1
|
Lesuis SL, Brosens N, Immerzeel N, van der Loo RJ, Mitrić M, Bielefeld P, Fitzsimons CP, Lucassen PJ, Kushner SA, van den Oever MC, Krugers HJ. Glucocorticoids Promote Fear Generalization by Increasing the Size of a Dentate Gyrus Engram Cell Population. Biol Psychiatry 2021; 90:494-504. [PMID: 34503674 DOI: 10.1016/j.biopsych.2021.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Traumatic experiences, such as conditioned threat, are coded as enduring memories that are frequently subject to generalization, which is characterized by (re-) expression of fear in safe environments. However, the neurobiological mechanisms underlying threat generalization after a traumatic experience and the role of stress hormones in this process remain poorly understood. METHODS We examined the influence of glucocorticoid hormones on the strength and specificity of conditioned fear memory at the level of sparsely distributed dentate gyrus (DG) engram cells in male mice. RESULTS We found that elevating glucocorticoid hormones after fear conditioning induces a generalized contextual fear response. This was accompanied by a selective and persistent increase in the excitability and number of activated DG granule cells. Selective chemogenetic suppression of these sparse cells in the DG prevented glucocorticoid-induced fear generalization and restored contextual memory specificity, while leaving expression of auditory fear memory unaffected. CONCLUSIONS These results implicate the sparse ensemble of DG engram cells as a critical cellular substrate underlying fear generalization induced by glucocorticoid stress hormones.
Collapse
Affiliation(s)
- Sylvie L Lesuis
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Niek Brosens
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Immerzeel
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Rolinka J van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Miodrag Mitrić
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pascal Bielefeld
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlos P Fitzsimons
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Harm J Krugers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Roesler R, Parent MB, LaLumiere RT, McIntyre CK. Amygdala-hippocampal interactions in synaptic plasticity and memory formation. Neurobiol Learn Mem 2021; 184:107490. [PMID: 34302951 DOI: 10.1016/j.nlm.2021.107490] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Memories of emotionally arousing events tend to endure longer than other memories. This review compiles findings from several decades of research investigating the role of the amygdala in modulating memories of emotional experiences. Episodic memory is a kind of declarative memory that depends upon the hippocampus, and studies suggest that the basolateral complex of the amygdala (BLA) modulates episodic memory consolidation through interactions with the hippocampus. Although many studies in rodents and imaging studies in humans indicate that the amygdala modulates memory consolidation and plasticity processes in the hippocampus, the anatomical pathways through which the amygdala affects hippocampal regions that are important for episodic memories were unresolved until recent optogenetic advances made it possible to visualize and manipulate specific BLA efferent pathways during memory consolidation. Findings indicate that the BLA influences hippocampal-dependent memories, as well as synaptic plasticity, histone modifications, gene expression, and translation of synaptic plasticity associated proteins in the hippocampus. More recent findings from optogenetic studies suggest that the BLA modulates spatial memory via projections to the medial entorhinal cortex, and that the frequency of activity in this pathway is a critical element of this modulation.
Collapse
Affiliation(s)
- Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 (ICBS, Campus Centro/UFRGS), 90050-170 Porto Alegre, RS, Brazil.
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Department of Psychology, Georgia State University, Atlanta, GA 30303, USA.
| | - Ryan T LaLumiere
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242, USA; Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
| | - Christa K McIntyre
- School of Behavior and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080-3021, USA.
