1
|
Yamao H, Matsui K. Astrocytic determinant of the fate of long-term memory. Glia 2025; 73:309-329. [PMID: 39495149 DOI: 10.1002/glia.24636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
While some vivid memories are unyielding and unforgettable, others fade with time. Astrocytes are recognized for their role in modulating the brain's environment and have recently been considered integral to the brain's information processing and memory formation. This suggests their potential roles in emotional perception and memory formation. In this study, we delve into the impact of amygdala astrocytes on fear behaviors and memory, employing astrocyte-specific optogenetic manipulations in mice. Our findings reveal that astrocytic photoactivation with channelrhodopsin-2 (ChR2) provokes aversive behavioral responses, while archaerhodopsin-T (ArchT) photoactivation diminishes fear perception. ChR2 photoactivation amplifies fear perception and fear memory encoding but obstructs its consolidation. On the other hand, ArchT photoactivation inhibits memory formation during intense aversive stimuli, possibly due to weakened fear perception. However, it prevents the decay of remote fear memory over three weeks. Crucially, these memory effects were observed when optogenetic manipulations coincided with the aversive experience, indicating a deterministic role of astrocytic states at the exact moment of fear experiences in shaping long-term memory. This research underscores the significant and multifaceted role of astrocytes in emotional perception, fear memory formation, and modulation, suggesting a sophisticated astrocyte-neuron communication mechanism underlying basic emotional state transitions of information processing in the brain.
Collapse
Affiliation(s)
- Hiroki Yamao
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Ko Matsui
- Super-network Brain Physiology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Super-network Brain Physiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Yaeger JDW, Achua JK, Booth CD, Khalid D, John MM, Ledesma LJ, Greschke TL, Potter AM, Howe CB, Krupp KT, Smith JP, Ronan PJ, Summers CH. Learned phenotypes emerge during social stress modifying hippocampal orexin receptor gene expression. Sci Rep 2024; 14:31691. [PMID: 39738291 DOI: 10.1038/s41598-024-81590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved. The hippocampus, studied for its role in learning, is divided into regions that designate the passage of neuronal signaling during memory formation, including dentate gyrus (DG), CA3, CA2, and CA1. Inputs into these hippocampal subregions, like those from hypothalamic orexinergic neurons, may modify learning outcomes. We have previously shown the orexin system to balance stress states, where receptor subtypes prompt opposing actions on behavior. Here, we explore the connection between hippocampal orexin receptors and learning during stress. In a social stress/learning paradigm separating mice into stress resilient and vulnerable populations, hippocampal Orx1R and Orx2R transcription is regulated in a phenotype-dependent fashion. We further identified Orx1R as highly expressed in the hilus of DG, while Orx2R is abundant in CA2. Finally, we designed an experiment where mice were provided prior exposure to a stressful environment, which ultimately modified behavior, as well as transcription of hippocampal orexin receptors.
Collapse
Affiliation(s)
- Jazmine D W Yaeger
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, 2301 E. 60th St. N., Sioux Falls, SD, 57104, USA
| | - Justin K Achua
- Division of Urology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Clarissa D Booth
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E. 60th St. N., Sioux Falls, SD, 57104, USA
| | - Delan Khalid
- School of Medicine, BMP, University of Pittsburgh, 3500 Fifth Ave., Pittsburg, PA, 12213, USA
| | - Megan M John
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Leighton J Ledesma
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Trent L Greschke
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA
| | - Ashley M Potter
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80521, USA
| | - Chase B Howe
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Kevin T Krupp
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | | | - Patrick J Ronan
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
- Department of Psychiatry, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, 57105, USA
- Laboratory for Clinical and Translational Research in Psychiatry, Department of Veterans Affairs Medical Center, Denver, CO, 80220, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD, 57069-2390, USA.
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
- Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA.
| |
Collapse
|
3
|
Simkhaev A. Trauma Informed Care and early distress identification in oncology settings. J Psychosoc Oncol 2024:1-24. [PMID: 39639789 DOI: 10.1080/07347332.2024.2433976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Cancer is not only a physical illness but also a source of substantial emotional and psychological trauma and distress for patients. Oncology-related trauma stems from the uncertainty of diagnosis, invasive treatments, and the potential threat to life, leading to emotional distress, anxiety, and in some cases, Post-Traumatic Stress Disorder (PTSD). Addressing this trauma early is essential for patient well-being, as unresolved distress and trauma can exacerbate mental health challenges and hinder treatment adherence. Trauma-Informed Care (TIC) offers a framework to mitigate these issues by focusing on safety, trustworthiness, choice, collaboration, and empowerment in care settings. Organizational attention to trauma is critical, as healthcare environments that fail to address emotional distress can contribute to patient dissatisfaction, higher healthcare costs, and poorer outcomes. Oncology Social Workers (OSW) are professional that are positioned to lead the implementation of TIC due to their training in psychosocial care and trauma identification. OSWs role in healthcare encompasses not just individual patient support, but also educating healthcare teams, advocating for system-wide changes, and creating trauma-informed practices that benefit both patients, staff, and organizations. This manuscript discusses the implementation of TIC in oncology settings, recommending the use of a Trauma-Informed Assessment Protocol, such as the Distress Thermometer (DT), to facilitate early identification and intervention of distress, ultimately improving patient outcomes and organizational effectiveness.
Collapse
|
4
|
Dehghani A, Meftahi GH, Sahraei H. The administration of a phentolamine infusion into the basolateral amygdala enhances long-term memory and diminishes anxiety-like behavior in stressed rats. Behav Pharmacol 2024; 35:419-431. [PMID: 39436284 DOI: 10.1097/fbp.0000000000000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The basolateral amygdala (BLA) contains adrenergic receptors, which are known to be involved in stress, anxiety, and memory. The objective of this study was to explore whether inhibition of α-adrenergic receptors (by phentolamine, an α-adrenergic receptor antagonist) in the BLA can reduce foot-shock stress-induced anxiety-like behavior, memory deficits, and long-term potentiation (LTP) deficits within the CA1 region of the rat hippocampus. Forty male Wistar rats were assigned to the intact, control, stress (Str), Phent (phentolamine), and Phent + Str groups. Animals were subjected to six shocks on 4 consecutive days, and phentolamine was injected into BLA 20 min before the animals were placed in the foot-shock stress apparatus. Results from the elevated plus maze test (EPM) revealed a reduction in anxiety-like behaviors (by an increased number of entries into the open arm, percentage of time spent in the open arm, and rearing and freezing) among stressed animals upon receiving injections of phentolamine into the BLA. The open-field test results (increased rearing, grooming, and freezing behaviors) were consistent with the EPM test results. Phentolamine infusion into the BLA enhanced spatial memory, reducing errors in finding the target hole and decreasing latency time in the Barnes maze test for stress and nonstress conditions. Injecting phentolamine into the BLA on both sides effectively prevented LTP impairment in hippocampal CA1 neurons after being subjected to foot-shock stress. It has been suggested that phentolamine in the BLA can effectively improve anxiety-like behaviors and memory deficits induced by foot-shock stress.
Collapse
Affiliation(s)
| | | | - Hedayat Sahraei
- Neuroscience Research Center
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kaur M, Sharma A, John P, Bhatnagar P. Manifestation of polystyrene microplastic accumulation in brain with emphasis on morphometric and histopathological changes in limbic areas of Swiss albino mice. Neurotoxicology 2024; 105:231-246. [PMID: 39427724 DOI: 10.1016/j.neuro.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/01/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The widespread problem of microplastic (MP) contamination is becoming a major threat to the globe. Although most of the research to date has concentrated on the physiological impacts of MPs exposure, a relatively new field of study is beginning to examine its effects on the behaviour and limbic regions of the brain. In this study, exposure to polystyrene MPs (PS-MPs) for acute and sub-chronic durations negatively affected cognition and induced anxiety-like behaviour in mice. PS-MPs were detected in vital organs of mice, including the brain, which induced neurobehavioural and pathological changes in the limbic system. Furthermore, morphometric analysis revealed a significant decrease in the total cell count in the Dentate Gyrus (DG) and Cornu Ammonis (CA) regions of the hippocampus. Signs of neuronal injury and dystrophic changes were observed in the cortex, amygdala, and hypothalamus, potentially affecting anxiety and fear responses. Our study thus provides insight into the effect of PS-MPs on the neurobiology of the brain's limbic system and related behavioural alterations.
Collapse
Affiliation(s)
- Manjyot Kaur
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| | - Anju Sharma
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India.
| | - Placheril John
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| | - Pradeep Bhatnagar
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| |
Collapse
|
6
|
Grey DK, Purcell JB, Buford KN, Schuster MA, Elliott MN, Emery ST, Mrug S, Knight DC. Discrimination Exposure, Neural Reactivity to Stress, and Psychological Distress. Am J Psychiatry 2024; 181:1112-1126. [PMID: 39473266 DOI: 10.1176/appi.ajp.20220884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
OBJECTIVE Discrimination exposure has a detrimental impact on mental health, increasing the risk of depression, anxiety, and posttraumatic stress. The impact discrimination exposure has on mental health is likely mediated by neural processes associated with emotion expression and regulation. However, the specific neural processes that mediate the relationship between discrimination exposure and mental health remain to be determined. The present study investigated the relationship adolescent discrimination exposure has with stress-elicited brain activity and mental health symptoms in young adulthood. METHODS A total of 301 participants completed the Montreal Imaging Stress Task while functional MRI data were collected. Discrimination exposure was measured four times from ages 11 to 19, and stress-elicited brain activity and psychological distress (depression, anxiety, posttraumatic stress) were assessed in young adulthood (age 20). RESULTS Stress-elicited dorsolateral and dorsomedial prefrontal cortex (PFC), inferior parietal lobule (IPL), and hippocampal activity varied with discrimination exposure. Activity within these brain regions varied with the cumulative amount and trajectory of discrimination exposure across adolescence (initial exposure, change in exposure, and acceleration of exposure). Depression, anxiety, and posttraumatic stress symptoms varied with discrimination exposure. Stress-elicited activity within the dorsolateral PFC and the IPL statistically mediated the relationship between discrimination exposure and psychological distress. CONCLUSIONS The findings suggest that adolescent discrimination exposure may alter the neural response to future stressors (i.e., within regions associated with emotion expression and regulation), which may in turn modify susceptibility and resilience to psychological distress. Thus, differences in stress-elicited neural reactivity may represent an important neurobiological mechanism underlying discrimination-related mental health disparities.
