1
|
Maxson Jones K, Morgan JR. Lampreys and spinal cord regeneration: "a very special claim on the interest of zoologists," 1830s-present. Front Cell Dev Biol 2023; 11:1113961. [PMID: 37228651 PMCID: PMC10203415 DOI: 10.3389/fcell.2023.1113961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Employing history of science methods, including analyses of the scientific literature, archival documents, and interviews with scientists, this paper presents a history of lampreys in neurobiology from the 1830s to the present. We emphasize the lamprey's roles in helping to elucidate spinal cord regeneration mechanisms. Two attributes have long perpetuated studies of lampreys in neurobiology. First, they possess large neurons, including multiple classes of stereotypically located, 'identified' giant neurons in the brain, which project their large axons into the spinal cord. These giant neurons and their axonal fibers have facilitated electrophysiological recordings and imaging across biological scales, ranging from molecular to circuit-level analyses of nervous system structures and functions and including their roles in behavioral output. Second, lampreys have long been considered amongst the most basal extant vertebrates on the planet, so they have facilitated comparative studies pointing to conserved and derived characteristics of vertebrate nervous systems. These features attracted neurologists and zoologists to studies of lampreys between the 1830s and 1930s. But, the same two attributes also facilitated the rise of the lamprey in neural regeneration research after 1959, when biologists first wrote about the spontaneous, robust regeneration of some identified CNS axons in larvae after spinal cord injuries, coupled with recovery of normal swimming. Not only did large neurons promote fresh insights in the field, enabling studies incorporating multiple scales with existing and new technologies. But investigators also were able to attach a broad scope of relevance to their studies, interpreting them as suggesting conserved features of successful, and sometimes even unsuccessful, CNS regeneration. Lamprey research demonstrated that functional recovery takes place without the reformation of the original neuronal connections, for instance, by way of imperfect axonal regrowth and compensatory plasticity. Moreover, research performed in the lamprey model revealed that factors intrinsic to neurons are integral in promoting or hindering regeneration. As this work has helped illuminate why basal vertebrates accomplish CNS regeneration so well, whereas mammals do it so poorly, this history presents a case study in how biological and medical value have been, and could continue to be, gleaned from a non-traditional model organism for which molecular tools have been developed only relatively recently.
Collapse
Affiliation(s)
- Kathryn Maxson Jones
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
- Department of History, Purdue University, West Lafayette, IN, United States
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, United States
| | - Jennifer R. Morgan
- Marine Biological Laboratory, The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Woods Hole, MA, United States
| |
Collapse
|
2
|
Parker D. The functional properties of synapses made by regenerated axons across spinal cord lesion sites in lamprey. Neural Regen Res 2022; 17:2272-2277. [PMID: 35259849 PMCID: PMC9083143 DOI: 10.4103/1673-5374.335828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
While the anatomical properties of regenerated axons across spinal cord lesion sites have been studied extensively, little is known of how the functional properties of regenerated synapses compared to those in unlesioned animals. This study aims to compare the properties of synapses made by regenerated axons with unlesioned axons using the lamprey, a model system for spinal injury research, in which functional locomotor recovery after spinal cord lesions is associated with axonal regeneration across the lesion site. Regenerated synapses below the lesion site did not differ from synapses from unlesioned axons with respect to the amplitude and duration of single excitatory postsynaptic potentials. They also showed the same activity-dependent depression over spike trains. However, regenerated synapses did differ from unlesioned synapses as the estimated number of synaptic vesicles was greater and there was evidence for increased postsynaptic quantal amplitude. For axons above the lesion site, the amplitude and duration of single synaptic inputs also did not differ significantly from unlesioned animals. However, in this case, there was evidence of a reduction in release probability and inputs facilitated rather than depressed over spike trains. Synaptic inputs from single regenerated axons below the lesion site thus do not increase in amplitude to compensate for the reduced number of descending axons after functional recovery. However, the postsynaptic input was maintained at the unlesioned level using different synaptic properties. Conversely, the facilitation from the same initial amplitude above the lesion site made the synaptic input over spike trains functionally stronger. This may help to increase propriospinal activity across the lesion site to compensate for the lesion-induced reduction in supraspinal inputs. The animal experiments were approved by the Animal Ethics Committee of Cambridge University.
