1
|
Wu L, Liu X, Jiang Q, Li M, Liang M, Wang S, Wang R, Su L, Ni T, Dong N, Zhu L, Guan F, Zhu J, Zhang W, Wu M, Chen Y, Chen T, Wang B. Methamphetamine-induced impairment of memory and fleeting neuroinflammation: Profiling mRNA changes in mouse hippocampus following short-term and long-term exposure. Neuropharmacology 2024; 261:110175. [PMID: 39357738 DOI: 10.1016/j.neuropharm.2024.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Methamphetamine (METH) has been implicated in inducing memory impairment, but the precise mechanisms underlying this effect remain unclear. Current research often limits itself to singular models or focuses on individual gene or protein functions, which hampers a comprehensive understanding of the underlying mechanisms. In this study, we established three METH mouse exposure models, extracted hippocampal nuclei, and utilized RNA sequencing to analyze changes in mRNA expression profiles. Our results indicate that METH significantly impairs the learning and memory capabilities of mice. Additionally, we observed that METH-induced inflammatory responses occur in the early phase and do not further exacerbate with repeated injections. However, RNA sequencing revealed the persistent enrichment of inflammatory pathway molecules, which correlated with worsened behaviors. This suggests that although METH-induced neuroinflammation plays a critical role in learning and memory impairment, the continued enrichment of inflammatory pathway molecules is associated with behavioral outcomes. These findings provide crucial evidence for the potential application of immune intervention in METH-related disorders.
Collapse
Affiliation(s)
- Laiqiang Wu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Xiaorui Liu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Qingchen Jiang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ming Li
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Min Liang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Shuai Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Rui Wang
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Linlan Su
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Tong Ni
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Nan Dong
- School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an, China
| | - Li Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Fanglin Guan
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Jie Zhu
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Wen Zhang
- Department of Pathology, Northwest Women's and Children's Hospital, Xi'an, China
| | - Min Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Teng Chen
- College of Forensic Science, Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, China.
| | - Biao Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| |
Collapse
|
2
|
Ma JC, Che XH, Zhu XN, Ren AX, Hu Y, Yang CL, Xu ZT, Li YT, Wu CF, Yang JY. Single-dose methamphetamine administration impairs ORM retrieval in mice via excessive DA-mediated inhibition of PrL Glu activity. Acta Pharmacol Sin 2024; 45:2253-2266. [PMID: 38914676 PMCID: PMC11489666 DOI: 10.1038/s41401-024-01321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Methamphetamine (METH), an abused psychostimulant, impairs cognition through prolonged or even single-dose exposure, but animal experiments have shown contradictory effects on memory deficits. In this study we investigated the effects and underlying mechanisms of single-dose METH administration on the retrieval of object recognition memory (ORM) in mice. We showed that single-dose METH administration (2 mg/kg, i.p.) significantly impaired ORM retrieval in mice. Fiber photometry recording in METH-treated mice revealed that the activity of prelimbic cortex glutamatergic neurons (PrLGlu) was significantly reduced during ORM retrieval. Chemogenetic activation of PrLGlu or glutamatergic projections from ventral CA1 to PrL (vCA1Glu-PrL) rescued ORM retrieval impairment. Fiber photometry recording revealed that dopamine (DA) levels in PrL of METH-treated mice were significantly increased, and micro-infusion of the D2 receptor (D2R) antagonist sulpiride (0.25 μg/side) into PrL rescued ORM retrieval impairment. Whole-cell recordings in brain slices containing the PrL revealed that PrLGlu intrinsic excitability and basal glutamatergic synaptic transmission were significantly reduced in METH-treated mice, and the decrease in intrinsic excitability was reversed by micro-infusion of Sulpiride into PrL in METH-treated mice. Thus, the impaired ORM retrieval caused by single-dose METH administration may be attributed to reduced PrLGlu activity, possibly due to excessive DA activity on D2R. Selective activation of PrLGlu or vCA1Glu-PrL may serve as a potential therapeutic strategy for METH-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Jian-Chi Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Hang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiao-Na Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ao-Xin Ren
