1
|
Wood JN, Wood SMW. The Development of Object Recognition Requires Experience with the Surface Features of Objects. Animals (Basel) 2024; 14:284. [PMID: 38254453 PMCID: PMC10812816 DOI: 10.3390/ani14020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
What role does visual experience play in the development of object recognition? Prior controlled-rearing studies suggest that newborn animals require slow and smooth visual experiences to develop object recognition. Here, we examined whether the development of object recognition also requires experience with the surface features of objects. We raised newborn chicks in automated controlled-rearing chambers that contained a single virtual object, then tested their ability to recognize that object from familiar and novel viewpoints. When chicks were reared with an object that had surface features, the chicks developed view-invariant object recognition. In contrast, when chicks were reared with a line drawing of an object, the chicks failed to develop object recognition. The chicks reared with line drawings performed at chance level, despite acquiring over 100 h of visual experience with the object. These results indicate that the development of object recognition requires experience with the surface features of objects.
Collapse
Affiliation(s)
- Justin Newell Wood
- Departments of Informatics, Cognitive Science, Neuroscience, Center for Integrated Study of Animal Behavior, Indiana University, Bloomington, IN 47408, USA
| | | |
Collapse
|
2
|
Wood SMW, Wood JN. Distorting Face Representations in Newborn Brains. Cogn Sci 2021; 45:e13021. [PMID: 34379331 DOI: 10.1111/cogs.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
What role does experience play in the development of face recognition? A growing body of evidence indicates that newborn brains need slowly changing visual experiences to develop accurate visual recognition abilities. All of the work supporting this "slowness constraint" on visual development comes from studies testing basic-level object recognition. Here, we present the results of controlled-rearing experiments that provide evidence for a slowness constraint on the development of face recognition, a prototypical subordinate-level object recognition task. We found that (1) newborn chicks can rapidly develop view-invariant face recognition and (2) the development of this ability relies on experience with slowly moving faces. When chicks were reared with quickly moving faces, they built distorted face representations that largely lacked invariance to viewpoint changes, effectively "breaking" their face recognition abilities. These results provide causal evidence that slowly changing visual experiences play a critical role in the development of face recognition, akin to basic-level object recognition. Thus, face recognition is not a hardwired property of vision but is learned rapidly as the visual system adapts to the temporal structure of the animal's visual environment.
Collapse
Affiliation(s)
| | - Justin N Wood
- Informatics Department, Indiana University.,Center for the Integrated Study of Animal Behavior, Indiana University.,Cognitive Science Program, Indiana University.,Department of Neuroscience, Indiana University
| |
Collapse
|
3
|
Lemaire BS, Rucco D, Josserand M, Vallortigara G, Versace E. Stability and individual variability of social attachment in imprinting. Sci Rep 2021; 11:7914. [PMID: 33846440 PMCID: PMC8041793 DOI: 10.1038/s41598-021-86989-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Filial imprinting has become a model for understanding memory, learning and social behaviour in neonate animals. This mechanism allows the youngs of precocial bird species to learn the characteristics of conspicuous visual stimuli and display affiliative response to them. Although longer exposures to an object produce stronger preferences for it afterwards, this relation is not linear. Sometimes, chicks even prefer to approach novel rather than familiar objects. To date, little is known about how filial preferences develop across time. This study aimed to investigate filial preferences for familiar and novel imprinting objects over time. After hatching, chicks were individually placed in an arena where stimuli were displayed on two opposite screens. Using an automated setup, the duration of exposure and the type of stimuli were manipulated while the time spent at the imprinting stimulus was monitored across 6 days. We showed that prolonged exposure (3 days vs 1 day) to a stimulus produced robust filial imprinting preferences. Interestingly, with a shorter exposure (1 day), animals re-evaluated their filial preferences in functions of their spontaneous preferences and past experiences. Our study suggests that predispositions influence learning when the imprinting memories are not fully consolidated, driving animal preferences toward more predisposed stimuli.