| |
Collapse
|
3
|
Collitti-Klausnitzer J, Hagena H, Dubovyk V, Manahan-Vaughan D. Preferential frequency-dependent induction of synaptic depression by the lateral perforant path and of synaptic potentiation by the medial perforant path inputs to the dentate gyrus. Hippocampus 2021; 31:957-981. [PMID: 34002905 DOI: 10.1002/hipo.23338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
The encoding of spatial representations is enabled by synaptic plasticity. The entorhinal cortex sends information to the hippocampus via the lateral (LPP) and medial perforant (MPP) paths that transfer egocentric item-related and allocentric spatial information, respectively. To what extent LPP and MPP information-relay results in different homosynaptic synaptic plasticity responses is unclear. We examined the frequency dependency (at 1, 5, 10, 50, 100, 200 Hz) of long-term potentiation (LTP) and long-term depression (LTD) at MPP and LPP synapses in the dentate gyrus (DG) of freely behaving adult rats. We report that whereas the MPP-DG synapses exhibit a predisposition toward the expression of LTP, LPP-DG synapses prefer to express synaptic depression. The divergence of synaptic plasticity responses is most prominent at afferent frequencies of 5, 100, Hz and 200 Hz. Priming with 10 or 50 Hz significantly modified the subsequent plasticity response in a frequency-dependent manner, but failed to change the preferred direction of change in synaptic strength of MPP and LPP synapses. Evaluation of the expression of GluN1, GluN2A, or GluN2B subunits of the NMDA receptor revealed equivalent expression in the outer and middle thirds of the molecular layer where LPP and MPP inputs convene, respectively, thus excluding NMDA receptors as a substrate for the frequency-dependent differences in bidirectional plasticity. These findings demonstrate that the LPP and MPP inputs to the DG enable differentiated and distinct forms of synaptic plasticity in response to the same afferent frequencies. Effects are extremely robust and resilient to metaplastic priming. These properties may support the functional differentiation of allocentric and item information provided to the DG by the MPP and LPP, respectively, that has been proposed by others. We propose that allocentric spatial information, conveyed by the MPP is encoded through hippocampal LTP in a designated synaptic network. This network is refined and optimized to include egocentric contextual information through LTD triggered by LPP inputs.
Collapse
Affiliation(s)
| | - Hardy Hagena
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Germany
| | - Valentyna Dubovyk
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Germany
| | | |
Collapse
|
4
|
Peng L, Zhu M, Yang Y, Lu F, Liu X, Guo Q, Zhong T. Repeated Neonatal Isoflurane Exposure is Associated with Higher Susceptibility to Chronic Variable Stress-induced Behavioural and Neuro-inflammatory Alterations. Neuroscience 2021; 465:166-176. [PMID: 33951503 DOI: 10.1016/j.neuroscience.2021.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 01/22/2023]
Abstract
Numerous studies have reported that prolonged or multiple exposures to anaesthetics in early life lead to detrimental effects on brain function, most having focused on neurocognitive function, and relatively few on long term neuropsychiatric performance. The present study investigated the impact of repeated neonatal isoflurane exposure on chronic variable stress (CVS)-induced psychiatric and behavioural outcomes together with CVS-related neuronal activity and neuro-inflammatory reactivity in relevant brain circuits. In the present study, C57BL/6J mice received either three exposures to isoflurane at postnatal days 7, 8, and 9 or a control exposure. From postnatal day 45, mice were exposed to a mild, 3-week, CVS paradigm or none and the CVS-related neuropsychiatric performance was evaluated using a series of behavioural tests. The neuronal activity in relevant brain regions was measured by ΔFosB immunopositivity and CVS-related neuroinflammation was assessed by analysing levels of pro-inflammatory cytokines IL-1α, IL-1β, IL-6, and TNF-α. In mice experiencing serial neonatal isoflurane exposure, we detected a significant enhancement in anxiety levels following CVS procedures, together with enhanced neuronal activity, and exacerbated neuroinflammation in the basolateral amygdaloid nuclei (BLA) and hippocampal dentate gyrus (DG) regions. No such change was found in control mice. These results indicate an association between early multiple isoflurane exposures in infant mice and susceptibility to a CVS-evoked anxious phenotype accompanied by enhanced neuronal activity in BLA and DG regions and high inflammatory reactivity in response to CVS.
