by expression of 400 codon-optimized polyGR or polyPR repeats, and heterozygous C9orf72 reduction. (GR)400 and (PR)400 knock-in mice recapitulate key features of C9ALS/FTD, including cortical neuronal hyperexcitability, age-dependent spinal motor neuron loss and progressive motor dysfunction. Quantitative proteomics revealed an increase in extracellular matrix (ECM) proteins in (GR)400 and (PR)400 spinal cord, with the collagen COL6A1 the most increased protein. TGF-β1 was one of the top predicted regulators of this ECM signature and polyGR expression in human induced pluripotent stem cell neurons was sufficient to induce TGF-β1 followed by COL6A1. Knockdown of TGF-β1 or COL6A1 orthologues in polyGR model Drosophila exacerbated neurodegeneration, while expression of TGF-β1 or COL6A1 in induced pluripotent stem cell-derived motor neurons of patients with C9ALS/FTD protected against glutamate-induced cell death. Altogether, our findings reveal a neuroprotective and conserved ECM signature in C9ALS/FTD.
Collapse
Affiliation(s)
- Carmelo Milioto
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Mireia Carcolé
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Ashling Giblin
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Rachel Coneys
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Olivia Attrebi
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Mhoriam Ahmed
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Samuel S Harris
- UK Dementia Research Institute, University College London, London, UK
| | - Byung Il Lee
- UK Dementia Research Institute, University College London, London, UK
| | - Mengke Yang
- UK Dementia Research Institute, University College London, London, UK
| | | | - Raja S Nirujogi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Daniel Biggs
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sally Salomonsson
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Matteo Zanovello
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Paula de Oliveira
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Eszter Katona
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Idoia Glaria
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Research Support Service, Institute of Agrobiotechnology, CSIC-Government of Navarra, Mutilva, Spain
| | - Alla Mikheenko
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Bethany Geary
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Evan Udine
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Deniz Vaizoglu
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Sharifah Anoar
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Khrisha Jotangiya
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Gerard Crowley
- UK Dementia Research Institute, University College London, London, UK
| | - Demelza M Smeeth
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Mirjam L Adams
- UK Dementia Research Institute, University College London, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Teresa Niccoli
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Anny Devoy
- UK Dementia Research Institute, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Soyon Hong
- UK Dementia Research Institute, University College London, London, UK
| | - Linda Partridge
- UCL Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Dario R Alessi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ben Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Francis Crick Institute, London, UK
| | - Marc Aurel Busche
- UK Dementia Research Institute, University College London, London, UK
| | - Linda Greensmith
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, London, UK.
| | - Adrian M Isaacs
- UK Dementia Research Institute, University College London, London, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
2
|
Kahriman A, Bouley J, Tuncali I, Dogan EO, Pereira M, Luu T, Bosco DA, Jaber S, Peters OM, Brown RH, Henninger N. Repeated mild traumatic brain injury triggers pathology in asymptomatic C9ORF72 transgenic mice. Brain 2023; 146:5139-5152. [PMID: 37527465 PMCID: PMC11046056 DOI: 10.1093/brain/awad264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative diseases that represent ends of the spectrum of a single disease. The most common genetic cause of FTD and ALS is a hexanucleotide repeat expansion in the C9orf72 gene. Although epidemiological data suggest that traumatic brain injury (TBI) represents a risk factor for FTD and ALS, its role in exacerbating disease onset and course remains unclear. To explore the interplay between traumatic brain injury and genetic risk in the induction of FTD/ALS pathology we combined a mild repetitive traumatic brain injury paradigm with an established bacterial artificial chromosome transgenic C9orf72 (C9BAC) mouse model without an overt motor phenotype or neurodegeneration. We assessed 8-10 week-old littermate C9BACtg/tg (n = 21), C9BACtg/- (n = 20) and non-transgenic (n = 21) mice of both sexes for the presence of behavioural deficits and cerebral histopathology at 12 months after repetitive TBI. Repetitive TBI did not affect body weight gain, general neurological deficit severity, nor survival over the 12-month observation period and there was no difference in rotarod performance, object recognition, social interaction and acoustic characteristics of ultrasonic vocalizations of C9BAC mice subjected to repetitive TBI versus sham injury. However, we found that repetitive TBI increased the time to the return of the righting reflex, reduced grip force, altered sociability behaviours and attenuated ultrasonic call emissions during social interactions in C9BAC mice. Strikingly, we found that repetitive TBI caused widespread microglial activation and reduced neuronal density that was associated with loss of histological markers of axonal and synaptic integrity as well as profound neuronal transactive response DNA binding protein 43 kDa mislocalization in the cerebral cortex of C9BAC mice at 12 months; this was not observed in non-transgenic repetitive TBI and C9BAC sham mice. Our data indicate that repetitive TBI can be an environmental risk factor that is sufficient to trigger FTD/ALS-associated neuropathology and behavioural deficits, but not paralysis, in mice carrying a C9orf72 hexanucleotide repeat expansion.
