1
|
Chen L, Chen J, Weng W, Wu M, Zhou X, Yan P. Bibliometric analysis of microRNAs and Parkinson's disease from 2014 to 2023. Front Neurol 2024; 15:1466186. [PMID: 39385824 PMCID: PMC11462628 DOI: 10.3389/fneur.2024.1466186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons. Recent research has emphasized a significant correlation between microRNAs (miRNAs) and PD. To identify key research areas, provide a comprehensive overview of current research in various fields, and propose potential directions for future studies, a bibliometric analysis was conducted on the involvement of miRNAs in Parkinson's disease from 2014 to 2023. Methods Relevant literature records were collected from the Web of Science Core Collection on February 29, 2024. Subsequently, the data underwent analysis using the Bibliometrix R package and VOSviewer (version 1.6.19). Results The annual scientific publications on miRNAs and Parkinson's disease demonstrated an increasing trend, with an annual growth rate of 12.67%. China, the United States, and India emerged as the top three most productive countries/regions. The University of Barcelona had the highest annual publications, followed by Central South University and the Helmholtz Association. The INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES held the top position in terms of H-index and total citations, reflecting its extensive influence and prolific publication output. Kim, J., Junn, E., Hébert, S.S., and Doxakis, E. were the most frequently co-cited authors in the field. Based on the analysis of keywords, the most frequently occurring terms included "alpha-synuclein," "neurodegenerative disease," "exosome," "neuroinflammation," "oxidative stress," "autophagy," and "amyotrophic lateral sclerosis," which have emerged as prominent research topics. Concurrently, there has been notable interest in topics such as "ceRNA," "lncRNAs," "mitochondrial dysfunction," and "circular RNA." Conclusion This study focused on identifying emerging trends and critical research topics in the bibliometric analysis of microRNAs related to Parkinson's disease. These findings highlight the diverse research landscape and evolving trend of miRNA-related research in PD. The field of miRNA research in Parkinson's disease is actively exploring the underlying mechanisms of miRNA function, identifying potential diagnostic markers, and developing innovative therapeutic strategies. The results of our study offer significant contributions to researchers' ability to track contemporary developments and guide the trajectory of future research in this domain.
Collapse
Affiliation(s)
- Lingshan Chen
- Medical Laboratory Specialty, The Second Hospital of Jinhua, Jinhua, Zhejiang, China
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianfei Chen
- Medical Laboratory Specialty, The Second Hospital of Jinhua, Jinhua, Zhejiang, China
| | - Wei Weng
- Medical Laboratory Specialty, The Second Hospital of Jinhua, Jinhua, Zhejiang, China
| | - Min Wu
- Medical Laboratory Specialty, The Second Hospital of Jinhua, Jinhua, Zhejiang, China
| | - Xueping Zhou
- Gerontology Department, The Second Hospital of Jinhua, Jinhua, Zhejiang, China
| | - Pingkang Yan
- Gerontology Department, The Second Hospital of Jinhua, Jinhua, Zhejiang, China
| |
Collapse
|
2
|
Sun L, Cen Y, Liu X, Wei J, Ke X, Wang Y, Liao Q, Chang M, Zhou M, Wu W. Systemic whole transcriptome analysis identified underlying molecular characteristics and regulatory networks implicated in the retina following optic nerve injury. Exp Eye Res 2024; 244:109929. [PMID: 38750783 DOI: 10.1016/j.exer.2024.109929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 06/02/2024]
Abstract
Optic nerve injuries are severely disrupt the structural and functional integrity of the retina, often leading to visual impairment or blindness. Despite the profound impact of these injuries, the molecular mechanisms involved remain poorly understood. In this study, we performed a comprehensive whole-transcriptome analysis of mouse retina samples after optic nerve crush (ONC) to elucidate changes in gene expression and regulatory networks. Transcriptome analysis revealed a variety of molecular alterations, including 256 mRNAs, 530 lncRNAs, and 37 miRNAs, associated with metabolic, inflammatory, signaling, and biosynthetic pathways in the injured retina. The integrated analysis of co-expression and protein-protein interactions identified an active interconnected module comprising 5 co-expressed proteins (Fga, Serpina1a, Hpd, Slc38a4, and Ahsg) associated with the complement and coagulation cascades. Finally, 5 mRNAs (Fga, Serpinala, Hpd, Slc38a4, and Ahsg), 2 miRNAs (miR-671-5p and miR-3057-5p), and 6 lncRNAs (MSTRG. 1830.1, Gm10814, A530013C23Rik, Gm40634, MSTRG.9514.1, A330023F24Rik) were identified by qPCR in the injured retina, and some of them were validated as critical components of a ceRNA network active in 661W and HEK293T cells through dual-luciferase reporter assays. In conclusion, our study provides comprehensive insight into the complex and dynamic biological mechanisms involved in retinal injury responses and highlights promising potential targets to enhance neuroprotection and restore vision.
