1
|
Ahmadi S, Hasani A, Khabbaz A, Poortahmasbe V, Hosseini S, Yasdchi M, Mehdizadehfar E, Mousavi Z, Hasani R, Nabizadeh E, Nezhadi J. Dysbiosis and fecal microbiota transplant: Contemplating progress in health, neurodegeneration and longevity. Biogerontology 2024; 25:957-983. [PMID: 39317918 DOI: 10.1007/s10522-024-10136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
The gut-brain axis plays an important role in mental health. The intestinal epithelial surface is colonized by billions of commensal and transitory bacteria, known as the Gut Microbiota (GM). However, potential pathogens continuously stimulate intestinal immunity when they find the place. The last two decades have witnessed several studies revealing intestinal bacteria as a key factor in the health-disease balance of the gut, as well as disease-emergent in other parts of the body. Various neurological processes, such as cognition, learning, and memory, could be affected by dysbiosis in GM. Additionally, the aging process and longevity are related to systemic inflammation caused by dysbiosis. Commensal GM affects brain development, behavior, and healthy aging suggesting that building changes in GM might be a potential therapeutic method. The innovation in GM dysbiosis is intervention by Fecal Microbiota Transplantation (FMT), which has been confirmed as a therapy for recurrent Clostridium difficile infections and is promising for other clinical disorders, such as Parkinson's disease, Multiple Sclerosis (MS), Alzheimer's disease, and depression. Additionally, FMT may be possible to promote healthy aging, and extend longevity. This review aims to connect dysbiosis, neurological disorders, and aging and the potential of FMT as a therapeutic strategy to treat these disorders, and to enhance the quality of life in the elderly.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aytak Khabbaz
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasbe
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hosseini
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yasdchi
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mousavi
- Department of Psychology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roqaiyeh Hasani
- School of Medicine, Istanbul Okan University, Tuzla, 34959, Istanbul, Turkey
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Nezhadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Wang Q, Yuan L, Wang F, Sun F. Global research trends and prospects on immune-related therapy in ischemic stroke: a bibliometric analysis. Front Cell Neurosci 2024; 18:1490607. [PMID: 39534685 PMCID: PMC11554536 DOI: 10.3389/fncel.2024.1490607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Following ischemic stroke, non-neuronal cells within the nervous system play a crucial role in maintaining neurovascular unit functions, regulating metabolic and inflammatory processes of the nervous system. Investigating the functions and regulation of these cells, particularly immune cells, deepens our understanding of the complex mechanisms of neuroinflammation and immune modulation after ischemic stroke and provides new perspectives and methods for immune-related therapy. Methods The annual distribution, journals, authors, countries, institutions, and keywords of articles published between 2015 and 2024 were visualized and analyzed using CiteSpace and other bibliometric tools. Results A total of 1,089 relevant articles or reviews were included, demonstrating an overall upward trend; The terms "cerebral ischemia," "immune response," "brain ischemia," "cerebral inflammation," "neurovascular unit," and "immune infiltration," etc. are hot keywords in this field. Conclusion In recent years, research on immune-related therapy for ischemic stroke has focused on mechanisms of occurrence, protection and repair of the blood-brain barrier (BBB) by non-neuronal cells, and regulation of immunosuppression and inflammation. Among these, reducing BBB disruption to minimize secondary brain damage has become a hotspot. At the same time, the complex roles of immune responses have attracted attention, particularly the balance between regulatory T cells and Th17 cells in regulating neuroinflammation and promoting neurological function recovery, which is crucial to reduce secondary neuronal damage and improve prognosis, potentially establishing a pivotal frontier in this domain of investigation.
Collapse
Affiliation(s)
- Qi Wang
- Medical College, Yangzhou University, Yangzhou, China
| | - Lei Yuan
- Medical College, Yangzhou University, Yangzhou, China
| | - Fei Wang
- Department of Thoracic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Fei Sun
- Department of Thoracic Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
3
|
Xu J, Lu W, Yang J, Liu X. B cells present a double-sided effect in digestive system tumors: a review for tumor microenvironment. Transl Gastroenterol Hepatol 2024; 9:46. [PMID: 39091659 PMCID: PMC11292093 DOI: 10.21037/tgh-23-127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/18/2024] [Indexed: 08/04/2024] Open
Abstract
Over the past few years, there has been an increasing interest in investigating tumor-infiltrating lymphocytes. B lymphocytes (B cells) are extensively distributed within tertiary lymphoid structure (TLS) as multifaceted subgroups and are intimately linked to the anti-tumor properties of TLS, as well as the survival and prognostication of individuals. While the investigation of T lymphocytes in the TLS has advanced to the level of clinical practice, the study of B cells remains limited. The principal impediment to the utilization of B cells in immunotherapy is their notable dual impact on tumors. Compared with tumors in other parts and systems, the function of B cells in the microenvironment of digestive system tumors to promote tumors proliferation, differentiation and migration cannot be ignored. Therefore, this review collects the studies of B cell subsets in tumor microenvironments, particularly related single cell sequencing research. The multifaceted role and function of B cells are investigated in esophageal, liver, colorectal, gastric and pancreatic cancers. And through the identification of B cell subsets and specific markers, this review attempts to explain the reasons why B cells produce different tumor-promoting effects in those tumors. The insights gleaned from this review may provide potential help and support the development of B cell-based immunotherapies.