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yue Hu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cheng-Li Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhong-Tian Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu-Ting Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chun-Fu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jing-Yu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
3
|
Iamjan SA, Veerasakul S, Reynolds GP, Thanoi S, Nudmamud-Thanoi S. Regional-specific changes in rat brain BDNF in a model of methamphetamine abuse. Neurosci Lett 2024; 836:137880. [PMID: 38885757 DOI: 10.1016/j.neulet.2024.137880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays key roles in neuronal protection and synaptic plasticity. Changes in BDNF are associated with various pathological conditions, including methamphetamine (meth) addiction, although the effects of meth on BDNF expression are not always consistent. We have previously demonstrated region-specific effects of a chronic meth regime on BDNF methylation and expression in the rat brain. This study aims to determine the effect of chronic meth administration on the expression of BDNF protein using immunohistochemistry in the rat frontal cortex and hippocampus. Novel object recognition (NOR) as a measure of cognitive function was also determined. Male Sprague Dawley rats were administered a chronic escalating dose (0.1-4 mg/kg over 14 days) (ED) of meth or vehicle; a subgroup of animals receiving meth were also given an acute "binge" (4x6mg) dose on the final day before NOR testing. The results showed that hippocampal CA1 BDNF protein was significantly increased by 72 % above control values in the ED-binge rats, while other hippocampal regions and frontal cortex were not significantly affected. Meth-administered animals also demonstrated deficits in NOR after 24 h delay. No significant effect of the additional binge dose on BDNF protein or NOR findings was apparent. This finding is consistent with our previous results of reduced DNA methylation and increased expression of the BDNF gene in this region. The hippocampal BDNF increase may reflect an initial increase in a protective factor produced in response to elevated glutamate release resulting in neurodegenerative excitotoxicity.
Collapse
Affiliation(s)
- Sri-Arun Iamjan
- Department of Medical Sciences, Faculty of Allied Health Sciences, Burapha University, Chonburi 20131, Thailand
| | - Siriluk Veerasakul
- School of Allied Health Sciences and Public Health, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, UK
| | - Samur Thanoi
- School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
4
|
Xu C, Zhang Z, Hou D, Wang G, Li C, Ma X, Wang K, Luo H, Zhu M. Effects of exercise interventions on negative emotions, cognitive performance and drug craving in methamphetamine addiction. Front Psychiatry 2024; 15:1402533. [PMID: 38827441 PMCID: PMC11140390 DOI: 10.3389/fpsyt.2024.1402533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Methamphetamine is currently one of the most commonly used addictive substances with strong addiction and a high relapse rate. This systematic review aims to examine the effectiveness of physical activity in improving negative emotions, cognitive impairment, and drug craving in people with methamphetamine use disorder (MUD). Methods A total of 17 studies out of 133 found from Embase and PubMed were identified, reporting results from 1836 participants from MUD populations. Original research using clearly described physical activity as interventions and reporting quantifiable outcomes of negative mood, cognitive function and drug craving level in people with MUD were eligible for inclusion. We included prospective studies, randomized controlled trials, or intervention studies, focusing on the neurological effects of physical activity on MUD. Results Taken together, the available clinical evidence showed that physical activity-based interventions may be effective in managing MUD-related withdrawal symptoms. Discussion Physical exercise may improve drug rehabilitation efficiency by improving negative emotions, cognitive behaviors, and drug cravings. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024530359.