Collapse
Affiliation(s)
- Devon K Grey
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Juliann B Purcell
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Kristen N Buford
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Mark A Schuster
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Marc N Elliott
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Susan Tortolero Emery
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - Sylvie Mrug
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| | - David C Knight
- Department of Psychology, University of Alabama at Birmingham (Grey, Purcell, Buford, Mrug, Knight); Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA (Schuster); RAND Corporation, Santa Monica, CA (Elliott); UTHealth Houston School of Public Health, Houston (Emery)
| |
Collapse
|
7
|
de Castro GB, Pereira RRS, Diniz e Magalhães CO, Costa KB, Vieira ER, Cassilhas RC, Sampaio KH, Machado ART, Carvalho JDCL, Murata RM, Pereira LJ, Dias‐Peixoto MF, Andrade EF, Pardi V. Experimental Periodontitis Increases Anxious Behavior and Worsens Cognitive Aspects and Systemic Oxidative Stress in Wistar Rats. Clin Exp Dent Res 2024; 10:e70017. [PMID: 39497351 PMCID: PMC11534646 DOI: 10.1002/cre2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024] Open
Abstract
OBJECTIVES Periodontitis (PD) has the potential to induce systemic changes that affect both physical and behavioral aspects. These alterations may be associated with changes in both the inflammatory profile and the oxidative stress status of individuals with PD. Therefore, we aimed to evaluate the effects of PD on oxidative stress, as well as on behavioral parameters and cognitive impairment, in a preclinical model. MATERIAL AND METHODS Twenty-four male Wistar rats were randomly assigned to PD and sham groups. PD was induced by the ligature protocol for 14 days. Behavioral tests were initiated on the 9th day of the experiment to evaluate anxious behavior and cognition (learning and memory). After euthanasia, oxidative stress was evaluated in the gums, blood, hippocampus, and amygdala. Alveolar bone loss, bone microstructure, and elemental compositions of the mandibular bone were also assessed. RESULTS PD increased alveolar bone loss, reduced the calcium and phosphorus content in the mandibular bone, and increased anxiety-like behavior and cognitive decline (p < 0.05). Furthermore, PD significantly affected the redox balance, as evidenced by increased total antioxidant capacity (TAC) in the gingiva and hippocampus (p < 0.05). It also led to increased lipid peroxidation in the gingiva and erythrocytes (p < 0.05), decreased antioxidant defenses in erythrocytes (superoxide dismutase) and the hippocampus (catalase), and increased antioxidant activity (catalase) in the amygdala (p < 0.05). CONCLUSION PD resulted in cognitive alterations, including impairments in spatial learning and memory, as well as increased anxious behavior, likely due to redox imbalance in rats.
Collapse
Affiliation(s)
- Giselle B. de Castro
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Ramona R. S. Pereira
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Caíque O. Diniz e Magalhães
- Biological and Health Sciences DepartmentUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Karine B. Costa
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Etel R. Vieira
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Ricardo C. Cassilhas
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Kinulpe H. Sampaio
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Alan R. T. Machado
- Department of Exact SciencesUniversidade do Estado de Minas GeraisJoão MonlevadeMinas GeraisBrazil
| | | | - Ramiro M. Murata
- Department of Foundational Sciences, School of Dental MedicineEast Carolina University (ECU)GreenvilleNorth CarolinaUSA
| | - Luciano J. Pereira
- Department of Health SciencesUniversidade Federal de Lavras (UFLA)LavrasBrazil
| | - Marco F. Dias‐Peixoto
- Health Sciences ProgramUniversidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM)DiamantinaMinas GeraisBrazil
| | - Eric F. Andrade
- Department of Health SciencesUniversidade Federal de Lavras (UFLA)LavrasBrazil
| | - Vanessa Pardi
- Department of Foundational Sciences, School of Dental MedicineEast Carolina University (ECU)GreenvilleNorth CarolinaUSA
| |
Collapse
|
8
|
Gore IR, Brown CJ, Waters RC, Gould E. Social and nonsocial environmental loss have differential effects on ventral hippocampus-dependent behavior and inhibitory synaptic markers in adult male mice. Learn Mem 2024; 31:a053968. [PMID: 39681456 DOI: 10.1101/lm.053968.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/01/2024] [Indexed: 12/18/2024]
Abstract
In humans, psychological loss, whether social or nonsocial, can lead to clinical depression, anxiety disorders, and social memory impairments. Researchers have modeled combined social and nonsocial loss in rodents by transitioning them from social, enriched environments (EE) to individual housing, affecting behaviors related to avoidance, stress coping, and cognitive function. However, it remains unclear if these effects are driven by social or nonsocial loss. We examined the effects of nonsocial loss by housing adult male mice in EE before moving them to standard cages, where they were pair-housed, and compared this to mice experiencing complete social loss. Continuous EE reduced social investigation time while leaving social memory intact, also decreasing avoidance behavior. Nonsocial loss restored social investigation and avoidance behavior to control levels, while social loss impaired social memory and increased avoidance. In rodents, social memory and avoidance require ventral hippocampus (vHIP) neuronal oscillations, which involve parvalbumin-positive (PV+) inhibitory interneurons. We found decreased vHIP PV intensity in the social loss group, with no differences in the nonsocial loss group. Most PV+ cells are surrounded by perineuronal nets (PNNs) concentrating GABAA receptors in their lattice-like holes. Social loss decreased GABAA-δ expression, a subunit associated with extrasynaptic receptors, across PNN+ soma and in PNN holes, while nonsocial loss reduced gephyrin in these regions. These findings suggest social and nonsocial losses differentially affect vHIP function and behavior, with social loss having a more pronounced impact through mechanisms involving PV+ interneurons, PNN structure, and neurotransmitter receptor expression.
Collapse
Affiliation(s)
- Isha R Gore
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08542, USA
| | - Casey J Brown
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08542, USA
| | - Renée C Waters
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08542, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08542, USA
| |
Collapse
|
9
|
Liu Q, Xiong J, Kim DW, Lee SS, Bell BJ, Alexandre C, Blackshaw S, Latremoliere A, Wu MN. An amygdalar oscillator coordinates cellular and behavioral rhythms. Neuron 2024; 112:3750-3767.e7. [PMID: 39303704 PMCID: PMC11581920 DOI: 10.1016/j.neuron.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Circadian rhythms are generated by the master pacemaker suprachiasmatic nucleus (SCN) in concert with local clocks throughout the body. Although many brain regions exhibit cycling clock gene expression, the identity of a discrete extra-SCN brain oscillator that produces rhythmic behavior has remained elusive. Here, we show that an extra-SCN oscillator in the lateral amygdala (LA) is defined by expression of the clock-output molecule mWAKE/ANKFN1. mWAKE is enriched in the anterior/dorsal LA (adLA), and, strikingly, selective disruption of clock function or excitatory signaling in adLAmWAKE neurons abolishes Period2 (PER2) rhythms throughout the LA. mWAKE levels rise at night and promote rhythmic excitability of adLAmWAKE neurons by upregulating Ca2+-activated K+ channel activity specifically at night. adLAmWAKE neurons coordinate rhythmic sensory perception and anxiety in a clock-dependent and WAKE-dependent manner. Together, these data reveal the cellular identity of an extra-SCN brain oscillator and suggest a multi-level hierarchical system organizing molecular and behavioral rhythms.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiali Xiong
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sang Soo Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin J Bell
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chloe Alexandre
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Seth Blackshaw
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alban Latremoliere
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
García-Marín LM, Campos AI, Diaz-Torres S, Rabinowitz JA, Ceja Z, Mitchell BL, Grasby KL, Thorp JG, Agartz I, Alhusaini S, Ames D, Amouyel P, Andreassen OA, Arfanakis K, Arias-Vasquez A, Armstrong NJ, Athanasiu L, Bastin ME, Beiser AS, Bennett DA, Bis JC, Boks MPM, Boomsma DI, Brodaty H, Brouwer RM, Buitelaar JK, Burkhardt R, Cahn W, Calhoun VD, Carmichael OT, Chakravarty M, Chen Q, Ching CRK, Cichon S, Crespo-Facorro B, Crivello F, Dale AM, Smith GD, de Geus EJC, De Jager PL, de Zubicaray GI, Debette S, DeCarli C, Depondt C, Desrivières S, Djurovic S, Ehrlich S, Erk S, Espeseth T, Fernández G, Filippi I, Fisher SE, Fleischman DA, Fletcher E, Fornage M, Forstner AJ, Francks C, Franke B, Ge T, Goldman AL, Grabe HJ, Green RC, Grimm O, Groenewold NA, Gruber O, Gudnason V, Håberg AK, Haukvik UK, Heinz A, Hibar DP, Hilal S, Himali JJ, Ho BC, Hoehn DF, Hoekstra PJ, Hofer E, Hoffmann W, Holmes AJ, Homuth G, Hosten N, Ikram MK, Ipser JC, Jack CR, Jahanshad N, Jönsson EG, Kahn RS, Kanai R, Klein M, Knol MJ, Launer LJ, Lawrie SM, Hellard SL, Lee PH, Lemaître H, Li S, Liewald DCM, Lin H, Longstreth WT, Lopez OL, Luciano M, Maillard P, Marquand AF, Martin NG, Martinot JL, Mather KA, Mattay VS, McMahon KL, Mecocci P, Melle I, Meyer-Lindenberg A, Mirza-Schreiber N, Milaneschi Y, Mosley TH, Mühleisen TW, Müller-Myhsok B, Maniega SM, Nauck M, Nho K, Niessen WJ, Nöthen MM, Nyquist PA, Oosterlaan J, Pandolfo M, Paus T, Pausova Z, Penninx BWJH, Pike GB, Psaty BM, Pütz B, Reppermund S, Rietschel MD, Risacher SL, Romanczuk-Seiferth N, Romero-Garcia R, Roshchupkin GV, Rotter JI, Sachdev PS, Sämann PG, Saremi A, Sargurupremraj M, Saykin AJ, Schmaal L, Schmidt H, Schmidt R, Schofield PR, Scholz M, Schumann G, Schwarz E, Shen L, Shin J, Sisodiya SM, Smith AV, Smoller JW, Soininen HS, Steen VM, Stein DJ, Stein JL, Thomopoulos SI, Toga AW, Tordesillas-Gutiérrez D, Trollor JN, Valdes-Hernandez MC, van T Ent D, van Bokhoven H, van der Meer D, van der Wee NJA, Vázquez-Bourgon J, Veltman DJ, Vernooij MW, Villringer A, Vinke LN, Völzke H, Walter H, Wardlaw JM, Weinberger DR, Weiner MW, Wen W, Westlye LT, Westman E, White T, Witte AV, Wolf C, Yang J, Zwiers MP, Ikram MA, Seshadri S, Thompson PM, Satizabal CL, Medland SE, Rentería ME. Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries. Nat Genet 2024; 56:2333-2344. [PMID: 39433889 DOI: 10.1038/s41588-024-01951-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/18/2024] [Indexed: 10/23/2024]
Abstract
Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. Here we performed genome-wide association studies meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signaling and brain aging-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson's disease and attention-deficit/hyperactivity disorder. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases.