Collapse
Affiliation(s)
- David Parker
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Becker M, Parker D. Time course of functional changes in locomotor and sensory systems after spinal cord lesions in lamprey. J Neurophysiol 2019; 121:2323-2335. [DOI: 10.1152/jn.00120.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Changes in motor and sensory properties occur either side of spinal cord lesion sites from lower vertebrates to humans. We have previously examined these changes in the lamprey, a model system for studying recovery after spinal cord injury. These analyses were performed 8–12 wk after complete spinal cord lesions, a time when most animals have recovered good locomotor function. However, anatomical analyses have been performed at earlier and later times than this. Because there have been no functional studies at these times, in this study we have examined changes between 2 and 24+ wk after lesioning. Functional changes developed at different times in different regions of the spinal cord. Spinal cord excitability was significantly reduced above and below the lesion site less than 6 wk after lesioning but showed variable region-specific changes at later times. Excitatory synaptic inputs to motor neurons were increased above the lesion site during the recovery phase (2–8 wk after lesioning) but only increased below the lesion site once recovery had occurred (8 wk and later). These synaptic effects were associated with lesion-induced changes in connectivity between premotor excitatory interneurons. Sensory inputs were potentiated at 8 wk and later after lesioning but were markedly reduced at earlier times. There are thus time- and region-specific changes in motor and sensory properties above and below the lesion site. Although animals typically recover good locomotor function by 8 wk, there were further changes at 24+ wk. With the assumption that these changes can help to compensate for the reduced descending input to the spinal cord, effects at later times may reflect ongoing modifications as regeneration continues. NEW & NOTEWORTHY The lamprey is a model system for studying functional recovery and regeneration after spinal cord injury. We show that changes in spinal cord excitability and sensory inputs develop at different times above and below the lesion site during recovery. These changes may occur in response to the lesion-induced removal of descending inputs and may subsequently help to compensate for the reduction of the descending drive to allow locomotor recovery. Changes also continue once animals have recovered locomotor function, potentially reflecting adaptations to further regeneration at later recovery times.
Collapse
Affiliation(s)
- Matthew Becker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - David Parker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Sobrido-Cameán D, Robledo D, Sánchez L, Rodicio MC, Barreiro-Iglesias A. Serotonin inhibits axonal regeneration of identifiable descending neurons after a complete spinal cord injury in lampreys. Dis Model Mech 2019; 12:dmm.037085. [PMID: 30709851 PMCID: PMC6398502 DOI: 10.1242/dmm.037085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
Classical neurotransmitters are mainly known for their roles as neuromodulators, but they also play important roles in the control of developmental and regenerative processes. Here, we used the lamprey model of spinal cord injury to study the effect of serotonin in axon regeneration at the level of individually identifiable descending neurons. Pharmacological and genetic manipulations after a complete spinal cord injury showed that endogenous serotonin inhibits axonal regeneration in identifiable descending neurons through the activation of serotonin 1A receptors and a subsequent decrease in cyclic adenosine monophosphate (cAMP) levels. RNA sequencing revealed that changes in the expression of genes that control axonal guidance could be a key factor determining the serotonin effects during regeneration. This study provides new targets of interest for research in non-regenerating mammalian models of traumatic central nervous system injuries and extends the known roles of serotonin signalling during neuronal regeneration.