Collapse
Affiliation(s)
- Jiaren Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiying Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Chen X, Gu J, Zhang X. Brain-Heart Axis and the Inflammatory Response: Connecting Stroke and Cardiac Dysfunction. Cardiology 2024; 149:369-382. [PMID: 38574466 PMCID: PMC11309082 DOI: 10.1159/000538409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND In recent years, the mechanistic interaction between the brain and heart has been explored in detail, which explains the effects of brain injuries on the heart and those of cardiac dysfunction on the brain. Brain injuries are the predominant cause of post-stroke deaths, and cardiac dysfunction is the second leading cause of mortality after stroke onset. SUMMARY Several studies have reported the association between brain injuries and cardiac dysfunction. Therefore, it is necessary to study the influence on the heart post-stroke to understand the underlying mechanisms of stroke and cardiac dysfunction. This review focuses on the mechanisms and the effects of cardiac dysfunction after the onset of stroke (ischemic or hemorrhagic stroke). KEY MESSAGES The role of the site of stroke and the underlying mechanisms of the brain-heart axis after stroke onset, including the hypothalamic-pituitary-adrenal axis, inflammatory and immune responses, brain-multi-organ axis, are discussed.
Collapse
Affiliation(s)
- Xiaosheng Chen
- Department of Neurosurgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Jiajie Gu
- Department of Neurosurgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Xiaojia Zhang
- Department of Neurosurgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Zhang L, Xue S, Fei C, Yu C, Li J, Li Y, Wang N, Chu F, Pan L, Duan X, Peng D. Protective effect of Tao Hong Si Wu Decoction against inflammatory injury caused by intestinal flora disorders in an ischemic stroke mouse model. BMC Complement Med Ther 2024; 24:124. [PMID: 38500092 PMCID: PMC10946105 DOI: 10.1186/s12906-024-04417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND AND AIMS Recent studies have shown that intestinal flora are involved in the pathological process of ischemic stroke (IS). The potential protective effect of the traditional Chinese prescription, Tao Hong Si Wu Decoction (THSWD), against inflammatory injury after IS and its underlying mechanisms of action were investigated in the current study. METHODS Fifty SPF(Specefic pathogen Free) male C57 mice were randomly assigned to sham operation, model, THSWD low-dose (6.5 g/kg), medium-dose (13 g/kg) and high-dose (26 g/kg) groups (10 mice per group). Mouse models of transient middle cerebral artery occlusion were prepared via thread embolism. Neurological function score, hematoxylin-eosin (HE) staining, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), 16S ribosomal DNA (rDNA) sequencing, quantitative reverse transcription PCR (qRT-PCR) and other methods were employed to elucidate the underlying molecular mechanisms. RESULTS Notably, THSWD induced a reduction in the neurological function score (P < 0.01) and neuronal injury in brain tissue, increase in protein expression of Claudin-5 and zonula occludens-1 (ZO-1) in brain tissue(P < 0.01), and decrease in serum lipopolysaccharide (LPS)(P < 0.01), diamine oxidase (DAO)(P < 0.01) and D-lactic acid(P < 0.01, P < 0.05) levels to a significant extent. THSWD also inhibited the levels of tumor necrosis factor-α (TNF-α)(P < 0.01) and interleukin - 1β (IL-1β)(P < 0.01) in brain tissue, and increased alpha and beta diversity in ischemic stroke mice, along with a certain reversal effect on different microflora. Finally, THSWD inhibited the polarization of microglia cells(P < 0.01) and decreased the protein and gene expression of toll-like receptor-4 (TLR-4)(P < 0.01, P < 0.05) and nuclear factor kappa B (NF-κB)(P < 0.01) in brain tissue. CONCLUSION Our data indicate that THSWD may interfere with inflammatory response in ischemic stroke by regulating intestinal flora and promoting intestinal barrier repair.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Sujun Xue
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Changyi Fei
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Chao Yu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jingjing Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yumeng Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ni Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Furui Chu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lingyu Pan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Xianchun Duan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China.