Collapse
Affiliation(s)
- Luofang Peng
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China; Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China
| | - Maoen Zhu
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China; Teaching and Research Section of Anesthesia and Critical Care Medicine, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China
| | - Yong Yang
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China; Teaching and Research Section of Anesthesia and Critical Care Medicine, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China
| | - Feng Lu
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China; Teaching and Research Section of Anesthesia and Critical Care Medicine, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China
| | - Xian Liu
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China; Teaching and Research Section of Anesthesia and Critical Care Medicine, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China
| | - Qulian Guo
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China; Teaching and Research Section of Anesthesia and Critical Care Medicine, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China
| | - Tao Zhong
- Department of Anaesthesiology and Operating Theatre Services, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China; Teaching and Research Section of Anesthesia and Critical Care Medicine, Xiangya Hospital of Central South University, Changsha City, Hunan Province, PR China.
| |
Collapse
|
5
|
Vouimba RM, Bakoyiannis I, Ducourneau EG, Maroun M, Ferreira G. Bidirectional modulation of hippocampal and amygdala synaptic plasticity by post-weaning obesogenic diet intake in male rats: Influence of the duration of diet exposure. Hippocampus 2020; 31:117-121. [PMID: 33146458 DOI: 10.1002/hipo.23278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 11/11/2022]
Abstract
Obesity is a chronic condition associated with adverse memory and emotional outcomes in humans and animal models. We have recently demonstrated that post-weaning (i.e., periadolescent) high-fat diet (HFD)-induced obesity has opposite effect on hippocampal and amygdala-dependent memory in rodents: while HFD consumption impairs spatial and relational memory, it enhances cue-dependent emotional memory. However, it is still not clear whether this bidirectional HFD effect on memory is related to bidirectional alterations of hippocampal and amygdala synaptic plasticity and if it is influenced by the duration of diet intake. In the current study, we compared in male rats the impact of 2-3 and 6-7 months of HFD intake starting at weaning, thus covering adolescence, on in vivo long-term potentiation (LTP) recorded simultaneously in the hippocampal area CA1 and the basolateral amygdala (BLA). As expected, 6-7 months of HFD intake abolished LTP in the CA1 and enhanced LTP in the BLA. However, 2-3 months of of HFD exposure enhanced LTP in both CA1 and BLA suggesting a transient compensatory mechanism in hippocampus. These results indicate that post-weaning HFD intake progressively leads to bidirectional modulation of hippocampal and amygdala synaptic plasticity, as we previously demonstrated for related memory processes, yet with a different temporal dynamic.
Collapse
Affiliation(s)
- Rose-Marie Vouimba
- Université de Bordeaux, Bordeaux Neurocampus, Bordeaux, France.,CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Ioannis Bakoyiannis
- Université de Bordeaux, Bordeaux Neurocampus, Bordeaux, France.,INRAE, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Eva-Gunnel Ducourneau
- Université de Bordeaux, Bordeaux Neurocampus, Bordeaux, France.,INRAE, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Guillaume Ferreira
- Université de Bordeaux, Bordeaux Neurocampus, Bordeaux, France.,INRAE, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux, France
| |
Collapse
|
6
|
GABAergic Transmission in the Basolateral Amygdala Differentially Modulates Plasticity in the Dentate Gyrus and the CA1 Areas. Int J Mol Sci 2020; 21:ijms21113786. [PMID: 32471158 PMCID: PMC7312428 DOI: 10.3390/ijms21113786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 11/17/2022] Open
Abstract
The term "metaplasticity" is used to describe changes in synaptic plasticity sensitivity following an electrical, biochemical, or behavioral priming stimulus. For example, priming the basolateral amygdala (BLA) enhances long-term potentiation (LTP) in the dentate gyrus (DG) but decreases LTP in the CA1. However, the mechanisms underlying these metaplastic effects are only partly understood. Here, we examined whether the mechanism underlying these effects of BLA priming involves intra-BLA GABAergic neurotransmission. Low doses of muscimol, a GABAA receptor (GABAAR) agonist, were microinfused into the rat BLA before or after BLA priming. Our findings show that BLA GABAAR activation via muscimol mimicked the previously reported effects of electrical BLA priming on LTP in the perforant path and the ventral hippocampal commissure-CA1 pathways, decreasing CA1 LTP and increasing DG LTP. Furthermore, muscimol application before or after tetanic stimulation of the ventral hippocampal commissure-CA1 pathways attenuated the BLA priming-induced decrease in CA1 LTP. In contrast, muscimol application after tetanic stimulation of the perforant path attenuated the BLA priming-induced increase in DG LTP. The data indicate that GABAAR activation mediates metaplastic effects of the BLA on plasticity in the CA1 and the DG, but that the same GABAAR activation induces an intra-BLA form of metaplasticity, which alters the way BLA priming may modulate plasticity in other brain regions. These results emphasize the need for developing a dynamic model of BLA modulation of plasticity, a model that may better capture processes underlying memory alterations associated with emotional arousing or stressful events.
