1
|
Xia D, Zhang L, Mei R, Wu C, Liu Y, Chen H, Chen L. Increased Expression of MST1 in Patients With Epilepsy and in a Rat Model of Epilepsy. Synapse 2025; 79:e70002. [PMID: 39729046 DOI: 10.1002/syn.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024]
Abstract
Mammalian sterile20-like kinase 1 (MST1), a serine/threonine kinase frequently expressed, has emerged as pivotal modulator of multiple physiological and pathological conditions such as cellular growth, programmed cell death, oxidative stress, neurodegeneration, inflammation, and synaptic plasticity in the central nervous system. Various neurological diseases are associated with the activation of MST1. Epilepsy is a severe neurological disorder characterized by abrupt abnormal electrical activity in the brain and recurring spontaneous seizures. The most common pathological discoveries in patients and animal models with epilepsy are neuronal death, inflammation, neurodegeneration, neurogenesis, and axonal regrowth. The purpose of this study was to assess the levels of MST1 in serum and cerebrospinal fluid (CSF) specimens obtained from individuals diagnosed with epilepsy. In addition, it aimed to explore the expression pattern of MST1 in brain tissues of epileptic rats. We used enzyme-linked immunosorbent assay to measure the levels of CSF and serum MST1 in 10 epilepsy patients and 9 control patients. After creation of epilepsy models with healthy male Sprague-Dawley rats using lithium and pilocarpine, the expression of MST1 in the temporal cortex and hippocampus was evaluated at different time points (6 h, 24 h, 3 days, 7 days, 14 days, and 30 days after seizures) using immunofluorescence, immunohistochemistry, and Western blotting. In patients with epilepsy, the levels of CSF-MST1 were elevated (593.90 ± 16.28 vs. 560.40 ± 19.42 pg/mL, p < 0.05) compared to the control group. Accordingly, the serum-MST1 levels were 583.40 ± 19.70 pg/mL in the epilepsy group and 555.70 ± 20.14 pg/mL in the control group, demonstrating a statistically significant distinction (p < 0.05). Levels of MST1 in CSF and serum could be of diagnostic help. Neuronal apoptosis in temporal cortex and hippocampus of epileptic rats was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. MST1 was expressed in the neuronal membrane and cytoplasm of the temporal cortex and hippocampus. The expression of MST1 increased after seizures, showing a relatively high level within 30 days and reaching its highest point on the seventh day after status epilepticus. The findings of this study indicate that the increased expression of MST1 protein in patients with epilepsy and epileptic rats might play a role in the development of epilepsy.
Collapse
Affiliation(s)
- Di Xia
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Linming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, Yunnan Provincial Clinical Research Center for Neurological, Disease, Kunming, Yunnan, China
| | - Rong Mei
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Chunhua Wu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, Yunnan Provincial Clinical Research Center for Neurological, Disease, Kunming, Yunnan, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongyu Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, Yunnan Provincial Clinical Research Center for Neurological, Disease, Kunming, Yunnan, China
| |
Collapse
|
2
|
Li S, Adamu A, Ye Y, Gao F, Mi R, Xue G, Wang Z. (+)-Borneol inhibits neuroinflammation and M1 phenotype polarization of microglia in epileptogenesis through the TLR4-NFκB signaling pathway. Front Neurosci 2024; 18:1497102. [PMID: 39605791 PMCID: PMC11599196 DOI: 10.3389/fnins.2024.1497102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Objective To investigate the effect of (+)-borneol on neuroinflammation and microglia phenotype polarization in epileptogenesis and its possible mechanism. Methods Based on mouse models of status epilepticus (SE) induced by pilocarpine, and treated with 15 mg/kg (+)-borneol, western-blot was used to detect the expressions of NeuN, Iba-1, TLR4, p65 and p-p65 in the hippocampus. Immunofluorescence was