Collapse
Affiliation(s)
- Bastien S. Lemaire
- grid.11696.390000 0004 1937 0351Center for Mind and Brain Sciences, University of Trento, Trento, Italy
| | - Daniele Rucco
- grid.11696.390000 0004 1937 0351Center for Mind and Brain Sciences, University of Trento, Trento, Italy ,grid.7563.70000 0001 2174 1754Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Mathilde Josserand
- grid.11696.390000 0004 1937 0351Center for Mind and Brain Sciences, University of Trento, Trento, Italy ,grid.25697.3f0000 0001 2172 4233Laboratory Dynamique du Language, University of Lyon 2, Lyon, France
| | - Giorgio Vallortigara
- grid.11696.390000 0004 1937 0351Center for Mind and Brain Sciences, University of Trento, Trento, Italy
| | - Elisabetta Versace
- grid.11696.390000 0004 1937 0351Center for Mind and Brain Sciences, University of Trento, Trento, Italy ,grid.4868.20000 0001 2171 1133School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Miura M, Nishi D, Matsushima T. Combined predisposed preferences for colour and biological motion make robust development of social attachment through imprinting. Anim Cogn 2019; 23:169-188. [PMID: 31712936 DOI: 10.1007/s10071-019-01327-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/19/2019] [Accepted: 10/31/2019] [Indexed: 01/02/2023]
Abstract
To study how predisposed preferences shape the formation of social attachment through imprinting, newly hatched domestic chicks (Gallus gallus domesticus) were simultaneously exposed to two animations composed of comparable light points in different colours (red and yellow), one for a walking motion and another for a linear motion. When a walking animation in red was combined with a linear one in yellow, chicks formed a learned preference for the former that represented biological motion (BM). When the motion-colour association was swapped, chicks failed to form a preference for a walking in yellow, indicating a bias to a specific association of motion and colour. Accordingly, experiments using realistic walking chicken videos revealed a preference for a red video over a yellow one, when the whole body or the head was coloured. On the other hand, when the BM preference had been pre-induced using an artefact moving rigidly (non-BM), a clear preference for a yellow walking animation emerged after training by the swapped association. Even if the first-seen moving object was a nonbiological artefact such as the toy, the visual experience would induce a predisposed BM preference, making chicks selectively memorize the object with natural features. Imprinting causes a rapid inflow of thyroid hormone in the telencephalon leading to the induction of the BM preference, which would make the robust formation of social attachment selectively to the BM-associated object such as the mother hen.
Collapse
Affiliation(s)
- Momoko Miura
- Department of Biology, Faculty of Science, Hokkaido University, N10-W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Daisuke Nishi
- Department of Biology, Faculty of Science, Hokkaido University, N10-W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, N10-W8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.
| |
Collapse
|
5
|
Wood SM, Wood JN. Using automation to combat the replication crisis: A case study from controlled-rearing studies of newborn chicks. Infant Behav Dev 2019; 57:101329. [DOI: 10.1016/j.infbeh.2019.101329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 01/18/2019] [Accepted: 05/01/2019] [Indexed: 11/24/2022]
|
6
|
Martinho-Truswell A, McGregor B, Kacelnik A. Ducklings imprint on chromatic heterogeneity. Anim Cogn 2019; 22:769-775. [PMID: 31183592 PMCID: PMC6687680 DOI: 10.1007/s10071-019-01273-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/21/2019] [Accepted: 05/30/2019] [Indexed: 01/01/2023]
Abstract
Avian filial imprinting is a rapid form of learning occurring just after hatching in precocial bird species. The acquired imprint on either or both parents goes on to affect the young bird's survival and social behaviour later in life (Bateson in Biol Rev 41:177-217, 1966). The imprinting mechanism is specialized but flexible, and causes the hatchling to develop high-fidelity recognition and attraction to any moving stimulus of suitable size seen during a predefined sensitive period. It has been observed (Martinho and Kacelnik in Science 353:286-288, 2016; Versace et al. in Anim Cogn 20:521-529, 2017) that in addition to visual and acoustic sensory inputs, imprinting may incorporate informational rules or abstract concepts. Here we report a study of mallard ducklings (Anas platyrhynchos domesticus) undergoing imprinting on the chromatic heterogeneity of stimuli, with a focus on how this may be transferred to novel objects. Ducklings were exposed to a series of chromatically heterogeneous or homogeneous stimuli and tested for preference between two novel stimuli, one heterogeneous and the other homogeneous. Exposure to heterogeneity significantly enhanced preference for novel heterogeneous stimuli, relative to ducklings exposed to homogeneous stimuli or unexposed controls. These findings support the view that imprinting does not rely solely on exemplars, or snapshot-like representations of visual input, but that instead young precocial animals form complex multidimensional representations of the target object, involving abstract properties, either at the time of learning, or later, through generalization from the learnt exemplars.