Collapse
Affiliation(s)
- Luis M García-Marín
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Adrian I Campos
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Santiago Diaz-Torres
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jill A Rabinowitz
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - Zuriel Ceja
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Brittany L Mitchell
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Katrina L Grasby
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Jackson G Thorp
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ingrid Agartz
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - Saud Alhusaini
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, USA
- Molecular and Cellular Therapeutics Department, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David Ames
- Academic Unit Psychiatry of Old Age, University of Melbourne, Melbourne, Victoria, Australia
- National Ageing Research Institute, Parkville, Victoria, Australia
| | - Philippe Amouyel
- Universite Lille, U1167-RID-AGE-LabEx DISTALZ-Risk Factors and Molecular Determinants of Aging Diseases, Lille, France
- Institut National de la Santé et de la Recherche Médicale, Lille, France
- Centre Hospitalier Universitaire de Lille Department of Public Health, Lille, France
- Institut Pasteur de Lille UMR1167, Lille, France
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Alejandro Arias-Vasquez
- Departments of Psychiatry and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Curtin University, Perth, Western Australia, Australia
| | - Lavinia Athanasiu
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Mark E Bastin
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Alexa S Beiser
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Marco P M Boks
- Brain Center University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dorret I Boomsma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Rachel M Brouwer
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Amsterdam, Amsterdam, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg University, Regensburg, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
- Altrecht Mental Health Institute, Utrecht, The Netherlands
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)-Georgia State, Georgia Tech and Emory University, Atlanta, GA, USA
| | | | - Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Christopher R K Ching
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Benedicto Crespo-Facorro
- HU Virgen del Rocio, Instituto de Investigacion Biomedica IBIS-CSIC, Universidad de Sevilla, CIBERSAM, Sevilla, Spain
| | | | - Anders M Dale
- Center for Multimodal Imaging and Genetics, La Jolla, CA, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Stéphanie Debette
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux University Hospital, Bordeaux, France
| | - Charles DeCarli
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | - Chantal Depondt
- Department of Neurology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Sylvane Desrivières
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Susanne Erk
- German Center of Mental Health (DZPG), Partner Site Berlin/Potsdam, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychology, Oslo New University College, Oslo, Norway
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irina Filippi
- INSERM U1299, Paris Saclay University, Gif-sur-Yvette, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Debra A Fleischman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Evan Fletcher
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Andreas J Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Robert C Green
- Department of Medicine (Genetics), Mass General Brigham and Harvard Medical School, Boston, MA, USA
| | - Oliver Grimm
- Central Institute of Mental Health, Mannheim, Germany
- Goethe-University Frankfurt, Frankfurt, Germany
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Asta K Håberg
- Department of Neuromedicine and Movement, NTNU Science, Trondheim, Norway
- MiDT National Research Center, Department of Research, St Olavs Hospital, Trondheim, Norway
| | - Unn K Haukvik
- Norwegian Centre for Mental Health Research (NORMENT), Department of Mental Health and Addiction, University of Oslo, Oslo, Norway
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Heinz
- German Center of Mental Health (DZPG), Partner Site Berlin/Potsdam, Berlin, Germany
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, Norway
| | - Derrek P Hibar
- Product Development, Genentech, Inc., South San Francisco, CA, USA
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore City, Singapore
| | - Jayandra J Himali
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health Science Center San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Beng-Choon Ho
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Accare Child Study Center, Groningen, The Netherlands
| | - Edith Hofer
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Wolfgang Hoffmann
- German Centre for Neurodegenerative Diseases (DZNE)-Site Rostock/Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Norbert Hosten
- Department of Radiology, University Clinic Greifswald, Greifswald, Germany
| | - M Kamran Ikram
- Departments of Epidemiology and Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Jonathan C Ipser
- Department of Psychiatry and Mental Health, Neuroscience Institute, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | | | - Neda Jahanshad
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Erik G Jönsson
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Rene S Kahn
- Altrecht Mental Health Institute, Utrecht, The Netherlands
| | | | - Marieke Klein
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lenore J Launer
- Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | | | | | - Phil H Lee
- Center for Genomic Medicine, Mass General Brigham, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatry, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hervé Lemaître
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Université de Bordeaux, Bordeaux, France
| | - Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
| | | | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Pauline Maillard
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicholas G Martin
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jean-Luc Martinot
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 'Trajectoires développementales Psychiatrie', Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, France
| | - Karen A Mather
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Katie L McMahon
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Clinical Geriatrics, NVS Department, Karolinska Institute, Huddinge, Sweden
| | - Ingrid Melle
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nazanin Mirza-Schreiber
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep and Stress Program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics Program, Amsterdam, The Netherlands
| | | | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | | | - Susana Muñoz Maniega
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wiro J Niessen
- University Medical Center Groningen, Groningen, The Netherlands
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Paul A Nyquist
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- General Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jaap Oosterlaan
- Clinical Neuropsychology Section, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Emma Children's Hospital, University Medical Centers Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Massimo Pandolfo
- Université Libre de Bruxelles, Brussels, Belgium
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Zdenka Pausova
- Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Systems and Population Health, Seattle, WA, USA
| | - Benno Pütz
- Translational Psychiatry, Munich, Germany
| | - Simone Reppermund
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Developmental Disability Neuropsychiatry, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Marcella D Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Neuroscience, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychology, Clinical Psychology and Psychotherapy, MSB Medical School Berlin, Berlin, Germany
| | - Rafael Romero-Garcia
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Sevilla, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, New South Wales, Australia
| | | | - Arvin Saremi
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Muralidharan Sargurupremraj
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Orygen, Parkville, Victoria, Australia
| | - Helena Schmidt
- Institute of Molecular Biology and Biochemistry, Gottfried Schatz Center for Signaling, Metabolism and Aging, Medical University Graz, Graz, Austria
| | - Reinhold Schmidt
- Department of Neurology, Medical University Graz Austria, Graz, Austria
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Markus Scholz
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Gunter Schumann
- German Center of Mental Health (DZPG), Partner Site Berlin/Potsdam, Berlin, Germany
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, PR China
- PONS Centre, Department of Psychiatry, CCM, Charite Unversitaetsmedizin Berlin, Berlin, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Shin
- The Hospital for Sick Children, Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hilkka S Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Vidar M Steen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Dan J Stein
- SAMRC Research Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Jason L Stein
- Department of Genetics and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sophia I Thomopoulos
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Diana Tordesillas-Gutiérrez
- Instituto de Física de Cantabria (CSIC-UC), Santander, Spain
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander, Spain
| | - Julian N Trollor
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
- The National Centre of Excellence in Intellectual Disability Health, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Maria C Valdes-Hernandez
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Dennis van T Ent
- Department of Biological Psychology and Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dennis van der Meer
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Sevilla, Spain
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Louis N Vinke
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh, UK
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael W Weiner
- University of California, San Francisco, San Francisco, CA, USA
- Northern California Institute for Research and Education (NCIRE), San Francisco, CA, USA
- Veterans Administration Medical Center, San Francisco, CA, USA
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Lars T Westlye
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, Sweden
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Marcel P Zwiers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sudha Seshadri
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Paul M Thompson
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Claudia L Satizabal
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Sarah E Medland
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Psychology, The University of Queensland, Brisbane, Queensland, Australia
| | - Miguel E Rentería
- Brain and Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
11
|
Aroniadou-Anderjaska V, Figueiredo TH, De Araujo Furtado M, Pidoplichko VI, Lumley LA, Braga MFM. Alterations in GABA A receptor-mediated inhibition triggered by status epilepticus and their role in epileptogenesis and increased anxiety. Neurobiol Dis 2024; 200:106633. [PMID: 39117119 DOI: 10.1016/j.nbd.2024.106633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
The triggers of status epilepticus (SE) in non-epileptic patients can vary widely, from idiopathic causes to exposure to chemoconvulsants. Regardless of its etiology, prolonged SE can cause significant brain damage, commonly resulting in the development of epilepsy, which is often accompanied by increased anxiety. GABAA receptor (GABAAR)-mediated inhibition has a central role among the mechanisms underlying brain damage and the ensuing epilepsy and anxiety. During SE, calcium influx primarily via ionotropic glutamate receptors activates signaling cascades which trigger a rapid internalization of synaptic GABAARs; this weakens inhibition, exacerbating seizures and excitotoxicity. GABAergic interneurons are more susceptible to excitotoxic death than principal neurons. During the latent period of epileptogenesis, the aberrant reorganization in synaptic interactions that follow interneuronal loss in injured brain regions, leads to the formation of hyperexcitable, seizurogenic neuronal circuits, along with disturbances in brain oscillatory rhythms. Reduction in the spontaneous, rhythmic "bursts" of IPSCs in basolateral amygdala neurons is likely to play a central role in anxiogenesis. Protecting interneurons during SE is key to preventing both epilepsy and anxiety. Antiglutamatergic treatments, including antagonism of calcium-permeable AMPA receptors, can be expected to control seizures and reduce excitotoxicity not only by directly suppressing hyperexcitation, but also by counteracting the internalization of synaptic GABAARs. Benzodiazepines, as delayed treatment of SE, have low efficacy due to the reduction and dispersion of their targets (the synaptic GABAARs), but also because themselves contribute to further reduction of available GABAARs at the synapse; furthermore, benzodiazepines may be completely ineffective in the immature brain.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Marcio De Araujo Furtado
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Lucille A Lumley
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen, Proving Ground, MD, USA.
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
12
|
Pereira RRDS, Castro GBD, Magalhães CODE, Costa KB, Garcia BCC, Silva G, Carvalho JDCL, Machado ART, Vieira ER, Cassilhas RC, Pereira LJ, Dias-Peixoto MF, Andrade EF. High-intensity interval training mitigates the progression of periodontitis and improves behavioural aspects in rats. J Clin Periodontol 2024; 51:1222-1235. [PMID: 38798054 DOI: 10.1111/jcpe.14020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
AIM To investigate the effects of high-intensity interval training (HIIT) on periodontitis (PD) progression and behavioural outcomes. MATERIALS AND METHODS Forty-eight Wistar rats were divided into four groups: non-trained (NT); non-trained with PD; HIIT with PD; and HIIT. The HIIT protocol, involving daily treadmill sessions, spanned 8 weeks, with PD induced by ligature after the 6th week. Behavioural tests were conducted to assess anxiety and memory. Post euthanasia, we evaluated the systemic inflammatory profile and oxidative stress markers in the hippocampus and amygdala. A morphological evaluation and elemental composition analysis of the mandibular alveolar bone were performed. RESULTS PD exacerbated alveolar bone level, bone surface damage and alterations in calcium and phosphorus percentages on the bone surface (p < .05), while HIIT attenuated these changes (p < .05). HIIT improved systemic inflammatory markers altered by PD (tumour necrosis factor [TNF]-α, interleukin [IL]-10, TNF-α/IL-10 and IL-1β/IL-10 ratios, p < .05). PD animals exhibited lower total antioxidant capacity and levels of thiobarbituric acid reactive substances in the amygdala and hippocampus, respectively (p < .05). HIIT maintained these parameters at levels similar to those in NT animals. HIIT improved anxiety and memory outcomes altered by PD (p < .05). CONCLUSIONS HIIT attenuates systemic inflammation, anxiety and memory outcomes promoted by PD.