This article has an associated First Person interview with the first author of the paper. Summary: Pharmacological and genetic manipulations show that endogenous serotonin inhibits axonal regeneration of individually identifiable descending neurons of lampreys after a complete spinal cord injury.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, UK
| | - Laura Sánchez
- Department of Genetics, University of Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Svensson E, Apergis-Schoute J, Burnstock G, Nusbaum MP, Parker D, Schiöth HB. General Principles of Neuronal Co-transmission: Insights From Multiple Model Systems. Front Neural Circuits 2019; 12:117. [PMID: 30728768 PMCID: PMC6352749 DOI: 10.3389/fncir.2018.00117] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
It is now accepted that neurons contain and release multiple transmitter substances. However, we still have only limited insight into the regulation and functional effects of this co-transmission. Given that there are 200 or more neurotransmitters, the chemical complexity of the nervous system is daunting. This is made more-so by the fact that their interacting effects can generate diverse non-linear and novel consequences. The relatively poor history of pharmacological approaches likely reflects the fact that manipulating a transmitter system will not necessarily mimic its roles within the normal chemical environment of the nervous system (e.g., when it acts in parallel with co-transmitters). In this article, co-transmission is discussed in a range of systems [from invertebrate and lower vertebrate models, up to the mammalian peripheral and central nervous system (CNS)] to highlight approaches used, degree of understanding, and open questions and future directions. Finally, we offer some outlines of what we consider to be the general principles of co-transmission, as well as what we think are the most pressing general aspects that need to be addressed to move forward in our understanding of co-transmission.
Collapse
Affiliation(s)
- Erik Svensson
- BMC, Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - John Apergis-Schoute
- Department of Neurosciences, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Geoffrey Burnstock
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David Parker
- Department of Physiology, Development and Neuroscience, Faculty of Biology, University of Cambridge, Cambridge, United Kingdom
| | - Helgi B Schiöth
- BMC, Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
6
|
GABA promotes survival and axonal regeneration in identifiable descending neurons after spinal cord injury in larval lampreys. Cell Death Dis 2018; 9:663. [PMID: 29950557 PMCID: PMC6021415 DOI: 10.1038/s41419-018-0704-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022]
Abstract
The poor regenerative capacity of descending neurons is one of the main causes of the lack of recovery after spinal cord injury (SCI). Thus, it is of crucial importance to find ways to promote axonal regeneration. In addition, the prevention of retrograde degeneration leading to the atrophy/death of descending neurons is an obvious prerequisite to activate axonal regeneration. Lampreys show an amazing regenerative capacity after SCI. Recent histological work in lampreys suggested that GABA, which is massively released after a SCI, could promote the survival of descending neurons. Here, we aimed to study if GABA, acting through GABAB receptors, promotes the survival and axonal regeneration of descending neurons of larval sea lampreys after a complete SCI. First, we used in situ hybridization to confirm that identifiable descending neurons of late-stage larvae express the gabab1 subunit of the GABAB receptor. We also observed an acute increase in the expression of this subunit in descending neurons after SCI, which further supported the possible role of GABA and GABAB receptors in promoting the survival and regeneration of these neurons. So, we performed gain and loss of function experiments to confirm this hypothesis. Treatments with GABA and baclofen (GABAB agonist) significantly reduced caspase activation in descending neurons 2 weeks after a complete SCI. Long-term treatments with GABOB (a GABA analogue) and baclofen significantly promoted axonal regeneration of descending neurons after SCI. These data indicate that GABAergic signalling through GABAB receptors promotes the survival and regeneration of descending neurons after SCI. Finally, we used morpholinos against the gabab1 subunit to knockdown the expression of the GABAB receptor in descending neurons. Long-term morpholino treatments caused a significant inhibition of axonal regeneration. This shows that endogenous GABA promotes axonal regeneration after a complete SCI in lampreys by activating GABAB receptors.
Collapse
|
7
|
Affiliation(s)
- David Parker
- Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Retrograde Activation of the Extrinsic Apoptotic Pathway in Spinal-Projecting Neurons after a Complete Spinal Cord Injury in Lampreys. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5953674. [PMID: 29333445 PMCID: PMC5733621 DOI: 10.1155/2017/5953674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a devastating condition that leads to permanent disability because injured axons do not regenerate across the trauma zone to reconnect to their targets. A prerequisite for axonal regeneration will be the prevention of retrograde degeneration that could lead to neuronal death. However, the specific molecular mechanisms of axotomy-induced degeneration of spinal-projecting neurons have not been elucidated yet. In lampreys, SCI induces the apoptotic death of identifiable descending neurons that are “bad regenerators/poor survivors” after SCI. Here, we investigated the apoptotic process activated in identifiable descending neurons of lampreys after SCI. For this, we studied caspase activation by using fluorochrome-labeled inhibitors of caspases, the degeneration of spinal-projecting neurons using Fluro-Jade C staining, and the involvement of the intrinsic apoptotic pathway by means of cytochrome c and Vα double immunofluorescence. Our results provide evidence that, after SCI, bad-regenerating spinal cord-projecting neurons slowly degenerate and that the extrinsic pathway of apoptosis is involved in this process. Experiments using the microtubule stabilizer Taxol showed that caspase-8 signaling is retrogradely transported by microtubules from the site of axotomy to the neuronal soma. Preventing the activation of this process could be an important therapeutic approach after SCI in mammals.