Collapse
Affiliation(s)
- Lanfang Sun
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yixin Cen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaojiang Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinfei Wei
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyu Ke
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yanan Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qianling Liao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Mengchun Chang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Meng Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
3
|
Kim JM, Kim WR, Park EG, Lee DH, Lee YJ, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Regulatory Landscape of Dementia: Insights from Non-Coding RNAs. Int J Mol Sci 2024; 25:6190. [PMID: 38892378 PMCID: PMC11172830 DOI: 10.3390/ijms25116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Dementia, a multifaceted neurological syndrome characterized by cognitive decline, poses significant challenges to daily functioning. The main causes of dementia, including Alzheimer's disease (AD), frontotemporal dementia (FTD), Lewy body dementia (LBD), and vascular dementia (VD), have different symptoms and etiologies. Genetic regulators, specifically non-coding RNAs (ncRNAs) such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are known to play important roles in dementia pathogenesis. MiRNAs, small non-coding RNAs, regulate gene expression by binding to the 3' untranslated regions of target messenger RNAs (mRNAs), while lncRNAs and circRNAs act as molecular sponges for miRNAs, thereby regulating gene expression. The emerging concept of competing endogenous RNA (ceRNA) interactions, involving lncRNAs and circRNAs as competitors for miRNA binding, has gained attention as potential biomarkers and therapeutic targets in dementia-related disorders. This review explores the regulatory roles of ncRNAs, particularly miRNAs, and the intricate dynamics of ceRNA interactions, providing insights into dementia pathogenesis and potential therapeutic avenues.
Collapse
Affiliation(s)
- Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (J.-m.K.); (W.R.K.); (E.G.P.); (D.H.L.); (Y.J.L.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Piergiorge RM, Vasconcelos ATRD, Santos-Rebouças CB. Understanding the (epi)genetic dysregulation in Parkinson's disease through an integrative brain competitive endogenous RNA network. Mech Ageing Dev 2024; 219:111942. [PMID: 38762037 DOI: 10.1016/j.mad.2024.111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Parkinson's disease (PD) is a rapidly growing neurodegenerative disorder characterized by dopaminergic neuron loss in the substantia nigra pars compacta (SN) and aggregation of α-synuclein. Its aetiology involves a multifaceted interplay among genetic, environmental, and epigenetic factors. We integrated brain gene expression data from PD patients to construct a comprehensive regulatory network encompassing messenger RNAs (mRNAs), microRNAs (miRNAs), circular RNAs (circRNAs) and, for the first time, RNA binding proteins (RBPs). Expression data from the SN of PD patients and controls were systematically selected from public databases to identify combined differentially expressed genes (DEGs). Brain co-expression analysis revealed modules comprising significant DEGs that function cooperatively. The relationships among co-expressed DEGs, miRNAs, circRNAs, and RBPs revealed an intricate competitive endogenous RNA (ceRNA) network responsible for post-transcriptional dysregulation in PD. Many genes in the ceRNA network, including the TOMM20 and HMGCR genes, overlap with the most relevant genes in our previous Alzheimer's disease-associated ceRNA network, suggesting common underlying mechanisms between both conditions. Moreover, in the ceRNA subnetwork, the RBP Aly/REF export factor (ALYREF), which acts as an RNA 5-methylcytosine(m5C)-binding protein, stood out. Our data sheds new light on the potential role of brain ceRNA networks in PD pathogenesis.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Huang Z, Song E, Chen Z, Yu P, Chen W, Lin H. Integrated bioinformatics analysis for exploring potential biomarkers related to Parkinson's disease progression. BMC Med Genomics 2024; 17:133. [PMID: 38760670 PMCID: PMC11100188 DOI: 10.1186/s12920-024-01885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disease with increasing prevalence. Effective diagnostic markers and therapeutic methods are still lacking. Exploring key molecular markers and mechanisms for PD can help with early diagnosis and treatment improvement. METHODS Three datasets GSE174052, GSE77668, and GSE168496 were obtained from the GEO database to search differentially expressed circRNA (DECs), miRNAs (DEMis), and mRNAs (DEMs). GO and KEGG enrichment analyses, and protein-protein interaction (PPI) network construction were implemented to explore possible actions of DEMs. Hub genes were selected to establish circRNA-related competing endogenous RNA (ceRNA) networks. RESULTS There were 1005 downregulated DECs, 21 upregulated and 21 downregulated DEMis, and 266 upregulated and 234 downregulated DEMs identified. The DEMs were significantly enriched in various PD-associated functions and pathways such as extracellular matrix organization, dopamine synthesis, PI3K-Akt, and calcium signaling pathways. Twenty-one hub genes were screened out, and a PD-related ceRNA regulatory network was constructed containing 31 circRNAs, one miRNA (miR-371a-3p), and one hub gene (KCNJ6). CONCLUSION We identified PD-related molecular markers and ceRNA regulatory networks, providing new directions for PD diagnosis and treatment.