Collapse
|
7
|
Cellular and Molecular Differences Between Area CA1 and the Dentate Gyrus of the Hippocampus. Mol Neurobiol 2019; 56:6566-6580. [PMID: 30874972 DOI: 10.1007/s12035-019-1541-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
Abstract
A distinct feature of the hippocampus of the brain is its unidirectional tri-synaptic pathway originating from the entorhinal cortex and projecting to the dentate gyrus (DG) then to area CA3 and subsequently, area CA1 of the Ammon's horn. Each of these areas of the hippocampus has its own cellular structure and distinctive function. The principal neurons in these areas are granule cells in the DG and pyramidal cells in the Ammon's horn's CA1 and CA3 areas with a vast network of interneurons. This review discusses the fundamental differences between the CA1 and DG areas regarding cell morphology, synaptic plasticity, signaling molecules, ability for neurogenesis, vulnerability to various insults and pathologies, and response to pharmacological agents.
Collapse
|
8
|
Liu XH, Zhu RT, Hao B, Shi YW, Wang XG, Xue L, Zhao H. Norepinephrine Induces PTSD-Like Memory Impairments via Regulation of the β-Adrenoceptor-cAMP/PKA and CaMK II/PKC Systems in the Basolateral Amygdala. Front Behav Neurosci 2019; 13:43. [PMID: 30894805 PMCID: PMC6414421 DOI: 10.3389/fnbeh.2019.00043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoids (GCs) can modulate the memory enhancement process during stressful events, and this modulation requires arousal-induced norepinephrine (NE) activation in the basolateral amygdale (BLA). Our previous study found that an intrahippocampal infusion of propranolol dose-dependently induced post-traumatic stress disorder (PTSD)-like memory impairments. To explore the role of the noradrenergic system of the BLA in PTSD-like memory impairment, we injected various doses of NE into the BLA. We found that only a specific quantity of NE (0.3 μg) could induce PTSD-like memory impairments, accompanied by a reduction in phosphorylation of GluR1 at Ser845 and Ser831. Moreover, this phenomenon could be blocked by a protein kinase A (PKA) inhibitor or calcium/calmodulin-dependent protein kinase II (CaMK II) inhibitor. These findings demonstrate that NE could induce PTSD-like memory impairments via regulation of the β-adrenoceptor receptor (β-AR)-3′,5′-cyclic monophosphate (cAMP)/PKA and CaMK II/PKC signaling pathways.