Collapse
Affiliation(s)
- Aydan Kahriman
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - James Bouley
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Idil Tuncali
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Elif O Dogan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mariana Pereira
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Thuyvan Luu
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Samer Jaber
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Owen M Peters
- School of Biosciences, UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
3
|
Bauer CS, Cohen RN, Sironi F, Livesey MR, Gillingwater TH, Highley JR, Fillingham DJ, Coldicott I, Smith EF, Gibson YB, Webster CP, Grierson AJ, Bendotti C, De Vos KJ. An interaction between synapsin and C9orf72 regulates excitatory synapses and is impaired in ALS/FTD. Acta Neuropathol 2022; 144:437-464. [PMID: 35876881 PMCID: PMC9381633 DOI: 10.1007/s00401-022-02470-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 12/16/2022]
Abstract
Dysfunction and degeneration of synapses is a common feature of amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). A GGGGCC hexanucleotide repeat expansion in the C9ORF72 gene is the main genetic cause of ALS/FTD (C9ALS/FTD). The repeat expansion leads to reduced expression of the C9orf72 protein. How C9orf72 haploinsufficiency contributes to disease has not been resolved. Here we identify the synapsin family of synaptic vesicle proteins, the most abundant group of synaptic phosphoproteins, as novel interactors of C9orf72 at synapses and show that C9orf72 plays a cell-autonomous role in the regulation of excitatory synapses. We mapped the interaction of C9orf72 and synapsin to the N-terminal longin domain of C9orf72 and the conserved C domain of synapsin, and show interaction of the endogenous proteins in synapses. Functionally, C9orf72 deficiency reduced the number of excitatory synapses and decreased synapsin levels at remaining synapses in vitro in hippocampal neuron cultures and in vivo in the hippocampal mossy fibre system of C9orf72 knockout mice. Consistent with synaptic dysfunction, electrophysiological recordings identified impaired excitatory neurotransmission and network function in hippocampal neuron cultures with reduced C9orf72 expression, which correlated with a severe depletion of synaptic vesicles from excitatory synapses in the hippocampus of C9orf72 knockout mice. Finally, neuropathological analysis of post-mortem sections of C9ALS/FTD patient hippocampus with C9orf72 haploinsufficiency revealed a marked reduction in synapsin, indicating that disruption of the interaction between C9orf72 and synapsin may contribute to ALS/FTD pathobiology. Thus, our data show that C9orf72 plays a cell-autonomous role in the regulation of neurotransmission at excitatory synapses by interaction with synapsin and modulation of synaptic vesicle pools, and identify a novel role for C9orf72 haploinsufficiency in synaptic dysfunction in C9ALS/FTD.
Collapse
Affiliation(s)
- Claudia S Bauer
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Rebecca N Cohen
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Francesca Sironi
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Matthew R Livesey
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, Chancellor's Building, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Daniel J Fillingham
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Emma F Smith
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Yolanda B Gibson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Christopher P Webster
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Andrew J Grierson
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385a Glossop Road, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|