used to detect the expression of apoptosis-related proteins Bax and Bcl-2. To explore the effect of (+)-borneol on microglia in vitro, we used the kainic acid-induced microglia model and the concentration of (+)-borneol was 25 μM according to CCK-8 results. The levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-10 (IL-10) in the supernatant of each group was detected by ELISA. The nitric oxide (NO) content in the supernatant was detected by Griess method. The expressions of Iba-1 and TLR4-NFκB signaling pathway-related proteins (TLR4, p65, p-p65) were detected by Western-Blot. Immunofluorescence was used to detect microglia's M1 and M2 phenotype polarization and the expression of Iba-1 and TLR4. Results (+)-borneol reduced hippocampal neuronal injury, apoptosis, and microglia activation by inhibiting the TLR-NFκB signaling pathway in SE mice. TLR4 agonist LPS partially reversed the neuroprotective effect of (+)-borneol. In the KA-induced microglia model, (+)-borneol inhibited microglia activation, M1 phenotype polarization, and secretion of pro-inflammatory cytokines through the TLR4-NFκB signaling pathway. LPS treatment inhibited the therapeutic effects of (+)-borneol. Conclusion (+)-borneol inhibits microglial neuroinflammation and M1 phenotype polarization through TLR4-NFκB signaling pathway and reduces neuronal damage and apoptosis in SE mice. Therefore, (+)-borneol may be a potential drug for epilepsy modification therapy.
Collapse
Affiliation(s)
- Shuo Li
- Second Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Alhamdu Adamu
- Second Clinical Medical School, Shanxi Medical University, Taiyuan, China
| | - Yucai Ye
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Fankai Gao
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rulin Mi
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Guofang Xue
- Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhaojun Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Zou Y, Wang C, Li H, Zhong M, Lin J, Hu Y, Chen Z, Gan CL. Epileptic seizures induced by pentylenetetrazole kindling accelerate Alzheimer-like neuropathology in 5×FAD mice. Front Pharmacol 2024; 15:1500105. [PMID: 39545066 PMCID: PMC11560768 DOI: 10.3389/fphar.2024.1500105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/23/2024] [Indexed: 11/17/2024] Open
Abstract
Clinical studies have shown that epileptic seizures worsen Alzheimer's disease (AD) pathology and related cognitive deficits; however, the underlying mechanism is unclear. To assess the effects of seizures on the progression of AD, chronic temporal lobe epilepsy was induced in five familial AD mutation (5×FAD) mice by kindling with the chemoconvulsant pentylenetetrazole (PTZ) at 3-3.5 months of age. The amyloidogenic pathway, tauopathy, synaptic damage, neuronal death, neurological inflammatory response and associated kinase signaling pathway dysregulation were examined at 9 months of age. We found that APP, p-APP, BACE1, Aβ and kinase-associated p-tau levels were elevated after PTZ kindling in 5×FAD mice. In addition, PTZ kindling exacerbated hippocampal synaptic damage and neuronal cell death, as determined by scanning electron microscopy and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining, respectively. Finally, the levels of the neuroinflammation markers GFAP and Iba1, as well as the inflammatory cytokine IL-1β, were increased after PTZ insult. PTZ kindling profoundly exacerbated extracellular regulated kinase (ERK)-death-associated protein kinase (DAPK) signaling pathway overactivation, and acute ERK inhibitor treatment downregulated Aβ production and p-APP and p-tau levels in epileptic 5×FAD mice. In addition, long-term use of the antiseizure drug carbamazepine (CBZ) alleviated seizure-induced accelerated amyloid and tau pathology and ERK-DAPK overactivation in 5×FAD mice. Collectively, these results demonstrate that seizure-induced increases in AD-like neuropathology in 5×FAD mice are partially regulated by the ERK-DAPK pathway, suggesting that the ERK-DAPK axis could be a new therapeutic target for the treatment of AD patients with comorbid seizures.