Collapse
Affiliation(s)
- Xiang-Hui Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rong-Ting Zhu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bo Hao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Guang Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li Xue
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hu Zhao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Saha R, Kriebel M, Volkmer H, Richter-Levin G, Albrecht A. Neurofascin Knock Down in the Basolateral Amygdala Mediates Resilience of Memory and Plasticity in the Dorsal Dentate Gyrus Under Stress. Mol Neurobiol 2018; 55:7317-7326. [DOI: 10.1007/s12035-018-0930-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/24/2018] [Indexed: 11/24/2022]
|
10
|
Exposure to prolonged controllable or uncontrollable stress affects GABAergic function in sub-regions of the hippocampus and the amygdala. Neurobiol Learn Mem 2017; 138:271-280. [DOI: 10.1016/j.nlm.2016.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/05/2016] [Accepted: 06/13/2016] [Indexed: 11/20/2022]
|
11
|
Albrecht A, Müller I, Ardi Z, Çalışkan G, Gruber D, Ivens S, Segal M, Behr J, Heinemann U, Stork O, Richter-Levin G. Neurobiological consequences of juvenile stress: A GABAergic perspective on risk and resilience. Neurosci Biobehav Rev 2017; 74:21-43. [PMID: 28088535 DOI: 10.1016/j.neubiorev.2017.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/20/2016] [Accepted: 01/06/2017] [Indexed: 01/18/2023]
Abstract
ALBRECHT, A., MÜLLER, I., ARDI, Z., ÇALIŞKAN, G., GRUBER, D., IVENS, S., SEGAL, M., BEHR, J., HEINEMANN, U., STORK, O., and RICHTER-LEVIN, G. Neurobiological consequences of juvenile stress: A GABAergic perspective on risk and resilience. NEUROSCI BIOBEHAV REV XXX-XXX, 2016.- Childhood adversity is among the most potent risk factors for developing mood and anxiety disorders later in life. Therefore, understanding how stress during childhood shapes and rewires the brain may optimize preventive and therapeutic strategies for these disorders. To this end, animal models of stress exposure in rodents during their post-weaning and pre-pubertal life phase have been developed. Such 'juvenile stress' has a long-lasting impact on mood and anxiety-like behavior and on stress coping in adulthood, accompanied by alterations of the GABAergic system within core regions for the stress processing such as the amygdala, prefrontal cortex and hippocampus. While many regionally diverse molecular and electrophysiological changes are observed, not all of them correlate with juvenile stress-induced behavioral disturbances. It rather seems that certain juvenile stress-induced alterations reflect the system's attempts to maintain homeostasis and thus promote stress resilience. Analysis tools such as individual behavioral profiling may allow the association of behavioral and neurobiological alterations more clearly and the dissection of alterations related to the pathology from those related to resilience.
Collapse
Affiliation(s)
- Anne Albrecht
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Iris Müller
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Ziv Ardi
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel
| | - Gürsel Çalışkan
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - David Gruber
- Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - Sebastian Ivens
- Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - Menahem Segal
- Department of Neurobiology, The Weizmann Institute, Herzl St 234, 7610001 Rehovot, Israel
| | - Joachim Behr
- Research Department of Experimental and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Charité University Hospital Berlin, Garystraße 5, 14195 Berlin, Germany; Department of Psychiatry, Psychotherapy and Psychosomatic, Brandenburg Medical School - Campus Neuruppin, Fehrbelliner Straße 38, 16816 Neuruppin, Germany
| | - Uwe Heinemann
- Neuroscience Research Center, Charité University Hospital Berlin, Hufelandweg 14, 10117 Berlin, Germany
| | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), 199 Aba-Hushi Avenue, 3498838 Haifa, Israel; Department of Psychology, University of Haifa, 199 Aba-Hushi Avenue, 3498838 Haifa, Israel
| |
Collapse
|
12
|
Desmedt A, Marighetto A, Richter-Levin G, Calandreau L. Adaptive emotional memory: the key hippocampal-amygdalar interaction. Stress 2015; 18:297-308. [PMID: 26260664 DOI: 10.3109/10253890.2015.1067676] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For centuries philosophical and clinical studies have emphasized a fundamental dichotomy between emotion and cognition, as, for instance, between behavioral/emotional memory and explicit/representative memory. However, the last few decades cognitive neuroscience have highlighted data indicating that emotion and cognition, as well as their underlying neural networks, are in fact in close interaction. First, it turns out that emotion can serve cognition, as exemplified by its critical contribution to decision-making or to the enhancement of episodic memory. Second, it is also observed that reciprocally cognitive processes