Collapse
Affiliation(s)
- Zhenchao Huang
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China.
| | - En'peng Song
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Zhijie Chen
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Peng Yu
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Weiwen Chen
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Huiqin Lin
- Guangzhou BiDa Biological Technology CO., LTD, Guangzhou, 510530, Guangdong, China
| |
Collapse
|
6
|
Chun KY, Kim SN. Integrative analysis of plasma and substantia nigra in Parkinson's disease: unraveling biomarkers and insights from the lncRNA-miRNA-mRNA ceRNA network. Front Aging Neurosci 2024; 16:1388655. [PMID: 38784444 PMCID: PMC11112011 DOI: 10.3389/fnagi.2024.1388655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Parkinson's disease (PD) is a rapidly growing neurological disorder characterized by diverse movement symptoms. However, the underlying causes have not been clearly identified, and accurate diagnosis is challenging. This study aimed to identify potential biomarkers suitable for PD diagnosis and present an integrative perspective on the disease. Methods We screened the GSE7621, GSE8397-GPL96, GSE8397-GPL97, GSE20163, and GSE20164 datasets in the NCBI GEO database to identify differentially expressed (DE) mRNAs in the substantia nigra (SN). We also screened the GSE160299 dataset from the NCBI GEO database to identify DE lncRNAs and miRNAs in plasma. We then constructed 2 lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) regulatory networks based on the ceRNA hypothesis. To understand the biological function, we performed Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analyses for each ceRNA network. The receiver operating characteristic analyses (ROC) was used to assess ceRNA results. Results We identified 7 upregulated and 29 downregulated mRNAs as common DE mRNAs in the 5 SN datasets. In the blood dataset, we identified 31 DE miRNAs (9 upregulated and 22 downregulated) and 332 DE lncRNAs (69 upregulated and 263 downregulated). Based on the determined interactions, 5 genes (P2RX7, HSPA1, SLCO4A1, RAD52, and SIRT4) appeared to be upregulated as a result of 10 lncRNAs sponging 4 miRNAs (miR-411, miR-1193, miR-301b, and miR-514a-2/3). Competing with 9 genes (ANK1, CBLN1, RGS4, SLC6A3, SYNGR3, VSNL1, DDC, KCNJ6, and SV2C) for miR-671, a total of 26 lncRNAs seemed to function as ceRNAs, influencing genes to be downregulated. Discussion In this study, we successfully constructed 2 novel ceRNA regulatory networks in patients with PD, including 36 lncRNAs, 5 miRNAs, and 14 mRNAs. Our results suggest that these plasma lncRNAs are involved in the pathogenesis of PD by sponging miRNAs and regulating gene expression in the SN of the brain. We propose that the upregulated and downregulated lncRNA-mediated ceRNA networks represent mechanisms of neuroinflammation and dopamine neurotransmission, respectively. Our ceRNA network, which was associated with PD, suggests the potential use of DE miRNAs and lncRNAs as body fluid diagnostic biomarkers. These findings provide an integrated view of the mechanisms underlying gene regulation and interactions in PD.
Collapse
Affiliation(s)
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang, Republic of Korea
| |
Collapse
|
7
|
Ahmad F, Sudesh R, Ahmed AT, Arumugam M, Mathkor DM, Haque S. The multifaceted functions of long non-coding RNA HOTAIR in neuropathologies and its potential as a prognostic marker and therapeutic biotarget. Expert Rev Mol Med 2024; 26:e11. [PMID: 38682637 PMCID: PMC11140545 DOI: 10.1017/erm.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) are progressively being perceived as prominent molecular agents controlling multiple aspects of neuronal (patho)physiology. Amongst these is the HOX transcript antisense intergenic RNA, often abbreviated as HOTAIR. HOTAIR epigenetically regulates its target genes via its interaction with two different chromatin-modifying agents; histone methyltransferase polycomb-repressive complex 2 and histone demethylase lysine-specific demethylase 1. Parenthetically, HOTAIR elicits trans-acting sponging function against multiple micro-RNA species. Oncological research studies have confirmed the pathogenic functions of HOTAIR in multiple cancer types, such as gliomas and proposed it as a pro-oncological lncRNA. In fact, its expression has been suggested to be a predictor of the severity/grade of gliomas, and as a prognostic biomarker. Moreover, a propound influence of HOTAIR in other aspects of brain heath and disease states is just beginning to be unravelled. The objective of this review is to recapitulate all the relevant data pertaining to the regulatory roles of HOTAIR in neuronal (patho)physiology. To this end, we discuss the pathogenic mechanisms of HOTAIR in multiple neuronal diseases, such as neurodegeneration, traumatic brain injury and neuropsychiatric disorders. Finally, we also summarize the results from the studies incriminating HOTAIR in the pathogeneses of gliomas and other brain cancers. Implications of HOTAIR serving as a suitable therapeutic target in neuropathologies are also discussed.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Atheeq Toufeeq Ahmed