Collapse
Affiliation(s)
- Yulian Zou
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, Fujian, China
| | - Chengyan Wang
- Institute of Laboratory Animal Center, Fujian Medical University, Fuzhou, China
| | - Huang Li
- Department of Pharmacy of Fuzhou First General Hospital Affiliated With Fujian Medical University, Fuzhou, China
| | - Meihua Zhong
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Jin Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Yan Hu
- Public Technology Service Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhou Chen
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Chen-Ling Gan
- School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Caiola HO, Wu Q, Li J, Wang XF, Soni S, Monahan K, Wagner GC, Pang ZP, Zhang H. Neuronal connectivity, behavioral, and transcriptional alterations associated with the loss of MARK2. FASEB J 2024; 38:e70124. [PMID: 39436150 DOI: 10.1096/fj.202400454r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Neuronal connectivity is essential for adaptive brain responses and can be modulated by dendritic spine plasticity and the intrinsic excitability of individual neurons. Dysregulation of these processes can lead to aberrant neuronal activity, which has been associated with numerous neurological disorders including autism, epilepsy, and Alzheimer's disease. Nonetheless, the molecular mechanisms underlying abnormal neuronal connectivity remain unclear. We previously found that the serine/threonine kinase Microtubule Affinity Regulating Kinase 2 (MARK2), also known as Partitioning Defective 1b (Par1b), is important for the formation of dendritic spines in vitro. However, despite its genetic association with several neurological disorders, the in vivo impact of MARK2 on neuronal connectivity and cognitive functions remains unclear. Here, we demonstrate that the loss of MARK2 in vivo results in changes to dendritic spine morphology, which in turn leads to a decrease in excitatory synaptic transmission. Additionally, the loss of MARK2 produces substantial impairments in learning and memory, reduced anxiety, and defective social behavior. Notably, MARK2 deficiency results in heightened seizure susceptibility. Consistent with this observation, electrophysiological analysis of hippocampal slices indicates underlying neuronal hyperexcitability in MARK2-deficient neurons. Finally, RNAseq analysis reveals transcriptional changes in genes regulating synaptic transmission and ion homeostasis. These results underscore the in vivo role of MARK2 in governing synaptic connectivity, neuronal excitability, and cognitive functions.
Collapse
Affiliation(s)
- Hanna O Caiola
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Qian Wu
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Junlong Li
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Xue-Feng Wang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Shaili Soni
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Kevin Monahan
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - George C Wagner
- Department of Psychology, Rutgers University, Piscataway, New Jersey, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
5
|
Qian X, Sheng X, Ding J, Yiming Z, Zheng J, Zhong J, Zhang T, Li X, He S, Li W, Zhang M. Tropisetron, an Antiemetic Drug, Exerts an Anti-Epileptic Effect Through the Activation of α7nAChRs in a Rat Model of Temporal Lobe Epilepsy. CNS Neurosci Ther 2024; 30:e70086. [PMID: 39445711 PMCID: PMC11500210 DOI: 10.1111/cns.