Collapse
|
9
|
Parker D. The Lesioned Spinal Cord Is a "New" Spinal Cord: Evidence from Functional Changes after Spinal Injury in Lamprey. Front Neural Circuits 2017; 11:84. [PMID: 29163065 PMCID: PMC5681538 DOI: 10.3389/fncir.2017.00084] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/16/2017] [Indexed: 01/13/2023] Open
Abstract
Finding a treatment for spinal cord injury (SCI) focuses on reconnecting the spinal cord by promoting regeneration across the lesion site. However, while regeneration is necessary for recovery, on its own it may not be sufficient. This presumably reflects the requirement for regenerated inputs to interact appropriately with the spinal cord, making sub-lesion network properties an additional influence on recovery. This review summarizes work we have done in the lamprey, a model system for SCI research. We have compared locomotor behavior (swimming) and the properties of descending inputs, locomotor networks, and sensory inputs in unlesioned animals and animals that have received complete spinal cord lesions. In the majority (∼90%) of animals swimming parameters after lesioning recovered to match those in unlesioned animals. Synaptic inputs from individual regenerated axons also matched the properties in unlesioned animals, although this was associated with changes in release parameters. This suggests against any compensation at these synapses for the reduced descending drive that will occur given that regeneration is always incomplete. Compensation instead seems to occur through diverse changes in cellular and synaptic properties in locomotor networks and proprioceptive systems below, but also above, the lesion site. Recovery of locomotor performance is thus not simply the reconnection of the two sides of the spinal cord, but reflects a distributed and varied range of spinal cord changes. While locomotor network changes are insufficient on their own for recovery, they may facilitate locomotor outputs by compensating for the reduction in descending drive. Potentiated sensory feedback may in turn be a necessary adaptation that monitors and adjusts the output from the “new” locomotor network. Rather than a single aspect, changes in different components of the motor system and their interactions may be needed after SCI. If these are general features, and where comparisons with mammalian systems can be made effects seem to be conserved, improving functional recovery in higher vertebrates will require interventions that generate the optimal spinal cord conditions conducive to recovery. The analyses needed to identify these conditions are difficult in the mammalian spinal cord, but lower vertebrate systems should help to identify the principles of the optimal spinal cord response to injury.
Collapse
Affiliation(s)
- David Parker
- Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
McClelland TJ, Parker D. Inverse modulation of motor neuron cellular and synaptic properties can maintain the same motor output. Neuroscience 2017; 360:28-38. [PMID: 28757244 DOI: 10.1016/j.neuroscience.2017.07.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 12/31/2022]
Abstract
Although often examined in isolation, a single neuromodulator typically has multiple cellular and synaptic effects. Here, we have examined the interaction of the cellular and synaptic effects of 5-HT in the lamprey spinal cord. 5-HT reduces the amplitude of glutamatergic synaptic inputs and the slow post-spike afterhyperpolarization (sAHP) in motor neurons. We examined the interaction between these effects using ventral root activity evoked by stimulation of the spinal cord. While 5-HT reduced excitatory glutamatergic synaptic inputs in motor neurons to approximately 60% of control, ventral root activity was not significantly affected. The reduction of the sAHP by 5-HT increased motor neuron excitability by reducing spike frequency adaptation, an effect that could in principle have opposed the reduction of the excitatory synaptic input. Support for this was sought by reducing the amplitude of the sAHP by applying the toxin apamin before 5-HT application. In these experiments, 5-HT reduced the ventral root response, presumably because the reduction of the synaptic input now dominated. This was supported by computer simulations that showed that the motor output could be maintained over a wide range of synaptic input values if they were matched by changes in postsynaptic excitability. The effects of 5-HT on ventral root responses were altered by spinal cord lesions: 5-HT significantly increased ventral root responses in animals that recovered good locomotor function, consistent with a lesion-induced reduction in the synaptic effects of 5-HT, which thus biases its effects to the increase in motor neuron excitability.