Collapse
Affiliation(s)
- Antone Martinho-Truswell
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
- St Paul's College, University of Sydney, 9 City Road, Camperdown, NSW, 2050, Australia.
| | - Bethan McGregor
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Alex Kacelnik
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| |
Collapse
|
7
|
Prasad A, Wood SMW, Wood JN. Using automated controlled rearing to explore the origins of object permanence. Dev Sci 2019; 22:e12796. [PMID: 30589167 DOI: 10.1111/desc.12796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 01/13/2023]
Abstract
What are the origins of object permanence? Despite widespread interest in this question, methodological barriers have prevented detailed analysis of how experience shapes the development of object permanence in newborn organisms. Here, we introduce an automated controlled-rearing method for studying the emergence of object permanence in strictly controlled virtual environments. We used newborn chicks as an animal model and recorded their behavior continuously (24/7) from the onset of vision. Across four experiments, we found that object permanence can develop rapidly, within the first few days of life. This ability developed even when chicks were reared in impoverished visual environments containing no object occlusion events. Object permanence failed to develop, however, when chicks were reared in environments containing temporally non-smooth objects (objects moving on discontinuous spatiotemporal paths). These results suggest that experience with temporally smooth objects facilitates the development of object permanence, confirming a key prediction of temporal learning models in computational neuroscience.
Collapse
Affiliation(s)
- Aditya Prasad
- Department of Psychology, University of Southern California, Los Angeles, California
| | - Samantha M W Wood
- Department of Psychology, University of Southern California, Los Angeles, California
| | - Justin N Wood
- Department of Psychology, University of Southern California, Los Angeles, California
| |
Collapse
|
8
|
Wood JN. Spontaneous Preference for Slowly Moving Objects in Visually Naïve Animals. Open Mind (Camb) 2017. [DOI: 10.1162/opmi_a_00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To perceive the world successfully, newborns need certain types of visual experiences. The development of object recognition, for example, requires visual experience with slowly moving objects. To date, however, it is unknown whether newborns actively seek out the best visual experiences for developing object recognition. To address this question, I used an automated controlled-rearing method to examine whether visually naïve animals (newborn chicks) seek out slowly moving objects. Despite receiving equal exposure to slowly and to quickly rotating objects, the majority of the chicks developed a preference for slowly rotating objects. This preference was robust, producing large effect sizes across objects, experiments, and successive test days. These results indicate that newborn brains rapidly develop mechanisms for orienting young animals toward optimal visual experiences, thus facilitating the development of object recognition. This study also demonstrates that automation can be a valuable tool for studying the origins and development of visual preferences.
Collapse
Affiliation(s)
- Justin N. Wood
- Department of Psychology, University of Southern California
| |
Collapse
|
9
|
Wood JN, Wood SM. Measuring the speed of newborn object recognition in controlled visual worlds. Dev Sci 2016; 20. [DOI: 10.1111/desc.12470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Justin N. Wood
- Department of Psychology University of Southern California USA
| | | |
Collapse
|
10
|
Wood JN, Wood SMW. The development of newborn object recognition in fast and slow visual worlds. Proc Biol Sci 2016; 283:20160166. [PMID: 27097925 PMCID: PMC4855384 DOI: 10.1098/rspb.2016.0166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/29/2016] [Indexed: 11/12/2022] Open
Abstract
Object recognition is central to perception and cognition. Yet relatively little is known about the environmental factors that cause invariant object recognition to emerge in the newborn brain. Is this ability a hardwired property of vision? Or does the development of invariant object recognition require experience with a particular kind of visual environment? Here, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) require visual experience with slowly changing objects to develop invariant object recognition abilities. When newborn chicks were raised with a slowly rotating virtual object, the chicks built invariant object representations that generalized across novel viewpoints and rotation speeds. In contrast, when newborn chicks were raised with a virtual object that rotated more quickly, the chicks built viewpoint-specific object representations that failed to generalize to novel viewpoints and rotation speeds. Moreover, there was a direct relationship between the speed of the object and the amount of invariance in the chick's object representation. Thus, visual experience with slowly changing objects plays a critical role in the development of invariant object recognition. These results indicate that invariant object recognition is not a hardwired property of vision, but is learned rapidly when newborns encounter a slowly changing visual world.