Collapse
Affiliation(s)
| | - Giselle Bicalho de Castro
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Karine Beatriz Costa
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | - Gabriela Silva
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | | | | | - Etel Rocha Vieira
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Ricardo Cardoso Cassilhas
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Luciano José Pereira
- Department of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Marco Fabrício Dias-Peixoto
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Eric Francelino Andrade
- Health Sciences Program, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
- Department of Health Sciences, Universidade Federal de Lavras (UFLA), Lavras, Minas Gerais, Brazil
| |
Collapse
|
13
|
Chung RS, Cavaleri J, Sundaram S, Gilbert ZD, Del Campo-Vera RM, Leonor A, Tang AM, Chen KH, Sebastian R, Shao A, Kammen A, Tabarsi E, Gogia AS, Mason X, Heck C, Liu CY, Kellis SS, Lee B. Understanding the human conflict processing network: A review of the literature on direct neural recordings during performance of a modified stroop task. Neurosci Res 2024; 206:1-19. [PMID: 38582242 DOI: 10.1016/j.neures.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/23/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
The Stroop Task is a well-known neuropsychological task developed to investigate conflict processing in the human brain. Our group has utilized direct intracranial neural recordings in various brain regions during performance of a modified color-word Stroop Task to gain a mechanistic understanding of non-emotional human conflict processing. The purpose of this review article is to: 1) synthesize our own studies into a model of human conflict processing, 2) review the current literature on the Stroop Task and other conflict tasks to put our research in context, and 3) describe how these studies define a network in conflict processing. The figures presented are reprinted from our prior publications and key publications referenced in the manuscript. We summarize all studies to date that employ invasive intracranial recordings in humans during performance of conflict-inducing tasks. For our own studies, we analyzed local field potentials (LFPs) from patients with implanted stereotactic electroencephalography (SEEG) electrodes, and we observed intracortical oscillation patterns as well as intercortical temporal relationships in the hippocampus, amygdala, and orbitofrontal cortex (OFC) during the cue-processing phase of a modified Stroop Task. Our findings suggest that non-emotional human conflict processing involves modulation across multiple frequency bands within and between brain structures.
Collapse
Affiliation(s)
- Ryan S Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Emiliano Tabarsi
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
14
|
Ayoub LJ, Honigman L, Barnett AJ, McAndrews MP, Moayedi M. Mechanical pain sensitivity is associated with hippocampal structural integrity. Pain 2024; 165:2079-2086. [PMID: 39159941 PMCID: PMC11331818 DOI: 10.1097/j.pain.0000000000003221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 08/21/2024]
Abstract
ABSTRACT Rodents and human studies indicate that the hippocampus, a brain region necessary for memory processing, responds to noxious stimuli. However, the hippocampus has yet to be considered a key brain region directly involved in the human pain experience. One approach to answer this question is to perform quantitative sensory testing on patients with hippocampal damage-ie, medial temporal lobe epilepsy. Some case studies and case series have performed such tests in a handful of patients with various types of epilepsy and have reported mixed results. Here, we aimed to determine whether mechanical pain sensitivity was altered in patients diagnosed with temporal lobe epilepsy. We first investigated whether mechanical pain sensitivity in patients with temporal lobe epilepsy differs from that of healthy individuals. Next, in patients with temporal lobe epilepsy, we evaluated whether the degree of pain sensitivity is associated with the degree of hippocampal integrity. Structural integrity was based on hippocampal volume, and functional integrity was based on verbal and visuospatial memory scores. Our findings show that patients with temporal lobe epilepsy have lower mechanical pain sensitivity than healthy individuals. Only left hippocampal volume was positively associated with mechanical pain sensitivity-the greater the hippocampal damage, the lower the sensitivity to mechanical pain. Hippocampal measures of functional integrity were not significantly associated with mechanical pain sensitivity, suggesting that the mechanisms of hippocampal pain processing may be different than its memory functions. Future studies are necessary to determine the mechanisms of pain processing in the hippocampus.
Collapse
Affiliation(s)
- Lizbeth J. Ayoub
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - Liat Honigman
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Alexander J. Barnett
- Department of Psychology, Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Mary Pat McAndrews
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Department of Psychology, Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Massieh Moayedi
- Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
- Department of Dentistry, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
15
|
Krolick KN, Cao J, Gulla EM, Bhardwaj M, Marshall SJ, Zhou EY, Kiss AJ, Choueiry F, Zhu J, Shi H. Subregion-specific transcriptomic profiling of rat brain reveals sex-distinct gene expression impacted by adolescent stress. Neuroscience 2024; 553:19-39. [PMID: 38977070 PMCID: PMC11444371 DOI: 10.1016/j.neuroscience.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Stress during adolescence clearly impacts brain development and function. Sex differences in adolescent stress-induced or exacerbated emotional and metabolic vulnerabilities could be due to sex-distinct gene expression in hypothalamic, limbic, and prefrontal brain regions. However, adolescent stress-induced whole-genome expression changes in key subregions of these brain regions were unclear. In this study, female and male adolescent Sprague Dawley rats received one-hour restraint stress daily from postnatal day (PD) 32 to PD44. Corticosterone levels, body weights, food intake, body composition, and circulating adiposity and sex hormones were measured. On PD44, brain and blood samples were collected. Using RNA-sequencing, sex-specific differences in stress-induced differentially expressed (DE) genes were identified in subregions of the hypothalamus, limbic system, and prefrontal cortex. Canonical pathways reflected well-known sex-distinct maladies and diseases, substantiating the therapeutic potential of the DE genes found in the current study. Thus, we proposed specific sex distinct, adolescent stress-induced transcriptional changes found in the current study as examples of the molecular bases for sex differences witnessed in stress induced or exacerbated emotional and metabolic disorders. Future behavioral studies and single-cell studies are warranted to test the implications of the DE genes identified in this study in sex-distinct stress-induced susceptibilities.
Collapse
Affiliation(s)
| | - Jingyi Cao
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Evelyn M Gulla
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Meeta Bhardwaj
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | | | - Ethan Y Zhou
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Andor J Kiss
- Center for Bioinformatics & Functional Genomics, Miami University, Oxford, OH 45056, USA.
| | - Fouad Choueiry
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
16
|
García-Marín LM, Campos AI, Diaz-Torres S, Rabinowitz JA, Ceja Z, Mitchell BL, Grasby KL, Thorp JG, Agartz I, Alhusaini S, Ames D, Amouyel P, Andreassen OA, Arfanakis K, Vasquez AA, Armstrong NJ, Athanasiu L, Bastin ME, Beiser AS, Bennett DA, Bis JC, Boks MP, Boomsma DI, Brodaty H, Brouwer RM, Buitelaar JK, Burkhardt R, Cahn W, Calhoun VD, Carmichael OT, Chakravarty M, Chen Q, Ching CRK, Cichon S, Crespo-Facorro B, Crivello F, Dale AM, Smith GD, de Geus EJ, De Jager PL, de Zubicaray GI, Debette S, DeCarli C, Depondt C, Desrivières S, Djurovic S, Ehrlich S, Erk S, Espeseth T, Fernández G, Filippi I, Fisher SE, Fleischman DA, Fletcher E, Fornage M, Forstner AJ, Francks C, Franke B, Ge T, Goldman AL, Grabe HJ, Green RC, Grimm O, Groenewold NA, Gruber O, Gudnason V, Håberg AK, Haukvik UK, Heinz A, Hibar DP, Hilal S, Himali JJ, Ho BC, Hoehn DF, Hoekstra PJ, Hofer E, Hoffmann W, Holmes AJ, Homuth G, Hosten N, Ikram MK, Ipser JC, Jack CR, Jahanshad N, Jönsson EG, Kahn RS, Kanai R, Klein M, Knol MJ, Launer LJ, Lawrie SM, Hellard SL, Lee PH, Lemaître H, Li S, Liewald DC, Lin H, Longstreth WT, Lopez OL, Luciano M, Maillard P, Marquand AF, Martin NG, Martinot JL, Mather KA, Mattay VS, McMahon KL, Mecocci P, Melle I, Meyer-Lindenberg A, Mirza-Schreiber N, Milaneschi Y, Mosley TH, Mühleisen TW, Müller-Myhsok B, Muñoz Maniega S, Nauck M, Nho K, Niessen WJ, Nöthen MM, Nyquist PA, Oosterlaan J, Pandolfo M, Paus T, Pausova Z, Penninx BW, Pike GB, Psaty BM, Pütz B, Reppermund S, Rietschel MD, Risacher SL, Romanczuk-Seiferth N, Romero-Garcia R, Roshchupkin GV, Rotter JI, Sachdev PS, Sämann PG, Saremi A, Sargurupremraj M, Saykin AJ, Schmaal L, Schmidt H, Schmidt R, Schofield PR, Scholz M, Schumann G, Schwarz E, Shen L, Shin J, Sisodiya SM, Smith AV, Smoller JW, Soininen HS, Steen VM, Stein DJ, Stein JL, Thomopoulos SI, Toga AW, Tordesillas-Gutiérrez D, Trollor JN, Valdes-Hernandez MC, van 't Ent D, van Bokhoven H, van der Meer D, van der Wee NJ, Vázquez-Bourgon J, Veltman DJ, Vernooij MW, Villringer A, Vinke LN, Völzke H, Walter H, Wardlaw JM, Weinberger DR, Weiner MW, Wen W, Westlye LT, Westman E, White T, Witte AV, Wolf C, Yang J, Zwiers MP, Ikram MA, Seshadri S, Thompson PM, Satizabal CL, Medland SE, Rentería ME. Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.13.24311922. [PMID: 39371125 PMCID: PMC11451674 DOI: 10.1101/2024.08.13.24311922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. We performed GWAS meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and, for the first time, the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signalling and brain ageing-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson's disease and ADHD. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases.