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/28/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE), a prevalent chronic neurological disorder, affects millions of individuals and is often resistant to anti-epileptic drugs. Increasing evidence has shown that acetylcholine (ACh) and cholinergic neurotransmission play a role in the pathophysiology of epilepsy. Tropisetron, an antiemetic drug used for chemotherapy in clinic, has displayed potential in the treatment of Alzheimer's disease, depression, and schizophrenia in animal models. However, as a partial agonist of α7 nicotinic acetylcholine receptors (α7nAChRs), whether tropisetron possesses the therapeutic potential for TLE has not yet been determined. METHODS In this study, tropisetron was intraperitoneally injected into pilocarpine-induced epileptic rats for 3 weeks. Alpha-bungarotoxin (α-bgt), a specific α7nAChR antagonist, was applied to investigate the mechanism of tropisetron. Rats were assessed for spontaneous recurrent seizures (SRS) and cognitive function using video surveillance and Morris's water maze testing. Hippocampal impairment and synaptic structure were evaluated by Nissl staining, immunohistochemistry, and Golgi staining. Additionally, the levels of glutamate, γ-aminobutyric acid (GABA), ACh, α7nAChRs, neuroinflammatory cytokines, glucocorticoids and their receptors, as well as synapse-associated protein (F-actin, cofilin-1) were quantified. RESULTS The results showed that tropisetron significantly reduced SRS, improved cognitive function, alleviated hippocampal sclerosis, and concurrently suppressed synaptic remodeling and the m6A modification of cofilin-1 in TLE rats. Furthermore, tropisetron lowered glutamate levels without affecting GABA levels, reduced neuroinflammation, and increased ACh levels and α7nAChR expression in the hippocampi of TLE rats. The effects of tropisetron treatment were counteracted by α-bgt. CONCLUSION In summary, these findings indicate that tropisetron exhibits an anti-epileptic effect and provides neuroprotection in TLE rats through the activation of α7nAChRs. The potential mechanism may involve the reduction of glutamate levels, enhancement of cholinergic transmission, and suppression of synaptic remodeling. Consequently, the present study not only highlights the potential of tropisetron as an anti-epileptic drug but also identifies α7nAChRs as a promising therapeutic target for the treatment of TLE.
Collapse
Affiliation(s)
- Xu Qian
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Xinwen Sheng
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
- Department of PharmacyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jiqiang Ding
- Department of Neurosurgery, The Six Affiliated Hospital (Dongguan Eastern Central Hospital)Jinan UniversityDongguanChina
| | - Zulipiya Yiming
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Jingjun Zheng
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Jiagui Zhong
- Department of Neurosurgery, The Six Affiliated Hospital (Dongguan Eastern Central Hospital)Jinan UniversityDongguanChina
| | - Tengyue Zhang
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Xuemei Li
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Shuqiao He
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Wei Li
- Department of Neurosurgery, The Six Affiliated Hospital (Dongguan Eastern Central Hospital)Jinan UniversityDongguanChina
| | - Mei Zhang
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| |
Collapse
|
6
|
Casillas Martinez A, Wicki-Stordeur LE, Ariano AV, Swayne LA. Dual role for pannexin 1 at synapses: regulating functional and morphological plasticity. J Physiol 2024. [PMID: 39264228 DOI: 10.1113/jp285228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024] Open
Abstract
Pannexin 1 (PANX1) is an ion and metabolite membrane channel and scaffold protein enriched in synaptic compartments of neurons in the central nervous system. In addition to a well-established link between PANX1 and synaptic plasticity, we recently identified a role for PANX1 in the regulation of dendritic spine stability. Notably, PANX1 and its interacting proteins are linked to neurological conditions involving dendritic spine loss. Understanding the dual role of PANX1 in synaptic function and morphology may help to shed light on these links. We explore potential mechanisms, including PANX1's interactions with postsynaptic receptors and cytoskeleton regulating proteins. Finally, we contextualize PANX1's dual role within neurological diseases involving dendritic spine and synapse dysfunction.