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Key Laboratory of Chinese Medicinal Formula Research, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
6
|
Chou PS, Hung WC, Yang IH, Kuo CM, Wu MN, Lin TC, Fong YO, Juan CH, Lai CL. Predicting Adverse Recanalization Therapy Outcomes in Acute Ischemic Stroke Patients Using Characteristic Gut Microbiota. Microorganisms 2023; 11:2016. [PMID: 37630576 PMCID: PMC10458507 DOI: 10.3390/microorganisms11082016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Recanalization therapy is the most effective treatment for eligible patients with acute ischemic stroke (AIS). Gut microbiota are involved in the pathological mechanisms and outcomes of AIS. However, the association of gut microbiota features with adverse recanalization therapy outcomes remains unclear. Herein, we investigated gut microbiota features associated with neurological deficits in patients with AIS after recanalization therapy and whether they predict the patients' functional outcomes. We collected fecal samples from 51 patients with AIS who received recanalization therapy and performed 16S rRNA gene sequencing (V3-V4). We compared the gut microbiota diversity and community composition between mild to moderate and severe disability groups. Next, the characteristic gut microbiota was compared between groups, and we noted that the characteristic gut microbiota in patients with mild to moderate disability included Bilophila, Butyricimonas, Oscillospiraceae_UCG-003, and Megamonas. Moreover, the relative abundance of Bacteroides fragilis, Fusobacterium sp., and Parabacteroides gordonii was high in patients with severe disability. The characteristic gut microbiota was correlated with neurological deficits, and areas under the receiver operating characteristic curves confirmed that the characteristic microbiota predicted adverse recanalization therapy outcomes. In conclusion, gut microbiota characteristics are correlated with recanalization therapy outcomes in patients with AIS. Gut microbiota may thus be a promising biomarker associated with early neurological deficits and predict recanalization therapy outcomes.
Collapse
Affiliation(s)
- Ping-Song Chou
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (P.-S.C.); (M.-N.W.); (T.-C.L.); (Y.-O.F.)
- Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, Kaohsiung Medical University, Kaohsiung 807377, Taiwan;
| | - I-Hsiao Yang
- Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Chia-Ming Kuo
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan;
| | - Meng-Ni Wu
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (P.-S.C.); (M.-N.W.); (T.-C.L.); (Y.-O.F.)
| | - Tzu-Chao Lin
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (P.-S.C.); (M.-N.W.); (T.-C.L.); (Y.-O.F.)
| | - Yi-On Fong
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (P.-S.C.); (M.-N.W.); (T.-C.L.); (Y.-O.F.)
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 320, Taiwan;
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan City 320, Taiwan
| | - Chiou-Lian Lai
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; (P.-S.C.); (M.-N.W.); (T.-C.L.); (Y.-O.F.)
- Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807377, Taiwan
| |
Collapse
|
7
|
Guo S, Xing N, Xiang G, Zhang Y, Wang S. Eriodictyol: a review of its pharmacological activities and molecular mechanisms related to ischemic stroke. Food Funct 2023; 14:1851-1868. [PMID: 36757280 DOI: 10.1039/d2fo03417d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ischemic stroke (IS) is characterized by a prominent mortality and disability rate, which has increased the burden on the global economy to a certain extent. Meanwhile, patients benefit little from the limited clinical strategies of intravenous alteplase and thrombectomy due to the limited therapeutic window. Given this, it is urgent to study new therapeutic methods to intervene in these patients. Eriodyctiol (ERD) is a major natural flavonoid, which widely exists in fruits, vegetables, and medicinal herbs, and has various pharmacological properties. It has been reported that ERD can maintain homeostasis in organisms by exerting neuroprotective and vascular protective effects. Therefore, more and more studies have focused on the pharmacological activity and mechanism of ERD in IS. This paper provides an overview of the plant sources, phytochemical properties, pharmacokinetics, and pathogenesis, as well as the pharmacological effects and mechanisms of ERD in IS. To date, preclinical studies on ERD in diverse cell lines and animal models have established the idea of ERD as a feasible agent capable of specifically ameliorating IS. The molecular mechanisms of ERD to prevent or reduce IS are mainly based on the inhibition of inflammation, oxidative stress, autophagy and apoptosis. Nevertheless, the mechanism of ERD against IS is flawed and needs more exploration by the research community. Moreover, well-designed clinical trials are needed to increase the scientific validity of the beneficial effects of ERD against IS.
Collapse
Affiliation(s)
- Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Bonnechère B, Amin N, van Duijn C. What Are the Key Gut Microbiota Involved in Neurological Diseases? A Systematic Review. Int J Mol Sci 2022; 23:ijms232213665. [PMID: 36430144 PMCID: PMC9696257 DOI: 10.3390/ijms232213665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
There is a growing body of evidence highlighting there are significant changes in the gut microbiota composition and relative abundance in various neurological disorders. We performed a systematic review of the different microbiota altered in a wide range of neurological disorders (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis, and stroke). Fifty-two studies were included representing 5496 patients. At the genus level, the most frequently involved microbiota are Akkermansia, Faecalibacterium, and Prevotella. The overlap between the pathologies was strongest for MS and PD, sharing eight genera (Akkermansia, Butyricicoccus, Bifidobacterium, Coprococcus, Dorea, Faecalibacterium, Parabacteroides, and Prevotella) and PD and stroke, sharing six genera (Enterococcus, Faecalibacterium, Lactobacillus, Parabacteroides, Prevotella, and Roseburia). The identification signatures overlapping for AD, PD, and MS raise the question of whether these reflect a common etiology or rather common consequence of these diseases. The interpretation is hampered by the low number and low power for AD, ALS, and stroke with ample opportunity for false positive and false negative findings.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Correspondence:
| |
Collapse
|