1
|
Ivanov SA, Podyacheva EY, Zhuravskii SG, Toropova YG. Ototoxic Effect of Nicotinamide Riboside. Bull Exp Biol Med 2024; 177:639-642. [PMID: 39340621 DOI: 10.1007/s10517-024-06240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Indexed: 09/30/2024]
Abstract
We studied the function of the auditory system in Wistar rats after repeated intravenous administration of nicotinamide riboside (NR). The functional activity of the receptor and retrocochlear parts of the auditory system were assessed by recording short-latency auditory evoked potentials (SLAEPs) and distortion-product otoacoustic emissions (DPOAEs) at baseline, immediately after NR administration, and 1 and 2 months later. Repeated intravenous NR administration (cumulative dose of 2700 mg/kg) to Wistar rats has a detrimental impact on the structures within the cochlear section of the auditory system.
Collapse
Affiliation(s)
- S A Ivanov
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, , Russian Federation, Russia
| | - E Yu Podyacheva
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, , Russian Federation, Russia.
| | - S G Zhuravskii
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, , Russian Federation, Russia
| | - Ya G Toropova
- Almazov National Medical Research Centre, Ministry of Health of the Russian Federation, St. Petersburg, , Russian Federation, Russia
| |
Collapse
|
2
|
Hu Y, Li Y, Li M, Zhao T, Zhang W, Wang Y, He Y, Zhao H, Li H, Wang T, Zhao Y, Wang J, Wang J. Calcium supplementation attenuates fluoride-induced bone injury via PINK1/Parkin-mediated mitophagy and mitochondrial apoptosis in mice. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133411. [PMID: 38181596 DOI: 10.1016/j.jhazmat.2023.133411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Excessive consumption of fluoride can cause skeletal fluorosis. Mitophagy has been identified as a novel target for bone disorders. Meanwhile, calcium supplementation has shown great potential for mitigating fluoride-related bone damage. Hence, this study aimed to elucidate the association between mitophagy and skeletal fluorosis and the precise mechanisms through which calcium alleviates these injuries. A 100 mg/L sodium fluoride (NaF) exposure model in Parkin knockout (Parkin-/-) mice and a 100 mg/L NaF exposure mouse model with 1% calcium carbonate (CaCO3) intervention were established in the current study. Fluoride exposure caused the impairment of mitochondria and activation of PTEN-induced putative kinase1 (PINK1)/E3 ubiquitin ligase Park2 (Parkin)-mediated mitophagy and mitochondrial apoptosis in the bones, which were restored after blocking Parkin. Additionally, the intervention model showed fluoride-exposed mice exhibited abnormal bone trabecula and mechanical properties. Still, these bone injuries could be effectively attenuated by adding 1% calcium to their diet, which reversed fluoride-activated mitophagy and apoptosis. To summarize, fluoride can activate bone mitophagy through the PINK1/Parkin pathway and mitochondrial apoptosis. Parkin-/- and 1% calcium provide protection against fluoride-induced bone damage. Notably, this study provides theoretical bases for the prevention and therapy of animal and human health and safety caused by environmental fluoride contamination.
Collapse
Affiliation(s)
- Yingjun Hu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Yuanyuan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Meng Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Tianrui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Wenhui Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Yinghui Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Yang He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Hui Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Haojie Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Tianyu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, Shanxi, PR China.
| |
Collapse
|
3
|
Tang S, Geng Y, Lin Q. The role of mitophagy in metabolic diseases and its exercise intervention. Front Physiol 2024; 15:1339128. [PMID: 38348222 PMCID: PMC10859464 DOI: 10.3389/fphys.2024.1339128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Mitochondria are energy factories that sustain life activities in the body, and their dysfunction can cause various metabolic diseases that threaten human health. Mitophagy, an essential intracellular mitochondrial quality control mechanism, can maintain cellular and metabolic homeostasis by removing damaged mitochondria and participating in developing metabolic diseases. Research has confirmed that exercise can regulate mitophagy levels, thereby exerting protective metabolic effects in metabolic diseases. This article reviews the role of mitophagy in metabolic diseases, the effects of exercise on mitophagy, and the potential mechanisms of exercise-regulated mitophagy intervention in metabolic diseases, providing new insights for future basic and clinical research on exercise interventions to prevent and treat metabolic diseases.
Collapse
Affiliation(s)
| | | | - Qinqin Lin
- School of Physical Education, Yanshan University, Qinhuangdao, China
| |
Collapse
|
4
|
Lazzeri G, Biagioni F, Ferrucci M, Puglisi-Allegra S, Lenzi P, Busceti CL, Giannessi F, Fornai F. The Relevance of Autophagy within Inner Ear in Baseline Conditions and Tinnitus-Related Syndromes. Int J Mol Sci 2023; 24:16664. [PMID: 38068993 PMCID: PMC10706730 DOI: 10.3390/ijms242316664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Tinnitus is the perception of noise in the absence of acoustic stimulation (phantom noise). In most patients suffering from chronic peripheral tinnitus, an alteration of outer hair cells (OHC) starting from the stereocilia (SC) occurs. This is common following ototoxic drugs, sound-induced ototoxicity, and acoustic degeneration. In all these conditions, altered coupling between the tectorial membrane (TM) and OHC SC is described. The present review analyzes the complex interactions involving OHC and TM. These need to be clarified to understand which mechanisms may underlie the onset of tinnitus and why the neuropathology of chronic degenerative tinnitus is similar, independent of early triggers. In fact, the fine neuropathology of tinnitus features altered mechanisms of mechanic-electrical transduction (MET) at the level of OHC SC. The appropriate coupling between OHC SC and TM strongly depends on autophagy. The involvement of autophagy may encompass degenerative and genetic tinnitus, as well as ototoxic drugs and acoustic trauma. Defective autophagy explains mitochondrial alterations and altered protein handling within OHC and TM. This is relevant for developing novel treatments that stimulate autophagy without carrying the burden of severe side effects. Specific phytochemicals, such as curcumin and berberin, acting as autophagy activators, may mitigate the neuropathology of tinnitus.
Collapse
Affiliation(s)
- Gloria Lazzeri
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Francesca Biagioni
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| | - Michela Ferrucci
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Stefano Puglisi-Allegra
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| | - Paola Lenzi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Carla Letizia Busceti
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| | - Francesco Giannessi
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
| | - Francesco Fornai
- Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, PI, Italy; (G.L.); (M.F.); (P.L.); (F.G.)
- IRCCS, Istituto di Ricovero e Cura a Carattere Scientifico, Neuromed, 86077 Pozzilli, IS, Italy; (F.B.); (S.P.-A.); (C.L.B.)
| |
Collapse
|