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
8
|
Lin X, Tao T, He X, Mao L, Pan L, Chen L. LncRNA MEG8 ameliorates Parkinson's disease neuro-inflammation through miR-485-3p/FBXO45 axis. Acta Neurol Belg 2024; 124:549-557. [PMID: 37814093 DOI: 10.1007/s13760-023-02388-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/09/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Studies suggest that LncRNA maternally expressed 8, small nucleolar RNA host gene (MEG8) contributes to inflammatory regulation, while the function and potential mechanisms of MEG8 in Parkinson's disease (PD) are unknown. This study aimed to assess the clinical value and biological function of MEG8 in PD. METHODS One hundred and two PD patients, eighty-six AD patients, and eighty healthy controls were enrolled in this study. Lipopolysaccharide (LPS)-induced microglia BV2 constructs an in vitro cell model. RT-qPCR was conducted to quantify the levels of MEG8, miR-485-3p, and FBXO45 in serum and cells. ROC curve was employed to examine the diagnostic value of MEG8 in PD. Serum and cellular pro-inflammatory factor secretion were quantified by ELISA. Dual-luciferase reporter and RIP assay to validate the targeting relationship between miR-485-3p and FBXO45. RESULTS MEG8 and FBXO45 were significantly decreased in the serum of PD patients and LPS-induced bv2, while miR-485-3p was increased (P < 0.05). ROC curve confirmed that serum MEG8 has high sensitivity and specificity to identify PD patients from healthy controls and AD patients, respectively. Elevated MEG8 alleviated LPS-induced inflammatory factor overproduction compared with LPS-induced BV2 (P < 0.05), but this alleviating effect was eliminated by miR-485-3p (P < 0.05). The LPS-induced inflammatory response was suppressed by the low expression of miR-485-3p but significantly reversed by silencing of FBXO45. MEG8 was a sponge for miR-485-3p and inhibited its levels and promoted FBXO45 expression (P < 0.05). CONCLUSION Elevated MEG8 is a potential diagnostic biomarker for PD and may mitigate inflammatory damage in PD via the miR-485-3p/FBXO45 axis.
Collapse
Affiliation(s)
- Xia Lin
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), No.999, Donghai Avenue, Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Taotao Tao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), No.999, Donghai Avenue, Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Xinwei He
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), No.999, Donghai Avenue, Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Lingqun Mao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), No.999, Donghai Avenue, Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Luping Pan
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), No.999, Donghai Avenue, Jiaojiang District, Taizhou, 318000, Zhejiang, China
| | - Linkao Chen
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), No.999, Donghai Avenue, Jiaojiang District, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
9
|
Ahmad F, Sudesh R, Ahmed AT, Haque S. Roles of HOTAIR Long Non-coding RNA in Gliomas and Other CNS Disorders. Cell Mol Neurobiol 2024; 44:23. [PMID: 38366205 PMCID: PMC10873238 DOI: 10.1007/s10571-024-01455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
HOX transcript antisense intergenic RNA (HOTAIR) is a long non-coding RNA (lncRNA) which is increasingly being perceived as a tremendous molecular mediator of brain pathophysiology at multiple levels. Epigenetic regulation of target gene expression carried out by HOTAIR is thorough modulation of chromatin modifiers; histone methyltransferase polycomb repressive complex 2 (PRC2) and histone demethylase lysine-specific demethylase 1 (LSD1). Incidentally, HOTAIR was the first lncRNA shown to elicit sponging of specific microRNA (miRNA or miR) species in a trans-acting manner. It has been extensively studied in various cancers, including gliomas and is regarded as a prominent pro-tumorigenic and pro-oncogenic lncRNA. Indeed, the expression of HOTAIR may serve as glioma grade predictor and prognostic biomarker. The objective of this timely review is not only to outline the multifaceted pathogenic roles of HOTAIR in the development and pathophysiology of gliomas and brain cancers, but also to delineate the research findings implicating it as a critical regulator of overall brain pathophysiology. While the major focus is on neuro-oncology, wherein HOTAIR represents a particularly potent underlying pathogenic player and a suitable therapeutic target, mechanisms underlying the regulatory actions of HOTAIR in neurodegeneration, traumatic, hypoxic and ischemic brain injuries, and neuropsychiatric disorders are also presented.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - A Toufeeq Ahmed
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102 2801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, 13306, United Arab Emirates
| |
Collapse
|