Collapse
Affiliation(s)
- Thomas James McClelland
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - David Parker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Fernández-López B, Barreiro-Iglesias A, Rodicio MC. Anatomical recovery of the spinal glutamatergic system following a complete spinal cord injury in lampreys. Sci Rep 2016; 6:37786. [PMID: 27886236 PMCID: PMC5122902 DOI: 10.1038/srep37786] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
Lampreys recover locomotion following a spinal cord injury (SCI). Glutamate is necessary to initiate and control locomotion and recent data suggest a crucial role for intraspinal neurons in functional recovery following SCI. We aimed to determine whether, in lampreys, axotomized spinal glutamatergic neurons, which lose glutamate immunoreactivity immediately after SCI, recover it later on and to study the long-term evolution and anatomical recovery of the spinal glutamatergic system after SCI. We used glutamate immunoreactivity to study changes in the glutamatergic system, tract-tracing to label axotomized neurons and TUNEL labelling to study cell death. Transections of the cord were made at the level of the fifth gill. TUNEL experiments indicated that cell death is a minor contributor to the initial loss of glutamate immunoreactivity. At least some of the axotomized neurons lose glutamate immunoreactivity, survive and recover glutamate immunoreactivity 1 week post-lesion (wpl). We observed a progressive increase in the number of glutamatergic neurons/processes until an almost complete anatomical recovery at 10 wpl. Among all the glutamatergic populations, the population of cerebrospinal fluid-contacting cells is the only one that never recovers. Our results indicate that full recovery of the glutamatergic system is not necessary for the restoration of function in lampreys.
Collapse
Affiliation(s)
- Blanca Fernández-López
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Ford TW, Anissimova NP, Meehan CF, Kirkwood PA. Functional plasticity in the respiratory drive to thoracic motoneurons in the segment above a chronic lateral spinal cord lesion. J Neurophysiol 2015; 115:554-67. [PMID: 26490290 DOI: 10.1152/jn.00614.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/19/2015] [Indexed: 11/22/2022] Open
Abstract
A previous neurophysiological investigation demonstrated an increase in functional projections of expiratory bulbospinal neurons (EBSNs) in the segment above a chronic lateral thoracic spinal cord lesion that severed their axons. We have now investigated how this plasticity might be manifested in thoracic motoneurons by measuring their respiratory drive and the connections to them from individual EBSNs. In anesthetized cats, simultaneous recordings were made intracellularly from motoneurons in the segment above a left-side chronic (16 wk) lesion of the spinal cord in the rostral part of T8, T9, or T10 and extracellularly from EBSNs in the right caudal medulla, antidromically excited from just above the lesion but not from below. Spike-triggered averaging was used to measure the connections between pairs of EBSNs and motoneurons. Connections were found to have a very similar distribution to normal and were, if anything (nonsignificantly), weaker than normal, being present for 42/158 pairs, vs. 55/154 pairs in controls. The expiratory drive in expiratory motoneurons appeared stronger than in controls but again not significantly so. Thus we conclude that new connections made by the EBSNs following these lesions were made to neurons other than α-motoneurons. However, a previously unidentified form of functional plasticity was seen in that there was a significant increase in the excitation of motoneurons during postinspiration, being manifest either in increased incidence of expiratory decrementing respiratory drive potentials or in an increased amplitude of the postinspiratory depolarizing phase in inspiratory motoneurons. We suggest that this component arose from spinal cord interneurons.
Collapse
Affiliation(s)
- T W Ford
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - N P Anissimova
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - C F Meehan
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| | - P A Kirkwood
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|