Collapse
Affiliation(s)
- Conghui Xu
- School of Medicine, Yunnan University, Kunming, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Zunyue Zhang
- School of Medicine, Yunnan University, Kunming, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Dezhi Hou
- School of Medicine, Yunnan University, Kunming, China
- Department of General Surgery I, First People’s Hospital of Yunnan Province, Kunming, China
| | - Guangqing Wang
- Department of Rehabilitation Education and Corrections, Drug Rehabilitation Administration of Yunnan Province, Kunming, China
| | - Congbin Li
- Department of Rehabilitation Education and Corrections, Drug Rehabilitation Administration of Yunnan Province, Kunming, China
| | - Xingfeng Ma
- Department of Rehabilitation Education and Corrections, Drug Rehabilitation Administration of Yunnan Province, Kunming, China
| | - Kunhua Wang
- School of Medicine, Yunnan University, Kunming, China
- Yunnan Technological Innovation Centre of Drug Addiction Medicine, Yunnan University, Kunming, China
| | - Huayou Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Zhu
- Department of Ultrasound, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Wu Y, Dong Z, Jiang X, Qu L, Zhou W, Sun X, Hou J, Xu H, Cheng M. Gut Microbiota Taxon-Dependent Transformation of Microglial M1/M2 Phenotypes Underlying Mechanisms of Spatial Learning and Memory Impairment after Chronic Methamphetamine Exposure. Microbiol Spectr 2023; 11:e0030223. [PMID: 37212669 PMCID: PMC10269813 DOI: 10.1128/spectrum.00302-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023] Open
Abstract
Methamphetamine (METH) exposure may lead to cognitive impairment. Currently, evidence suggests that METH exposure alters the configuration of the gut microbiota. However, the role and mechanism of the gut microbiota in cognitive impairment after METH exposure are still largely unknown. Here, we investigated the impact of the gut microbiota on the phenotype status of microglia (microglial phenotypes M1 and microglial M2) and their secreting factors, the subsequent hippocampal neural processes, and the resulting influence on spatial learning and memory of chronically METH-exposed mice. We determined that gut microbiota perturbation triggered the transformation of microglial M2 to M1 and a subsequent change of pro-brain-derived neurotrophic factor (proBDNF)-p75NTR-mature BDNF (mBDNF)-TrkB signaling, which caused reduction of hippocampal neurogenesis and synaptic plasticity-related proteins (SYN, PSD95, and MAP2) and, consequently, deteriorated spatial learning and memory. More specifically, we found that Clostridia, Bacteroides, Lactobacillus, and Muribaculaceae might dramatically affect the homeostasis of microglial M1/M2 phenotypes and eventually contribute to spatial learning and memory decline after chronic METH exposure. Finally, we found that fecal microbial transplantation could protect against spatial learning and memory decline by restoring the microglial M1/M2 phenotype status and the subsequent proBDNF-p75NTR/mBDNF-TrkB signaling in the hippocampi of chronically METH-exposed mice. IMPORTANCE Our study indicated that the gut microbiota contributes to spatial learning and memory dysfunction after chronic METH exposure, in which microglial phenotype status plays an intermediary role. The elucidated "specific microbiota taxa-microglial M1/M2 phenotypes-spatial learning and memory impairment" pathway would provide a novel mechanism and elucidate potential gut microbiota taxon targets for the no-drug treatment of cognitive deterioration after chronic METH exposure.
Collapse
Affiliation(s)
- Yulong Wu
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Zhouyan Dong
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Xinze Jiang
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Lei Qu
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Wei Zhou
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Xu Sun
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Jiangshan Hou
- Department of Pathogenic Biology, Binzhou Medical University, Yantai, China
| | - Hongmei Xu
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Mei Cheng
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| |
Collapse
|
6
|
Yan P, Liu J, Ma H, Feng Y, Cui J, Bai Y, Huang X, Zhu Y, Wei S, Lai J. Effects of glycogen synthase kinase-3β activity inhibition on cognitive, behavioral, and hippocampal ultrastructural deficits in adulthood associated with adolescent methamphetamine exposure. Front Mol Neurosci 2023; 16:1129553. [PMID: 36949769 PMCID: PMC10025487 DOI: 10.3389/fnmol.2023.1129553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Objective Glycogen synthase kinase-3β (GSK3β) has been implicated in the maintenance of synaptic plasticity, memory process, and psychostimulant-induced behavioral effects. Hyperactive GSK3β in the Cornu Ammonis 1 (CA1) subregion of the dorsal hippocampus (DHP) was associated with adolescent methamphetamine (METH) exposure-induced behavioral and cognitive deficits in adulthood. This study aimed to evaluate the possible therapeutic effects of GSK3β inhibition in adulthood on adolescent METH exposure-induced long-term neurobiological deficits. Methods Adolescent male mice were treated with METH from postnatal day (PND) 45-51. In adulthood, three intervention protocols (acute lithium chloride systemic administration, chronic lithium chloride systemic administration, and chronic SB216763 administration within CA1) were used for GSK3β activity inhibition. The effect of GSK3β intervention on cognition, behavior, and GSK3β activity and synaptic ultrastructure in the DHP CA1 subregion were detected in adulthood. Results In adulthood, all three interventions reduced adolescent METH exposure-induced hyperactivity (PND97), while only chronic systemic and chronic within CA1 administration ameliorated the induced impairments in spatial (PND99), social (PND101) and object (PND103) recognition memory. In addition, although three interventions reversed the aberrant GSK3β activity in the DHP CA1 subregion (PND104), only chronic systemic and chronic within CA1 administration rescued adolescent METH exposure-induced synaptic ultrastructure changes in the DHP CA1 subregion (PND104) in adulthood. Conclusion Rescuing synaptic ultrastructural abnormalities in the dHIP CA1 subregion by chronic administration of a GSK3β inhibitor may be a suitable therapeutic strategy for the treatment of behavioral and cognitive deficits in adulthood associated with adolescent METH abuse.