Collapse
Affiliation(s)
- Luis M García-Marín
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Adrian I Campos
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- Institute for Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Santiago Diaz-Torres
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jill A Rabinowitz
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Zuriel Ceja
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Brittany L Mitchell
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Katrina L Grasby
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jackson G Thorp
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Ingrid Agartz
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, 0407, Norway
- Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, SE-11364, Sweden
| | - Saud Alhusaini
- Department of Neurology, Alpert Medical School of Brown University, Providence, RI, 02903, USA
- Molecular & Cellular Therapeutics Department, Royal College of Surgeons in Ireland, Dublin, D15, Ireland
| | - David Ames
- Academic Unit Psychiatry of Old Age, University of Melbourne, Kew, VIC, 3101, Australia
- National Ageing Research Institute, Parkville, VIC, 3052, Australia
| | - Philippe Amouyel
- Universite Lille, U1167 - RID-AGE - LabEx DISTALZ - Risk factors and molecular determinants of aging diseases, Lille, F-59000, France
- Institut National de la Sante et de la Recherche Medicale, U1167, Lille, F-59000, France
- Centre Hospitalier Universitaire de Lille, Department of Public Health, Lille, F-59000, Franch
- Institut Pasteur de Lille UMR1167, Lille, F-59000, France
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, 0407, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, 0407, Norway
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, 60616, USA
| | - Alejandro Arias Vasquez
- Departments of Psychiatry and Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Curtin University, Perth, Australia
| | - Lavinia Athanasiu
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- CoE NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway, Oslo, 0455, Norway
| | - Mark E Bastin
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Alexa S Beiser
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98195-9458, USA
| | - Marco Pm Boks
- Brain Center University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | | | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rachel M Brouwer
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neurocience, VU Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg University, Regensburg, 93053, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, 04103, Germany
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
- Altrecht Mental Health Institute, Utrecht, 3512PG, The Netherlands
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), {Georgia State, Georgia Tech, Emory}, Atlanta, GA, 30303, USA
| | | | - Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, QC, H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, 52428, Germany
- Department of Biomedicine, University of Basel, Basel, CH-4031, Switzerland
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, 4031, Switzerland
| | - Benedicto Crespo-Facorro
- HU Virgen del Rocio, Instituto de Investigacion biomedica IBIS-CSIC, Universidad de Sevilla, CIBERSAM, Sevilla, 41013, Spain
| | - Fabrice Crivello
- CNRS, IMN, UMR 5293, University of Bordeaux, Bordeaux, 33076, France
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, La Jolla, CA, 92093, USA
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, United Kingdom
- Population Health Sciences, University of Bristol, Bristol, BS8 BN, United Kingdom
| | - Eco Jc de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, 1081 BT, The Netherlands
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10538, USA
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, 4059, Australia
| | - Stéphanie Debette
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- Department of Neurology, Institute of Neurodegenerative Diseases, Bordeaux University Hospital, Bordeaux, F-33000, France
| | - Charles DeCarli
- Imaging of Dementia and Aging Laboratory, Department of Neurology, University of California, Davis, Sacramento, CA, 95817, USA
| | - Chantal Depondt
- Department of Neurology, Hôpital Universitaire de Bruxelles, Université Libre de Bruxelles, Brussels, 1070, Belgium
| | - Sylvane Desrivières
- Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, United Kingdom
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, 0450, Norway
- Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, 01307, Germany
| | - Susanne Erk
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 11017, Germany
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, 0373, Norway
- Department of Psychology, Oslo New University College, Oslo, 0456, Norway
| | - Guillén Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Irina Filippi
- INSERM U1299, Paris Saclay University, Gif-sur-Yvette, 91190, France
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, 6500 HE, The Netherlands
| | - Debra A Fleischman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Evan Fletcher
- Department of Neurology, University of California Davis, Davis, CA, 95616, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Andreas J Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, 52428, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, 53127, Germany
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6525 XD, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Barbara Franke
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Aaron L Goldman
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Robert C Green
- Department of Medicine (Genetics), Mass General Brigham and Harvard Medical School, Boston, MA, 02115, USA
| | - Oliver Grimm
- Central Institute of Mental Health, Mannheim, 68159, Germany
- Goethe-University Frankfurt, Frankfurt am Main, 60528, Germany
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, 7925, South Africa
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, D-69115, Germany
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, 201, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland
| | - Asta K Håberg
- Department of Neuromedicine and Movement, NTNU Science, Trondheim, 7030, Norway
- MiDT National Research Center, Department of Research, St Olavs Hospital, Trondheim, 7006, Norway
| | - Unn K Haukvik
- Norwegian Centre for Mental Health Research (NORMENT), Department of Mental Health and Addiction, University of Oslo, Oslo, 0450, Norway
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, 0455, Norway
| | - Andreas Heinz
- Centre for Forensic Psychiatry Research, Oslo University Hospital, Oslo, 0455, Norway
| | - Derrek P Hibar
- Product Development, Genentech, Inc., South San Francisco, CA, 94080, USA
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
| | - Jayandra J Himali
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229-3900, USA
- Department of Population Health Sciences, UT Health Science Center San Antonio, San Antonio, TX, 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Beng-Choon Ho
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, 52246, USA
| | - David F Hoehn
- Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands
- Accare Child Study Center, Groningen, 9723 HE, The Netherlands
| | - Edith Hofer
- Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, 8036, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, 8036, Austria
| | - Wolfgang Hoffmann
- German Centre for Neurodegenerative Diseases (DZNE) - site Rostock/Greifswald, Greifswald, 17489, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, 17495, Germany
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Norbert Hosten
- Department of Radiology, University Clinic Greifswald, Greifswald, 17475, Germany
| | - M Kamran Ikram
- Departments of Epidemiology and Neurology, Erasmus MC, Rotterdam, 3015 CN , The Netherlands
| | - Jonathan C Ipser
- Department of Psychiatry and Mental Health, Neuroscience Institute, Groote Schuur Hospital, University of Cape Town, Cape Town, 7925, South Africa
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Erik G Jönsson
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, SE-11364, Sweden
| | - Rene S Kahn
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, 3584CX, The Netherlands
| | | | - Marieke Klein
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Maria J Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Lenore J Launer
- Intramural Research Program, National Institute on Aging, Baltimore, MD, 21224, USA
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, United Kingdom
| | | | - Phil H Lee
- Center for Genomic Medicine, Mass General Brigham, Boston, MA, 02114, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Stanley Center for Psychiatry, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Hervé Lemaître
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR 5293, CNRS, Université de Bordeaux, Bordeaux, 33076, France
| | - Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, 02118, USA
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA
| | - W T Longstreth
- Department of Neurology, University of Washington, Seattle, WA, 98104-2420, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98195-9458, USA
| | - Oscar L Lopez
- Departments of Neurology and Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Michelle Luciano
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - Pauline Maillard
- Department of Neurology, University of California Davis, Davis, CA, 95616, USA
| | - Andre F Marquand
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands
| | - Nicholas G Martin
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jean-Luc Martinot
- Université Paris-Saclay; Institut National de la Santé et de la Recherche Médicale, INSERM U1299 "Trajectoires développementales Psychiatrie", Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Université Paris Cité, Centre Borelli, Gif sur Yvette, 911
| | - Karen A Mather
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
| | - Katie L McMahon
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, 06132, Italy
- Clinical Geriatrics, NVS Department, Karolinska Institute, Huddinge, 14152, Sweden
| | - Ingrid Melle
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68159, Germany
| | - Nazanin Mirza-Schreiber
- Institute of Neurogenomics,Helmholtz Munich, 85764, Neuherberg, Germany
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, 85764, Neuherberg, Germany
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, 1081 HJ, The Netherlands
- Amsterdam Public Health, Mental Health program, Amsterdam, 1081 BT, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress program, Amsterdam, 1081 BT, The Netherlands
- Amsterdam Neuroscience, Complex Trait Genetics program, Amsterdam, 1081 HV, The Netherlands
| | | | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, 52428, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, D-40225, Germany
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, CH-4031, Switzerland
| | - Bertram Müller-Myhsok
- Statistics Genetics Group, Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Susana Muñoz Maniega
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, 17489, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, 17489, Germany
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wiro J Niessen
- University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, 53127, Germany
| | - Paul A Nyquist
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
- General internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Jaap Oosterlaan
- Clinical Neuropsychology section, Vrije Universiteit Amsterdam, Amsterdam, 1081 BT, The Netherlands
- Emma Children's Hospital, University Medical Centers Amsterdam, Amsterdam, 1100 DD, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Amsterdam, 1100 DD, The Netherlands
| | - Massimo Pandolfo
- Université Libre de Bruxelles, Brussels, 1070, Belgium
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine, University of Montreal, Montreal, QC, H3T 1C5, Canada
- Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, QC, H3T 1C5, Canada
| | - Zdenka Pausova
- Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Physiology, University of Toronto, Toronto, M5G 0A4, Canada
| | - Brenda Wjh Penninx
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, 1081 HJ, The Netherlands
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98195-9458, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98195-9458, USA
- Department of Health Systems and Population Health, Seattle, WA, 98195-9458, USA
| | - Benno Pütz
- Translational Psychiatry, Munich, 80804, Germany
| | - Simone Reppermund
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Developmental Disability Neuropsychiatry, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Marcella D Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, 68159, Germany
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana Alzheimer's Disease Research Center, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Neuroscience, Charité - Universitätsmedizin Berlin, Berlin, 10117, Germany
- Department of Psychology, Clinical Psychology and Psychotherapy, MSB Medical School Berlin, Berlin, 14197, Germany
| | - Rafael Romero-Garcia
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/ CIBERSAM, ISCIII, Dpto. de Fisiología Médica y Biofísica, Sevilla, 41013, Spain
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, United Kingdom
| | - Gennady V Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Neuropsychiatric Institute, The Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | | | - Arvin Saremi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Muralidharan Sargurupremraj
- INSERM U1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, F-33000, France
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229-3900, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Orygen, Parkville, VIC, 3052, Australia
| | - Helena Schmidt
- Institute of Molecular Biology & Biochemistry, Gottfried Schatz Center for Signaling, Metabolism & Aging, Medical University Graz, Graz, 8010, Austria
| | - Reinhold Schmidt
- Department of Neurology, Medical University Graz Austria, Graz, 8023, Austria
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, 2031, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Markus Scholz
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, 04103, Germany
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, 04107, Germany
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), ISTBI, Fudan University, Shanghai, 200031, P.R. China
- PONS Centre, Department of Psychiatry, CCM, Charite Unversitaetsmedizin Berlin, Berlin, 10017, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68159, Germany
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean Shin
- The Hospital for Sick Children, Departments of Physiology and Nutritional Sciences, University of Toronto, Toronto, ON, M5G 0A4, Canada
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, United Kingdom
- Chalfont Centre for Epilepsy, Chalfont St Peter, SL9 0RJ, United Kingdom
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, 201, Iceland
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Hilkka S Soininen
- Department of Neurology, Institute of Clinical Mediciine, University of Eastern Finland, Kuopio, 70100, Finland
| | - Vidar M Steen
- Department of Clinical Science, University of Bergen, Bergen, 5021, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Dan J Stein
- SAMRC Research Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, 7925, South Africa
| | - Jason L Stein
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7250, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Arthur W Toga
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Diana Tordesillas-Gutiérrez
- Instituto de Física de Cantabria (CSIC-UC), Santander, E-39005, Spain
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander, 39011, Spain
| | - Julian N Trollor
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- The National Centre of Excellence in Intellectual Disability Health,, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maria C Valdes-Hernandez
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Dennis van 't Ent
- Department of Biological Psychology & Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, 1081 BT, The Netherlands
| | - Hans van Bokhoven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Dennis van der Meer
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, 6200MD, The Netherlands
| | - Nic Ja van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, University Hospital Marqués de Valdecilla - IDIVAL, Santander, 39008, Spain
- Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, 39008, Spain
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), Sevilla, 41013, Spain
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, 1081 HJ, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, 04103, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Louis N Vinke
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, 17495, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 11017, Germany
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences and Edinburgh Imaging, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
- UK Dementia Research Institute Centre, University of Edinburgh, Edinburgh, EH16 4SB, United Kingdom
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
- Department of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Michael W Weiner
- University of California San Francisco, San Francisco, CA, 94121, USA
- Northern California Institute for Research & Education (NCIRE), San Francisco, CA, 94121, USA
- Veterans Administration Medical Center, San Francisco, CA, 94121, USA
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Lars T Westlye
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, 0319, Norway
- Department of Psychology, University of Oslo, Oslo, 0373, Norway
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Huddinge, 14183, Sweden
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, Bethesda, MD, 20892-1276, USA
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, 04103, Germany
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | | | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Marcel P Zwiers
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 EN, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015 GD, The Netherlands
| | - Sudha Seshadri
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229-3900, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, 90292, USA
| | - Claudia L Satizabal
- Framingham Heart Study, Chobanian and Avedisian Boston University School of Medicine, Boston, MA, 02118, USA
- Department of Population Health Sciences and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, 78229, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Sarah E Medland
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, QLD, 4059, Australia
- School of Psychology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Miguel E Rentería
- Brain & Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
17
|
Marinescu AM, Labouesse MA. The nucleus accumbens shell: a neural hub at the interface of homeostatic and hedonic feeding. Front Neurosci 2024; 18:1437210. [PMID: 39139500 PMCID: PMC11319282 DOI: 10.3389/fnins.2024.1437210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Feeding behavior is a complex physiological process regulated by the interplay between homeostatic and hedonic feeding circuits. Among the neural structures involved, the nucleus accumbens (NAc) has emerged as a pivotal region at the interface of these two circuits. The NAc comprises distinct subregions and in this review, we focus mainly on the NAc shell (NAcSh). Homeostatic feeding circuits, primarily found in the hypothalamus, ensure the organism's balance in energy and nutrient requirements. These circuits monitor peripheral signals, such as insulin, leptin, and ghrelin, and modulate satiety and hunger states. The NAcSh receives input from these homeostatic circuits, integrating information regarding the organism's metabolic needs. Conversely, so-called hedonic feeding circuits involve all other non-hunger and -satiety processes, i.e., the sensory information, associative learning, reward, motivation and pleasure associated with food consumption. The NAcSh is interconnected with hedonics-related structures like the ventral tegmental area and prefrontal cortex and plays a key role in encoding hedonic information related to palatable food seeking or consumption. In sum, the NAcSh acts as a crucial hub in feeding behavior, integrating signals from both homeostatic and hedonic circuits, to facilitate behavioral output via its downstream projections. Moreover, the NAcSh's involvement extends beyond simple integration, as it directly impacts actions related to food consumption. In this review, we first focus on delineating the inputs targeting the NAcSh; we then present NAcSh output projections to downstream structures. Finally we discuss how the NAcSh regulates feeding behavior and can be seen as a neural hub integrating homeostatic and hedonic feeding signals, via a functionally diverse set of projection neuron subpopulations.