Collapse
Affiliation(s)
- Justin N Wood
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Samantha M W Wood
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
11
|
Wood JN, Prasad A, Goldman JG, Wood SMW. Enhanced learning of natural visual sequences in newborn chicks. Anim Cogn 2016; 19:835-45. [PMID: 27079969 DOI: 10.1007/s10071-016-0982-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/06/2016] [Accepted: 03/31/2016] [Indexed: 10/21/2022]
Abstract
To what extent are newborn brains designed to operate over natural visual input? To address this question, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) show enhanced learning of natural visual sequences at the onset of vision. We took the same set of images and grouped them into either natural sequences (i.e., sequences showing different viewpoints of the same real-world object) or unnatural sequences (i.e., sequences showing different images of different real-world objects). When raised in virtual worlds containing natural sequences, newborn chicks developed the ability to recognize familiar images of objects. Conversely, when raised in virtual worlds containing unnatural sequences, newborn chicks' object recognition abilities were severely impaired. In fact, the majority of the chicks raised with the unnatural sequences failed to recognize familiar images of objects despite acquiring over 100 h of visual experience with those images. Thus, newborn chicks show enhanced learning of natural visual sequences at the onset of vision. These results indicate that newborn brains are designed to operate over natural visual input.
Collapse
Affiliation(s)
- Justin N Wood
- Department of Psychology, University of Southern California, Building SGM, Room 501, 3620 South McClintock Avenue, Los Angeles, CA, 90089, USA.
| | - Aditya Prasad
- Department of Psychology, University of Southern California, Building SGM, Room 501, 3620 South McClintock Avenue, Los Angeles, CA, 90089, USA
| | - Jason G Goldman
- Department of Psychology, University of Southern California, Building SGM, Room 501, 3620 South McClintock Avenue, Los Angeles, CA, 90089, USA
| | - Samantha M W Wood
- Department of Psychology, University of Southern California, Building SGM, Room 501, 3620 South McClintock Avenue, Los Angeles, CA, 90089, USA
| |
Collapse
|
12
|
Versace E, Vallortigara G. Origins of Knowledge: Insights from Precocial Species. Front Behav Neurosci 2015; 9:338. [PMID: 26696856 PMCID: PMC4673401 DOI: 10.3389/fnbeh.2015.00338] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 11/20/2015] [Indexed: 01/01/2023] Open
Abstract
Behavioral responses are influenced by knowledge acquired during the lifetime of an individual and by predispositions transmitted across generations. Establishing the origin of knowledge and the role of the unlearned component is a challenging task, given that both learned and unlearned knowledge can orient perception, learning, and the encoding of environmental features since the first stages of life. Ethical and practical issues constrain the investigation of unlearned knowledge in altricial species, including human beings. On the contrary, precocial animals can be tested on a wide range of tasks and capabilities immediately after birth and in controlled rearing conditions. Insects and precocial avian species are very convenient models to dissect the knowledge systems that enable young individuals to cope with their environment in the absence of specific previous experience. We present the state of the art of research on the origins of knowledge that comes from different models and disciplines. Insects have been mainly used to investigate unlearned sensory preferences and prepared learning mechanisms. The relative simplicity of the neural system and fast life cycle of insects make them ideal models to investigate the neural circuitry and evolutionary dynamics of unlearned traits. Among avian species, chicks of the domestic fowl have been the focus of many studies, and showed to possess unlearned knowledge in the sensory, physical, spatial, numerical and social domains. Solid evidence shows the existence of unlearned knowledge in different domains in several species, from sensory and social preferences to the left-right representation of the mental number line. We show how non-mammalian models of cognition, and in particular precocial species, can shed light into the adaptive value and evolutionary history of unlearned knowledge.
Collapse
Affiliation(s)
- Elisabetta Versace
- Animal Cognition and Neuroscience Laboratory, Center for Mind/Brain Sciences, University of Trento Rovereto, Italy
| | - Giorgio Vallortigara
- Animal Cognition and Neuroscience Laboratory, Center for Mind/Brain Sciences, University of Trento Rovereto, Italy
| |
Collapse
|
13
|
Zoccolan D, Cox DD, Benucci A. Editorial: What can simple brains teach us about how vision works. Front Neural Circuits 2015; 9:51. [PMID: 26483639 PMCID: PMC4586271 DOI: 10.3389/fncir.2015.00051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/14/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Davide Zoccolan
- Visual Neuroscience Lab, International School for Advanced Studies Trieste, Italy
| | - David D Cox
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University Cambridge, MA, USA
| | - Andrea Benucci
- Laboratory for Neural Circuit and Behavior, RIKEN Brain Science Institute Wako City, Japan
| |
Collapse
|