as reasoning, conscious appraisal or explicit representation of events can modulate emotional responses, like promoting or reducing fear. Third, neurobiological data indicate that reciprocal amygdalar-hippocampal influences underlie such mutual regulation of emotion and cognition. While supporting this view, the present review discusses experimental data, obtained in rodents, indicating that the hippocampal and amygdalar systems not only regulate each other and their functional outcomes, but also qualify specific emotional memory representations through specific activations and interactions. Specifically, we review consistent behavioral, electrophysiological, pharmacological, biochemical and imaging data unveiling a direct contribution of both the amygdala and hippocampal-septal system to the identification of the predictor of a threat in different situations of fear conditioning. Our suggestion is that these two brain systems and their interplay determine the selection of relevant emotional stimuli, thereby contributing to the adaptive value of emotional memory. Hence, beyond the mutual quantitative regulation of these two brain systems described so far, we develop the idea that different activations of the hippocampus and amygdala, leading to specific configurations of neural activity, qualitatively impact the formation of emotional memory representations, thereby producing either adaptive or maladaptive fear memories.
Collapse
Affiliation(s)
- Aline Desmedt
- a INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862 , Bordeaux , France
- b Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862 , Bordeaux , France
- c Laboratoire Européen Associé , French-Israel Laboratory of Neuroscience (LEA FILNE) , France -- Israel
| | - Aline Marighetto
- a INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862 , Bordeaux , France
- b Université de Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862 , Bordeaux , France
| | - Gal Richter-Levin
- c Laboratoire Européen Associé , French-Israel Laboratory of Neuroscience (LEA FILNE) , France -- Israel
- d Brain and Behavior Laboratory, Haifa University, Mount Carmel , Haifa , Israel , and
| | - Ludovic Calandreau
- e Institut National de la Recherche Agronomique (INRA) Centre de Tours Nouzilly , CNRS UMR , Nouzilly , France
| |
Collapse
|
13
|
Chronic psychosocial stress impairs early LTP but not late LTP in the dentate gyrus of at-risk rat model of Alzheimer׳s disease. Brain Res 2014; 1588:150-8. [DOI: 10.1016/j.brainres.2014.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/27/2014] [Accepted: 09/04/2014] [Indexed: 01/31/2023]
|
14
|
Stress modulation of hippocampal activity – Spotlight on the dentate gyrus. Neurobiol Learn Mem 2014; 112:53-60. [DOI: 10.1016/j.nlm.2014.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/17/2014] [Accepted: 04/08/2014] [Indexed: 12/18/2022]
|
15
|
Hermans EJ, Battaglia FP, Atsak P, de Voogd LD, Fernández G, Roozendaal B. How the amygdala affects emotional memory by altering brain network properties. Neurobiol Learn Mem 2014; 112:2-16. [PMID: 24583373 DOI: 10.1016/j.nlm.2014.02.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 12/25/2022]
Abstract
The amygdala has long been known to play a key role in supporting memory for emotionally arousing experiences. For example, classical fear conditioning depends on neural plasticity within this anterior medial temporal lobe region. Beneficial effects of emotional arousal on memory, however, are not restricted to simple associative learning. Our recollection of emotional experiences often includes rich representations of, e.g., spatiotemporal context, visceral states, and stimulus-response associations. Critically, such memory features are known to bear heavily on regions elsewhere in the brain. These observations led to the modulation account of amygdala function, which postulates that amygdala activation enhances memory consolidation by facilitating neural plasticity and information storage processes in its target regions. Rodent work in past decades has identified the most important brain regions and neurochemical processes involved in these modulatory actions, and neuropsychological and neuroimaging work in humans has produced a large body of convergent data. Importantly, recent methodological developments make it increasingly realistic to monitor neural interactions underlying such modulatory effects as they unfold. For instance, functional connectivity network modeling in humans has demonstrated how information exchanges between the amygdala and specific target regions occur within the context of large-scale neural network interactions. Furthermore, electrophysiological and optogenetic techniques in rodents are beginning to make it possible to quantify and even manipulate such interactions with millisecond precision. In this paper we will discuss that these developments will likely lead to an updated view of the amygdala as a critical nexus within large-scale networks supporting different aspects of memory processing for emotionally arousing experiences.