Collapse
Affiliation(s)
- Alina-Măriuca Marinescu
- Brain, Wire and Behavior Group, Translational Nutritional Biology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Marie A. Labouesse
- Brain, Wire and Behavior Group, Translational Nutritional Biology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Alateeq R, Akhtar A, De Luca SN, Chan SMH, Vlahos R. Apocynin Prevents Cigarette Smoke-Induced Anxiety-Like Behavior and Preserves Microglial Profiles in Male Mice. Antioxidants (Basel) 2024; 13:855. [PMID: 39061923 PMCID: PMC11274253 DOI: 10.3390/antiox13070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death globally and is primarily caused by cigarette smoking (CS). Neurocognitive comorbidities such as anxiety and cognitive impairments are common among people with COPD. CS-induced lung inflammation and oxidative stress may "spill-over" into the systemic circulation, driving the onset of these comorbidities. We investigated whether a prophylactic treatment with the NADPH Oxidase 2 (NOX2) inhibitor, apocynin, could prevent CS-induced neurocognitive impairments. Adult male BALB/c mice were exposed to CS (9 cigarettes/day, 5 days/week) or room air (sham) for 8 weeks with co-administration of apocynin (5 mg/kg, intraperitoneal injection once daily) or vehicle (0.01% DMSO in saline). Following 7 weeks of CS exposure, mice underwent behavioral testing to assess recognition and spatial memory (novel object recognition and Y maze, respectively) and anxiety-like behaviors (open field and elevated plus maze). Mice were then euthanized, and blood, lungs, and brains were collected. Apocynin partially improved CS-induced lung neutrophilia and reversed systemic inflammation (C-reactive protein) and oxidative stress (malondialdehyde). Apocynin exerted an anxiolytic effect in CS-exposed mice, which was associated with restored microglial profiles within the amygdala and hippocampus. Thus, targeting oxidative stress using apocynin can alleviate anxiety-like behaviors and could represent a novel strategy for managing COPD-related anxiety disorders.
Collapse
Affiliation(s)
| | | | | | | | - Ross Vlahos
- Respiratory Research Group, Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC 3083, Australia; (R.A.); (A.A.); (S.N.D.L.)
| |
Collapse
|
19
|
Parvin Z, Jaafari Suha A, Afarinesh MR, Hosseinmardi N, Janahmadi M, Behzadi G. Social hierarchy differentially influences the anxiety-like behaviors and dendritic spine density in prefrontal cortex and limbic areas in male rats. Behav Brain Res 2024; 469:115043. [PMID: 38729219 DOI: 10.1016/j.bbr.2024.115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/28/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Social hierarchy is a fundamental feature of social organization that can influence brain and emotional processing regarding social ranks. Several areas, including the medial prefrontal cortex (mPFC), the hippocampus, and the basolateral nucleus of the amygdala (BLA), are recognized to be involved in the regulation of emotional processing. However, its delicate structural correlates in brain regions are poorly understood. To address this issue, social hierarchy in home-caged sibling Wistar rats (three male rats/cage) was determined by employing a social confrontation tube test (postnatal weeks 9-12). Then, locomotor activity and anxiety-like behaviors were evaluated using an open-field test (OFT) and elevated plus-maze (EPM) at 13 weeks of age. The rapid Golgi impregnation method was conducted to quantify the spine density of the first secondary branch of the primary dendrite in 20 µm length. The results indicated that dominant rats had significantly higher anxiety-like behaviors compared to subordinates, as was evident by lower open-arm entries and time spent in the EPM and lower entries and time spent in the center of OFT. The spine density analysis revealed a significantly higher number of spines in subordinates compared to the dominant rats in dmPFC pyramidal neurons and the apical and basal dendrites of hippocampal CA1 pyramidal neurons. However, the spine density of pyramidal-like neurons in the BLA was higher in dominant rats. Our findings suggest that dominant social rank is associated with higher anxiety and differential density of the dendritic spine in the prefrontal cortex and limbic regions of the brain in male rats.
Collapse
Affiliation(s)
- Zeinab Parvin
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Jaafari Suha
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Angelopoulou E, Bougea A, Hatzimanolis A, Scarmeas N, Papageorgiou SG. Unraveling the Potential Underlying Mechanisms of Mild Behavioral Impairment: Focusing on Amyloid and Tau Pathology. Cells 2024; 13:1164. [PMID: 38995015 PMCID: PMC11240615 DOI: 10.3390/cells13131164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
The emergence of sustained neuropsychiatric symptoms (NPS) among non-demented individuals in later life, defined as mild behavioral impairment (MBI), is linked to a higher risk of cognitive decline. However, the underlying pathophysiological mechanisms remain largely unexplored. A growing body of evidence has shown that MBI is associated with alterations in structural and functional neuroimaging studies, higher genetic predisposition to clinical diagnosis of Alzheimer's disease (AD), as well as amyloid and tau pathology assessed in the blood, cerebrospinal fluid, positron-emission tomography (PET) imaging and neuropathological examination. These findings shed more light on the MBI-related potential neurobiological mechanisms, paving the way for the development of targeted pharmacological approaches. In this review, we aim to discuss the available clinical evidence on the role of amyloid and tau pathology in MBI and the potential underlying pathophysiological mechanisms. Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, disruption of neurotrophic factors, such as the brain-derived neurotrophic factor (BDNF), abnormal neuroinflammatory responses including the kynurenine pathway, dysregulation of transforming growth factor beta (TGF-β1), epigenetic alterations including micro-RNA (miR)-451a and miR-455-3p, synaptic dysfunction, imbalance in neurotransmitters including acetylcholine, dopamine, serotonin, gamma-aminobutyric acid (GABA) and norepinephrine, as well as altered locus coeruleus (LC) integrity are some of the potential mechanisms connecting MBI with amyloid and tau pathology. The elucidation of the underlying neurobiology of MBI would facilitate the design and efficacy of relative clinical trials, especially towards amyloid- or tau-related pathways. In addition, we provide insights for future research into our deeper understanding of its underlying pathophysiology of MBI, and discuss relative therapeutic implications.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece; (E.A.); (N.S.); (S.G.P.)
| | - Anastasia Bougea
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece; (E.A.); (N.S.); (S.G.P.)
| | - Alexandros Hatzimanolis
- 1st Department of Psychiatry, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece;
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece; (E.A.); (N.S.); (S.G.P.)
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Aiginition University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias Street 72-74, 11528 Athens, Greece; (E.A.); (N.S.); (S.G.P.)
| |
Collapse
|
21
|
Hong VM, Rade AD, Yan SM, Bhaskara A, Yousuf MS, Chen M, Martin SF, Liebl DJ, Price TJ, Kolber BJ. Loss of Sigma-2 Receptor/TMEM97 Is Associated with Neuropathic Injury-Induced Depression-Like Behaviors in Female Mice. eNeuro 2024; 11:ENEURO.0488-23.2024. [PMID: 38866499 PMCID: PMC11228697 DOI: 10.1523/eneuro.0488-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Previous studies have shown that ligands that bind to sigma-2 receptor/TMEM97 (s2R/TMEM97), a transmembrane protein, have anxiolytic/antidepressant-like properties and relieve neuropathic pain-like effects in rodents. Despite medical interest in s2R/TMEM97, little affective and pain behavioral characterization has been done using transgenic mice, which limits the development of s2R/TMEM97 as a viable therapeutic target. Using wild-type (WT) and global Tmem97 knock-out (KO) mice, we sought to identify the contribution of Tmem97 in modulating affective and pain-like behaviors using a battery of affective and pain assays, including open field, light/dark preference, elevated plus maze, forced swim test, tail suspension test, and the mechanical sensitivity tests. Our results demonstrate that female Tmem97 KO mice show less anxiety-like and depressive-like behaviors in light/dark preference and tail suspension tests but not in an open field, elevated plus maze, and forced swim tests at baseline. We next performed spared nerve injury in WT and Tmem97 KO mice to assess the role of Tmem97 in neuropathic pain-induced anxiety and depression. WT mice, but not Tmem97 KO mice, developed a prolonged neuropathic pain-induced depressive-like phenotype when tested 10 weeks after nerve injury in females. Our results show that Tmem97 plays a role in modulating anxiety-like and depressive-like behaviors in naive animals with a significant change in the presence of nerve injury in female mice. Overall, these data demonstrate that Tmem97 could be a target to alleviate affective comorbidities of pain disorders.
Collapse
Affiliation(s)
- Veronica M Hong
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Avaneesh D Rade
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Shen M Yan
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Amulya Bhaskara
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Muhammad Saad Yousuf
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Min Chen
- Department of Mathematical Sciences, School of Natural Sciences and Mathematics, University of Texas at Dallas, Richardson, Texas 75080
| | - Stephen F Martin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712
| | - Daniel J Liebl
- Department of Neurosurgery, University of Miami, Miller School of Medicine, Miami, Florida 33146
| | - Theodore J Price
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Benedict J Kolber
- Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
22
|
Rosada C, Lipka R, Metz S, Otte C, Heekeren H, Wingenfeld K. Effects of stress-related neuromodulators on amygdala and hippocampus resting state functional connectivity. J Psychopharmacol 2024; 38:604-614. [PMID: 38902928 PMCID: PMC11290027 DOI: 10.1177/02698811241260972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
BACKGROUND The human stress response is characterized by increases in neuromodulators, including norepinephrine (NE) and cortisol. Both neuromodulators can enter the brain and affect neurofunctional responses. Two brain areas associated with stress are the amygdala and the hippocampus. The precise influence of NE and cortisol on the amygdala and hippocampal resting state functional connectivity (RSFC) is poorly understood. AIMS To investigate the influence of NE and cortisol on the amygdala and hippocampal RSFC. METHODS We recruited 165 participants who received 10 mg yohimbine and/or 10 mg hydrocortisone in a randomized, placebo-controlled design. With seed-based analyses, we compared RSFC of the hippocampus and amygdala separately between the three groups that received medication versus placebo. RESULTS We found no differences between yohimbine and placebo condition or between hydrocortisone and placebo condition regarding amygdala or hippocampal FC. Compared with placebo, the yohimbine/hydrocortisone condition showed increased amygdala and hippocampal RSFC with the cerebellum. Also, they had increased hippocampal RSFC with the amygdala and cerebral white matter. DISCUSSION The group with elevated NE and cortisol showed significantly increased RSFC between the amygdala, hippocampus, and cerebellum compared to placebo. These three brain areas are involved in associative learning and emotional memory, suggesting a critical role for this network in the human stress response. Our results show that NE and cortisol together may influence the strength of this association. Compared to placebo, we found no differences in the groups receiving only one medication, suggesting that increasing one neuromodulator alone may not induce differences in neurofunctional responses. The study procedure has been registered at clinicaltrials.gov (ID: NCT04359147).
