Hu J, Li P, Zhao H, Ji P, Yang Y, Ma J, Zhao X. Alterations of gut microbiota and its correlation with the liver metabolome in the process of ameliorating Parkinson's disease with Buyang Huanwu decoction.
JOURNAL OF ETHNOPHARMACOLOGY 2024;
318:116893. [PMID:
37423520 DOI:
10.1016/j.jep.2023.116893]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE
Buyang Huanwu decoction (BHD), a famous traditional Chinese medicine (TCM) formula, was first recorded in Qing Dynasty physician Qingren Wang's Yi Lin Gai Cuo. BHD has been widely utilized in the treatment of patients with neurological disorders, including Parkinson's disease (PD). However, the underlying mechanism has not been fully elucidated. In particular, little is known about the role of gut microbiota.
AIM OF THE STUDY
We aimed to reveal the alterations and functions of gut microbiota and its correlation with the liver metabolome in the process of improving PD with BHD.
MATERIALS AND METHODS
The cecal contents were collected from PD mice treated with or without BHD. 16S rRNA gene sequencing was performed on an Illumina MiSeq-PE250 platform, and the ecological structure, dominant taxa, co-occurrence patterns, and function prediction of the gut microbial community were analyzed by multivariate statistical methods. The correlation between differential microbial communities in the gut and differentially accumulated metabolites in the liver was analyzed using Spearman's correlation analysis.
RESULTS
The abundance of Butyricimonas, Christensenellaceae, Coprococcus, Peptococcaceae, Odoribacteraceae, and Roseburia was altered significantly in the model group, which was by BHD. Ten genera, namely Dorea, unclassified_Lachnospiraceae, Oscillospira, unidentified_Ruminococcaceae, unclassified_Clostridiales, unidentified_Clostridiales, Bacteroides, unclassified_Prevotellaceae, unidentified_Rikenellaceae, and unidentified_S24-7, were identified as key bacterial communities. According to the function prediction of differential genera, the mRNA surveillance pathway might be a target of BHD. Integrated analysis of gut microbiota and the liver metabolome revealed that several gut microbiota genera such as Parabacteroides, Ochrobactrum, Acinetobacter, Clostridium, and Halomonas, were positively or negatively correlated with some nervous system-related metabolites, such as L-carnitine, L-pyroglutamic acid, oleic acid, and taurine.
CONCLUSIONS
Gut microbiota might be a target of BHD in the process of ameliorating PD. Our findings provide novel insight into the mechanisms underlying the effects of BHD on PD and contribute to the development of TCM.
Collapse