Collapse
Affiliation(s)
- Erno J Hermans
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6500 HB, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525 EZ, The Netherlands.
| | - Francesco P Battaglia
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6500 HB, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525 EZ, The Netherlands; Departments for Neuroinformatics and Neurophysiology, Faculty of Science, Radboud University Nijmegen, Nijmegen, 6525 AJ, The Netherlands
| | - Piray Atsak
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6500 HB, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525 EZ, The Netherlands
| | - Lycia D de Voogd
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6500 HB, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525 EZ, The Netherlands
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6500 HB, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525 EZ, The Netherlands
| | - Benno Roozendaal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, 6500 HB, The Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, 6525 EZ, The Netherlands
| |
Collapse
|
16
|
Ritov G, Ardi Z, Richter-Levin G. Differential activation of amygdala, dorsal and ventral hippocampus following an exposure to a reminder of underwater trauma. Front Behav Neurosci 2014; 8:18. [PMID: 24523683 PMCID: PMC3905214 DOI: 10.3389/fnbeh.2014.00018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/12/2014] [Indexed: 01/17/2023] Open
Abstract
Recollection of emotional memories is attributed in part to the activation of the amygdala and the hippocampus. Recent hypothesis suggests a pivotal role for the ventral hippocampus (VH) in traumatic stress processing and emotional memory retrieval. Persistent re-experiencing and intrusive recollections are core symptoms in acute and posttraumatic stress disorders (ASD; PTSD). Such intrusive recollections are often triggered by reminders associated with the trauma. We examined the impact of exposure to a trauma reminder (under water trauma (UWT)) on the activation of the basolateral amygdala (BLA), dorsal and VH. Rats were exposed to UWT and 24 h later were re-exposed to the context of the trauma. Phosphorylation of the extracellular signal-regulated kinase (ERK) was used as a marker for level of activation of these regions. Significant increase in ERK activation was found in the VH and BLA. Such pattern of activation was not found in animals exposed only to the trauma or in animals exposed only to the trauma reminder. Additionally, the dissociative pattern of activation of the VH sub-regions positively correlated with the activation of the BLA. Our findings suggest a specific pattern of neural activation during recollection of a trauma reminder, with a unique contribution of the VH. Measured 24 h after the exposure to the traumatic experience, the current findings relate to relatively early stages of traumatic memory consolidation. Understanding the neural mechanisms underlying these initial stages may contribute to developing intervention strategies that could reduce the risk of eventually developing PTSD.
Collapse
Affiliation(s)
- Gilad Ritov
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel ; The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa Haifa, Israel
| | - Ziv Ardi
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel ; The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa Haifa, Israel
| | - Gal Richter-Levin
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel ; The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa Haifa, Israel ; Psychology Department, University of Haifa Haifa, Israel
| |
Collapse
|
17
|
Inoue S, Kamiyama H, Matsumoto M, Yanagawa Y, Hiraide S, Saito Y, Shimamura KI, Togashi H. Synaptic Modulation via Basolateral Amygdala on the Rat Hippocampus–Medial Prefrontal Cortex Pathway in Fear Extinction. J Pharmacol Sci 2013; 123:267-78. [DOI: 10.1254/jphs.13123fp] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|