Collapse
Affiliation(s)
| | - Leigh E Wicki-Stordeur
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Annika V Ariano
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
7
|
Caznok Silveira AC, Antunes ASLM, Athié MCP, da Silva BF, Ribeiro dos Santos JV, Canateli C, Fontoura MA, Pinto A, Pimentel-Silva LR, Avansini SH, de Carvalho M. Between neurons and networks: investigating mesoscale brain connectivity in neurological and psychiatric disorders. Front Neurosci 2024; 18:1340345. [PMID: 38445254 PMCID: PMC10912403 DOI: 10.3389/fnins.2024.1340345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
The study of brain connectivity has been a cornerstone in understanding the complexities of neurological and psychiatric disorders. It has provided invaluable insights into the functional architecture of the brain and how it is perturbed in disorders. However, a persistent challenge has been achieving the proper spatial resolution, and developing computational algorithms to address biological questions at the multi-cellular level, a scale often referred to as the mesoscale. Historically, neuroimaging studies of brain connectivity have predominantly focused on the macroscale, providing insights into inter-regional brain connections but often falling short of resolving the intricacies of neural circuitry at the cellular or mesoscale level. This limitation has hindered our ability to fully comprehend the underlying mechanisms of neurological and psychiatric disorders and to develop targeted interventions. In light of this issue, our review manuscript seeks to bridge this critical gap by delving into the domain of mesoscale neuroimaging. We aim to provide a comprehensive overview of conditions affected by aberrant neural connections, image acquisition techniques, feature extraction, and data analysis methods that are specifically tailored to the mesoscale. We further delineate the potential of brain connectivity research to elucidate complex biological questions, with a particular focus on schizophrenia and epilepsy. This review encompasses topics such as dendritic spine quantification, single neuron morphology, and brain region connectivity. We aim to showcase the applicability and significance of mesoscale neuroimaging techniques in the field of neuroscience, highlighting their potential for gaining insights into the complexities of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ana Clara Caznok Silveira
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | | | - Maria Carolina Pedro Athié
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bárbara Filomena da Silva
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Camila Canateli
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marina Alves Fontoura
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Allan Pinto
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Simoni Helena Avansini
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Murilo de Carvalho
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
8
|
Kumari S, Brewster AL. Exploring Dendritic and Spine Structural Profiles in Epilepsy: Insights From Human Studies and Experimental Animal Models. Epilepsy Curr 2024; 24:40-46. [PMID: 38327540 PMCID: PMC10846509 DOI: 10.1177/15357597231218603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Dendrites are tree-like structures with tiny spines specialized to receive excitatory synaptic transmission. Spino-dendritic plasticity, driven by neural activity, underlies the maintenance of neuronal connections crucial for proper circuit function. Abnormalities in dendritic morphology are frequently seen in epilepsy. However, the exact etiology or functional implications are not yet known. Therefore, to better comprehend the structure-function significance of this dendritic pathology in epilepsy, it is necessary to identify the common spino-dendritic disturbances present in both human and experimental models. Here, we describe the dendritic and spine structural profiles found across human refractory epilepsy as well as in animal models of developmental, acquired, and genetic epilepsies.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, USA
| | - Amy L. Brewster
- Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
9
|
Caiola HO, Wu Q, Soni S, Wang XF, Monahan K, Pang ZP, Wagner GC, Zhang H. Neuronal connectivity, behavioral, and transcriptional alterations associated with the loss of MARK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.569759. [PMID: 38105965 PMCID: PMC10723285 DOI: 10.1101/2023.12.05.569759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Neuronal connectivity is essential for adaptive brain responses and can be modulated by dendritic spine plasticity and the intrinsic excitability of individual neurons. Dysregulation of these processes can lead to aberrant neuronal activity, which has been associated with numerous neurological disorders including autism, epilepsy, and Alzheimer's disease. Nonetheless, the molecular mechanisms underlying aberrant neuronal connectivity remains unclear. We previously found that the serine/threonine kinase Microtubule Affinity Regulating Kinase 2 (MARK2), also known as Partitioning Defective 1b (Par1b), is important for the formation of dendritic spines in vitro. However, despite its genetic association with several neurological disorders, the in vivo impact of MARK2 on neuronal connectivity and cognitive functions remains unclear. Here, we demonstrate that loss of MARK2 in vivo results in changes to dendritic spine morphology, which in turn leads to a decrease in excitatory synaptic transmission. Additionally, loss of MARK2 produces substantial impairments in learning and memory, anxiety, and social behavior. Notably, MARK2 deficiency results in heightened seizure susceptibility. Consistent with this observation, RNAseq analysis reveals transcriptional changes in genes regulating synaptic transmission and ion homeostasis. These findings underscore the in vivo role of MARK2 in governing synaptic connectivity, cognitive functions, and seizure susceptibility.
Collapse
|