Collapse
Affiliation(s)
- Catarina Rosada
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Renée Lipka
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany
| | - Sophie Metz
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health, Institute of Medical Psychology, Charité Universitätsmedizin Berlin, Humboldt Universität zu Berlin, Berlin, Germany
| | - Christian Otte
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- DZPG (German Center for Mental Health), Berlin, Germany
| | | | - Katja Wingenfeld
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- DZPG (German Center for Mental Health), Berlin, Germany
| |
Collapse
|
23
|
Reyes I, Faustin A, Tian C, Masurkar AV. Frontal-Variant Alzheimer's Disease: Subregional Distribution of Entorhinal-CA1 Pathology and Pathophysiological Implications. J Neuropsychiatry Clin Neurosci 2024; 36:360-363. [PMID: 38835223 DOI: 10.1176/appi.neuropsych.20230113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Affiliation(s)
- Isabel Reyes
- Center for Cognitive Neurology, Department of Neurology (Reyes, Tian, Masurkar), Alzheimer's Disease Research Center (Faustin, Masurkar), Department of Pathology (Faustin), and Neuroscience Institute (Masurkar), New York University Grossman School of Medicine, New York
| | - Arline Faustin
- Center for Cognitive Neurology, Department of Neurology (Reyes, Tian, Masurkar), Alzheimer's Disease Research Center (Faustin, Masurkar), Department of Pathology (Faustin), and Neuroscience Institute (Masurkar), New York University Grossman School of Medicine, New York
| | - Chengju Tian
- Center for Cognitive Neurology, Department of Neurology (Reyes, Tian, Masurkar), Alzheimer's Disease Research Center (Faustin, Masurkar), Department of Pathology (Faustin), and Neuroscience Institute (Masurkar), New York University Grossman School of Medicine, New York
| | - Arjun V Masurkar
- Center for Cognitive Neurology, Department of Neurology (Reyes, Tian, Masurkar), Alzheimer's Disease Research Center (Faustin, Masurkar), Department of Pathology (Faustin), and Neuroscience Institute (Masurkar), New York University Grossman School of Medicine, New York
| |
Collapse
|
24
|
Sequeira SL, Silk JS, Jones NP, Forbes EE, Hanson JL, Hallion LS, Ladouceur CD. Pathways to adolescent social anxiety: Testing interactions between neural social reward function and perceived social threat in daily life. Dev Psychopathol 2024:1-16. [PMID: 38801123 PMCID: PMC11599470 DOI: 10.1017/s0954579424001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Recent theories suggest that for youth highly sensitive to incentives, perceiving more social threat may contribute to social anxiety (SA) symptoms. In 129 girls (ages 11-13) oversampled for shy/fearful temperament, we thus examined how interactions between neural responses to social reward (vs. neutral) cues (measured during anticipation of peer feedback) and perceived social threat in daily peer interactions (measured using ecological momentary assessment) predict SA symptoms two years later. No significant interactions emerged when neural reward function was modeled as a latent factor. Secondary analyses showed that higher perceived social threat was associated with more severe SA symptoms two years later only for girls with higher basolateral amygdala (BLA) activation to social reward cues at baseline. Interaction effects were specific to BLA activation to social reward (not threat) cues, though a main effect of BLA activation to social threat (vs. neutral) cues on SA emerged. Unexpectedly, interactions between social threat and BLA activation to social reward cues also predicted generalized anxiety and depression symptoms two years later, suggesting possible transdiagnostic risk pathways. Perceiving high social threat may be particularly detrimental for youth highly sensitive to reward incentives, potentially due to mediating reward learning processes, though this remains to be tested.
Collapse
Affiliation(s)
| | - Jennifer S. Silk
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neil P. Jones
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erika E. Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jamie L. Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren S. Hallion
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
25
|
Haris EM, Bryant RA, Korgaonkar MS. Structural covariance, topological organization, and volumetric features of amygdala subnuclei in posttraumatic stress disorder. Neuroimage Clin 2024; 42:103619. [PMID: 38744025 PMCID: PMC11108976 DOI: 10.1016/j.nicl.2024.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/14/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The amygdala is divided into functional subnuclei which have been challenging to investigate due to functional magnetic resonance imaging (MRI) limitations in mapping small neural structures. Hence their role in the neurobiology of posttraumatic stress disorder (PTSD) remains poorly understood. Examination of covariance of structural MRI measures could be an alternate approach to circumvent this issue. T1-weighted anatomical scans from a 3 T scanner from non-trauma-exposed controls (NEC; n = 71, 75 % female) and PTSD participants (n = 67, 69 % female) were parcellated into 105 brain regions. Pearson's r partial correlations were computed for three and nine bilateral amygdala subnuclei and every other brain region, corrected for age, sex, and total brain volume. Pairwise correlation comparisons were performed to examine subnuclei covariance profiles between-groups. Graph theory was employed to investigate subnuclei network topology. Volumetric measures were compared to investigate structural changes. We found differences between amygdala subnuclei in covariance with the hippocampus for both groups, and additionally with temporal brain regions for the PTSD group. Network topology demonstrated the importance of the right basal nucleus in facilitating network communication only in PTSD. There were no between-group differences for any of the three structural metrics. These findings are in line with previous work that has failed to find structural differences for amygdala subnuclei between PTSD and controls. However, differences between amygdala subnuclei covariance profiles observed in our study highlight the need to investigate amygdala subnuclei functional connectivity in PTSD using higher field strength fMRI for better spatial resolution.
Collapse
Affiliation(s)
- Elizabeth M Haris
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; School of Psychology, University of New South Wales, Sydney, Australia.
| | - Richard A Bryant
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; School of Psychology, University of New South Wales, Sydney, Australia
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia; Discipline of Psychiatry, Sydney Medical School, Westmead, NSW, Australia; Department of Radiology, Western Sydney Local Health District, Westmead, NSW, Australia.
| |
Collapse
|
26
|
Mabry S, Bradshaw JL, Gardner JJ, Wilson EN, Cunningham RL. Sex-dependent effects of chronic intermittent hypoxia: implication for obstructive sleep apnea. Biol Sex Differ 2024; 15:38. [PMID: 38664845 PMCID: PMC11044342 DOI: 10.1186/s13293-024-00613-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) affects 10-26% of adults in the United States with known sex differences in prevalence and severity. OSA is characterized by elevated inflammation, oxidative stress (OS), and cognitive dysfunction. However, there is a paucity of data regarding the role of sex in the OSA phenotype. Prior findings suggest women exhibit different OSA phenotypes than men, which could result in under-reported OSA prevalence in women. To examine the relationship between OSA and sex, we used chronic intermittent hypoxia (CIH) to model OSA in rats. We hypothesized that CIH would produce sex-dependent phenotypes of inflammation, OS, and cognitive dysfunction, and these sex differences would be dependent on mitochondrial oxidative stress (mtOS). METHODS Adult male and female Sprague Dawley rats were exposed to CIH or normoxia for 14 days to examine the impact of sex on CIH-associated circulating inflammation (IL-1β, IL-6, IL-10, TNF-α), circulating steroid hormones, circulating OS, and behavior (recollective and spatial memory; gross and fine motor function; anxiety-like behaviors; and compulsive behaviors). Rats were implanted with osmotic minipumps containing either a mitochondria-targeting antioxidant (MitoTEMPOL) or saline vehicle 1 week prior to CIH initiation to examine how inhibiting mtOS would affect the CIH phenotype. RESULTS Sex-specific differences in CIH-induced inflammation, OS, motor function, and compulsive behavior were observed. In female rats, CIH increased inflammation (plasma IL-6 and IL-6/IL-10 ratio) and impaired fine motor function. Conversely, CIH elevated circulating OS and compulsivity in males. These sex-dependent effects of CIH were blocked by inhibiting mtOS. Interestingly, CIH impaired recollective memory in both sexes but these effects were not mediated by mtOS. No effects of CIH were observed on spatial memory, gross motor function, or anxiety-like behavior, regardless of sex. CONCLUSIONS Our results indicate that the impact of CIH is dependent on sex, such as an inflammatory response and OS response in females and males, respectively, that are mediated by mtOS. Interestingly, there was no effect of sex or mtOS in CIH-induced impairment of recollective memory. These results indicate that mtOS is involved in the sex differences observed in CIH, but a different mechanism underlies CIH-induced memory impairments.
Collapse
Affiliation(s)
- Steve Mabry
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107-2699, USA
| | - Jessica L Bradshaw
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107-2699, USA
| | - Jennifer J Gardner
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107-2699, USA
| | - E Nicole Wilson
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107-2699, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107-2699, USA.
| |
Collapse
|
27
|
Salvesen L, Capriglia E, Dresler M, Bernardi G. Influencing dreams through sensory stimulation: A systematic review. Sleep Med Rev 2024; 74:101908. [PMID: 38417380 PMCID: PMC11009489 DOI: 10.1016/j.smrv.2024.101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Sleep is typically considered a state of disconnection from the environment, yet instances of external sensory stimuli influencing dreams have been reported for centuries. Explaining this phenomenon could provide valuable insight into dreams' generative and functional mechanisms, the factors that promote sleep continuity, and the processes that underlie conscious awareness. Moreover, harnessing sensory stimuli for dream engineering could benefit individuals suffering from dream-related alterations. This PRISMA-compliant systematic review assessed the current evidence concerning the influence of sensory stimulation on sleep mentation. We included 51 publications, of which 21 focused on auditory stimulation, ten on somatosensory stimulation, eight on olfactory stimulation, four on visual stimulation, two on vestibular stimulation, and one on multimodal stimulation. Furthermore, nine references explored conditioned associative stimulation: six focused on targeted memory reactivation protocols and three on targeted lucid reactivation protocols. The reported frequency of stimulus-dependent dream changes across studies ranged from 0 to ∼80%, likely reflecting a considerable heterogeneity of definitions and methodological approaches. Our findings highlight a lack of comprehensive understanding of the mechanisms, functions, and neurophysiological correlates of stimulus-dependent dream changes. We suggest that a paradigm shift is required for meaningful progress in this field.