Collapse
Affiliation(s)
- Peng Yan
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jincen Liu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Haotian Ma
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yue Feng
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jingjing Cui
- Forensic Identification Institute, The Fourth People’s Hospital of Yancheng, Yancheng, China
| | - Yuying Bai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Xin Huang
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yongsheng Zhu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Shuguang Wei
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Shuguang Wei,
| | - Jianghua Lai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- Jianghua Lai,
| |
Collapse
|
7
|
Wang J, Lai S, Zhou T, Xia Z, Li W, Sha W, Liu J, Chen Y. Progranulin from different gliocytes in the nucleus accumbens exerts distinct roles in FTD- and neuroinflammation-induced depression-like behaviors. J Neuroinflammation 2022; 19:318. [PMID: 36581897 PMCID: PMC9798954 DOI: 10.1186/s12974-022-02684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neuroinflammation in the nucleus accumbens (NAc) is well known to influence the progression of depression. However, the molecular mechanisms triggering NAc neuroinflammation in depression have not been fully elucidated. Progranulin (PGRN) is a multifunctional growth factor that is linked to the innate immune response and inflammation, and PGRN plays a key role in neurodegenerative diseases such as frontotemporal dementia (FTD). Here, the purpose of this study was to validate whether PGRN was involved in the NAc neuroinflammation-promoted depressive-like phenotype. METHODS A NAc neuroinflammation-relevant depression-like model was established using wild-type (WT) and PGRN-knockout (KO) mice after NAc injection with lipopolysaccharide (LPS), and various behavioral tests related to cognition, social recognition, depression and anxiety were performed with WT and PGRNKO mice with or without NAc immune challenge. RT‒PCR, ELISA, western blotting and immunofluorescence staining were used to determine the expression and function of PGRN in the neuroinflammatory reaction in the NAc after LPS challenge. The morphology of neurons in the NAc from WT and PGRNKO mice under conditions of NAc neuroinflammation was analyzed using Golgi-Cox staining, followed by Sholl analyses. The potential signaling pathways involved in NAc neuroinflammation in PGRNKO mice were investigated by western blotting. RESULTS Under normal conditions, PGRN deficiency induced FTD-like behaviors in mice and astrocyte activation in the NAc, promoted the release of the inflammatory cytokines interleukin (IL)-6 and IL-10 and increased dendritic complexity and synaptic protein BDNF levels in the NAc. However, NAc neuroinflammation enhanced PGRN expression, which was located in astrocytes and microglia within the NAc, and PGRN deficiency in mice alleviated NAc neuroinflammation-elicited depression-like behaviors, seemingly inhibiting astrocyte- and microglia-related inflammatory reactions and neuroplasticity complexity in the NAc via the p38 and nuclear factor of kappa (NF-κB) signaling pathways present in the NAc after neuroinflammation. CONCLUSIONS Our results suggest that PGRN exerts distinct function on different behaviors, showing protective roles in the FTD-like behavior and detrimental effects on the neuroinflammation-related depression-like behavior, resulting from mediating astrocyte and microglial functions from the NAc in different status.
Collapse
Affiliation(s)
- Jing Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Simin Lai
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Ting Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China
| | - Zhihao Xia
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Weina Li
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Wenqi Sha
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Jingjie Liu
- Department of Neurology, The Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
8
|
Ding J, Huang J, Tang X, Shen L, Hu S, He J, Liu T, Yu Z, Liu Y, Wang Q, Wang J, Zhao N, Qi X, Huang J. Low and high dose methamphetamine differentially regulate synaptic structural plasticity in cortex and hippocampus. Front Cell Neurosci 2022; 16:1003617. [PMID: 36406748 PMCID: PMC9666390 DOI: 10.3389/fncel.2022.1003617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/19/2022] [Indexed: 03/24/2024] Open
Abstract
Psychostimulants, such as methamphetamine (METH) can induce structural remodeling of synapses by remodeling presynaptic and postsynaptic morphology. Escalating or long-lasting high dose METH accounts for neurodegeneration by targeting multiple neurotransmitters. However, the effects of low dose METH on synaptic structure and the modulation mechanism remain elusive. This study aims to assess the effects of low dose (2 mg/kg) and high dose (10 mg/kg) of METH on synaptic structure alternation in hippocampus and prefrontal cortex (PFC) and to reveal the underlying mechanism involved in the process. Low dose METH promoted spine formation, synaptic number increase, post-synaptic density length elongation, and memory function. High dose of METH induced synaptic degeneration, neuronal number loss and memory impairment. Moreover, high dose, but not low dose, of METH caused gliosis in PFC and hippocampus. Mechanism-wise, low dose METH inactivated ras-related C3 botulinum toxin substrate 1 (Rac1) and activated cell division control protein 42 homolog (Cdc42); whereas high dose METH inactivated Cdc42 and activated Rac1. We provided evidence that low and high doses of METH differentially regulate synaptic plasticity in cortex and hippocampus.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jian Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiang Tang
- Department of Children Rehabilitation, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Lingyi Shen
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaojiao He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Zhixing Yu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yubo Liu
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Qiyan Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Na Zhao
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Jiang Huang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
9
|
Song C, Wei W, Wang T, Zhou M, Li Y, Xiao B, Huang D, Gu J, Shi L, Peng J, Jin D. Microglial infiltration mediates cognitive dysfunction in rat models of hypothalamic obesity via a hypothalamic-hippocampal circuit involving the lateral hypothalamic area. Front Cell Neurosci 2022; 16:971100. [PMID: 36072565 PMCID: PMC9443213 DOI: 10.3389/fncel.2022.971100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to explore the mechanism underlying cognitive dysfunction mediated by the lateral hypothalamic area (LHA) in a hypothalamic-hippocampal circuit in rats with lesion-induced hypothalamic obesity (HO). The HO model was established by electrically lesioning the hypothalamic nuclei. The open field (OP) test, Morris water maze (MWM), novel object recognition (NOR), and novel object location memory (NLM) tests were used to evaluate changes in cognition due to alterations in the hypothalamic-hippocampal circuit. Western blotting, immunohistochemical staining, and cholera toxin subunit B conjugated with Alexa Fluor 488 (CTB488) reverse tracer technology were used to determine synaptophysin (SYN), postsynaptic density protein 95 (PSD95), ionized calcium binding adaptor molecule 1 (Iba1), neuronal nuclear protein (NeuN), and Caspase3 expression levels and the hypothalamic-hippocampal circuit. In HO rats, severe obesity was associated with cognitive dysfunction after the lesion of the hypothalamus. Furthermore, neuronal apoptosis and activated microglia in the downstream of the lesion area (the LHA) induced microglial infiltration into the intact hippocampus via the LHA-hippocampal circuit, and the synapses engulfment in the hippocampus may be the underlying mechanism by which the remodeled microglial mediates memory impairments in HO rats. The HO rats exhibited microglial infiltration and synapse loss into the hippocampus from the lesioned LHA via the hypothalamic-hippocampal circuit. The underlying mechanisms of memory function may be related to the circuit.
Collapse
Affiliation(s)
- Chong Song
- Department of Neurosurgery, The Central Hospital of Dalian University of Technology, Dalian, China
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Chong Song,
| | - Wei Wei
- Department of Neurosurgery, The Central Hospital of Dalian University of Technology, Dalian, China
| | - Tong Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Neurosurgery, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, China
| | - Min Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunshi Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Bing Xiao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Dongyi Huang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Junwei Gu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linyong Shi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Chong Song,
| | - Dianshi Jin
- Department of Neurosurgery, The Central Hospital of Dalian University of Technology, Dalian, China
- *Correspondence: Chong Song,
| |
Collapse
|