Collapse
Affiliation(s)
- Leila Salvesen
- Sleep, Plasticity, and Conscious Experience Group, MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Elena Capriglia
- Sleep, Plasticity, and Conscious Experience Group, MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Giulio Bernardi
- Sleep, Plasticity, and Conscious Experience Group, MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy.
| |
Collapse
|
28
|
Guo J, Wang J, Liang P, Tian E, Liu D, Guo Z, Chen J, Zhang Y, Zhou Z, Kong W, Crans DC, Lu Y, Zhang S. Vestibular dysfunction leads to cognitive impairments: State of knowledge in the field and clinical perspectives (Review). Int J Mol Med 2024; 53:36. [PMID: 38391090 PMCID: PMC10914312 DOI: 10.3892/ijmm.2024.5360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
The vestibular system may have a critical role in the integration of sensory information and the maintenance of cognitive function. A dysfunction in the vestibular system has a significant impact on quality of life. Recent research has provided evidence of a connection between vestibular information and cognitive functions, such as spatial memory, navigation and attention. Although the exact mechanisms linking the vestibular system to cognition remain elusive, researchers have identified various pathways. Vestibular dysfunction may lead to the degeneration of cortical vestibular network regions and adversely affect synaptic plasticity and neurogenesis in the hippocampus, ultimately contributing to neuronal atrophy and cell death, resulting in memory and visuospatial deficits. Furthermore, the extent of cognitive impairment varies depending on the specific type of vestibular disease. In the present study, the current literature was reviewed, potential causal relationships between vestibular dysfunction and cognitive performance were discussed and directions for future research were proposed.
Collapse
Affiliation(s)
- Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jun Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Pei Liang
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, Hubei 430062, P.R. China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dan Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhanghong Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Debbie C. Crans
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
29
|
Wang Y, Wang Y, Tang J, Li R, Jia Y, Yang H, Wei H. Impaired neural circuitry of hippocampus in Pax2 nervous system-specific knockout mice leads to restricted repetitive behaviors. CNS Neurosci Ther 2024; 30:e14482. [PMID: 37786962 PMCID: PMC11017408 DOI: 10.1111/cns.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
INTRODUCTION Restricted repetitive behaviors (RRBs), which are associated with many different neurological and mental disorders, such as obsessive-compulsive disorder (OCD) and autism, are patterns of behavior with little variation and little obvious function. Paired Box 2 (Pax2) is a transcription factor that is expressed in many systems, including the kidney and the central nervous system. The protein that is encoded by Pax2 has been implicated in the development of the nervous system and neurodevelopmental disorders. In our previous study, Pax2 heterozygous gene knockout mice (Pax2+/- mice) showed abnormally increased self-grooming and impaired learning and memory abilities. However, it remains unclear which cell type is involved in this process. In this study, we deleted Pax2 only in the nervous system to determine the regulatory mechanism of Pax2 in RRBs. METHODS In this study, Pax2 nervous system-specific knockout mice (Nestin-Pax2 mice) aged 6-8 weeks and Pax2 flox mice of the same age were recruited as the experimental group. Tamoxifen and vehicle were administered via intraperitoneal injection to induce Pax2 knockout after gene identification. Western blotting was used to detect Pax2 expression. After that, we assessed the general health of these two groups of mice. The self-grooming test, marble burying test and T-maze acquisition and reversal learning test were used to observe the lower-order and higher-order RRBs. The three-chamber test, Y-maze, and elevated plus-maze were used to assess social ability, spatial memory ability, and anxiety. Neural circuitry tracing and transcriptome sequencing (RNA-seq) were used to observe the abnormal neural circuitry, differentially expressed genes (DEGs) and signaling pathways affected by Pax2 gene knockout in the nervous system and the putative molecular mechanism. RESULTS (1) The Nestin-Pax2 mouse model was successfully constructed, and the Nestin-Pax2 mice showed decreased expression of Pax2. (2) Nestin-Pax2 mice showed increased self-grooming behavior and impaired T-maze reversal behavior compared with Pax2 flox mice. (3) An increased number of projection fibers can be found in the mPFC projecting to the CA1 and BLA, and a reduction in IGFBP2 can be found in the hippocampus of Nestin-Pax2 mice. CONCLUSION The results demonstrated that loss of Pax2 in the nervous system leads to restricted repetitive behaviors. The mechanism may be associated with impaired neural circuitry and a reduction in IGFBP2.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurology, Shanxi Provincial People's HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Yizhuo Wang
- Department of Neurology, Shanxi Provincial People's HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Brain Disease ControlShanxi Provincial People's HospitalTaiyuanChina
| | - Jiaming Tang
- School of the Third ClinicShanxi University of Chinese MedicineTaiyuanChina
| | - Rui Li
- Department of Neurology, Shanxi Provincial People's HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Yanan Jia
- Department of Neurology, Shanxi Provincial People's HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Hua Yang
- Department of Neurology, Shanxi Provincial People's HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Brain Disease ControlShanxi Provincial People's HospitalTaiyuanChina
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
- Shanxi Key Laboratory of Brain Disease ControlShanxi Provincial People's HospitalTaiyuanChina
| |
Collapse
|
30
|
Jiang Y. A theory of the neural mechanisms underlying negative cognitive bias in major depression. Front Psychiatry 2024; 15:1348474. [PMID: 38532986 PMCID: PMC10963437 DOI: 10.3389/fpsyt.2024.1348474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/16/2024] [Indexed: 03/28/2024] Open
Abstract
The widely acknowledged cognitive theory of depression, developed by Aaron Beck, focused on biased information processing that emphasizes the negative aspects of affective and conceptual information. Current attempts to discover the neurological mechanism underlying such cognitive and affective bias have successfully identified various brain regions associated with severally biased functions such as emotion, attention, rumination, and inhibition control. However, the neurobiological mechanisms of how individuals in depression develop this selective processing toward negative is still under question. This paper introduces a neurological framework centered around the frontal-limbic circuit, specifically analyzing and synthesizing the activity and functional connectivity within the amygdala, hippocampus, and medial prefrontal cortex. Firstly, a possible explanation of how the positive feedback loop contributes to the persistent hyperactivity of the amygdala in depression at an automatic level is established. Building upon this, two hypotheses are presented: hypothesis 1 revolves around the bidirectional amygdalohippocampal projection facilitating the amplification of negative emotions and memories while concurrently contributing to the impediment of the retrieval of opposing information in the hippocampus attractor network. Hypothesis 2 highlights the involvement of the ventromedial prefrontal cortex in the establishment of a negative cognitive framework through the generalization of conceptual and emotional information in conjunction with the amygdala and hippocampus. The primary objective of this study is to improve and complement existing pathological models of depression, pushing the frontiers of current understanding in neuroscience of affective disorders, and eventually contributing to successful recovery from the debilitating affective disorders.
Collapse
Affiliation(s)
- Yuyue Jiang
- University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
31
|
Lee Y, Kim S, Cho YK, Kong C, Chang JW, Jun SB. Amygdala electrical stimulation for operant conditioning in rat navigation. Biomed Eng Lett 2024; 14:291-306. [PMID: 38374898 PMCID: PMC10874353 DOI: 10.1007/s13534-023-00336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 02/21/2024] Open
Abstract
There have been several attempts to navigate the locomotion of animals by neuromodulation. The most common method is animal training with electrical brain stimulation for directional cues and rewards; the basic principle is to activate dopamine-mediated neural reward pathways such as the medial forebrain bundle (MFB) when the animal correctly follows the external commands. In this study, the amygdala, which is the brain region responsible for fear modulation, was targeted for punishment training. The brain regions of MFB, amygdala, and barrel cortex were electrically stimulated for reward, punishment, and directional cues, respectively. Electrical stimulation was applied to the amygdala of rats when they failed to follow directional commands. First, two different amygdala regions, i.e., basolateral amygdala (BLA) and central amygdala (CeA), were stimulated and compared in terms of behavior responses, success and correction rates for training, and gene expression for learning and memory. Then, the training was performed in three groups: group R (MFB stimulation for reward), group P (BLA stimulation for punishment), and group RP (both MFB and BLA stimulation for reward and punishment). In group P, after the training, RNA sequencing was conducted to detect gene expression and demonstrate the effect of punishment learning. Group P showed higher success rates than group R, and group RP exhibited the most effective locomotion control among the three groups. Gene expression results imply that BLA stimulation can be more effective as a punishment in the learning process than CeA stimulation. We developed a new method to navigate rat locomotion behaviors by applying amygdala stimulation.
Collapse
Affiliation(s)
- Youjin Lee
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul, 03760 Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Soonyoung Kim
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005 USA
| | - Yoon Kyung Cho
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Chanho Kong
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, 03722 Republic of Korea
| | - Sang Beom Jun
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul, 03760 Republic of Korea
- Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760 Republic of Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| |
Collapse
|
32
|
Ortiz-Guzman J, Swanson JL, Tantry EK, Kochukov M, Ung K, Addison AP, Srivastava S, Belfort BD, Ji E, Dooling SW, Chen SA, Tong Q, Arenkiel BR. Cholinergic Basal Forebrain Connectivity to the Basolateral Amygdala Modulates Food Intake. eNeuro 2024; 11:ENEURO.0369-23.2024. [PMID: 38383587 PMCID: PMC10915460 DOI: 10.1523/eneuro.0369-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Obesity results from excessive caloric input associated with overeating and presents a major public health challenge. The hypothalamus has received significant attention for its role in governing feeding behavior and body weight homeostasis. However, extrahypothalamic brain circuits also regulate appetite and consumption by altering sensory perception, motivation, and reward. We recently discovered a population of basal forebrain cholinergic (BFc) neurons that regulate appetite suppression. Through viral tracing methods in the mouse model, we found that BFc neurons densely innervate the basolateral amygdala (BLA), a limbic structure involved in motivated behaviors. Using channelrhodopsin-assisted circuit mapping, we identified cholinergic responses in BLA neurons following BFc circuit manipulations. Furthermore, in vivo acetylcholine sensor and genetically encoded calcium indicator imaging within the BLA (using GACh3 and GCaMP, respectively) revealed selective response patterns of activity during feeding. Finally, through optogenetic manipulations in vivo, we found that increased cholinergic signaling from the BFc to the BLA suppresses appetite and food intake. Together, these data support a model in which cholinergic signaling from the BFc to the BLA directly influences appetite and feeding behavior.
Collapse
Affiliation(s)
- Joshua Ortiz-Guzman
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Jessica L Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Evelyne K Tantry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Mikhail Kochukov
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Kevin Ung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Angela P Addison
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Benjamin D Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Emily Ji
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
| | - Sean W Dooling
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Sarah A Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Qingchun Tong
- Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
33
|
González-Arnay E, Pérez-Santos I, Jiménez-Sánchez L, Cid E, Gal B, de la Prida LM, Cavada C. Immunohistochemical field parcellation of the human hippocampus along its antero-posterior axis. Brain Struct Funct 2024; 229:359-385. [PMID: 38180568 PMCID: PMC10917878 DOI: 10.1007/s00429-023-02725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/15/2023] [Indexed: 01/06/2024]
Abstract
The primate hippocampus includes the dentate gyrus, cornu ammonis (CA), and subiculum. CA is subdivided into four fields (CA1-CA3, plus CA3h/hilus of the dentate gyrus) with specific pyramidal cell morphology and connections. Work in non-human mammals has shown that hippocampal connectivity is precisely patterned both in the laminar and longitudinal axes. One of the main handicaps in the study of neuropathological semiology in the human hippocampus is the lack of clear laminar and longitudinal borders. The aim of this study was to explore a histochemical segmentation of the adult human hippocampus, integrating field (medio-lateral), laminar, and anteroposterior longitudinal patterning. We provide criteria for head-body-tail field and subfield parcellation of the human hippocampus based on immunodetection of Rabphilin3a (Rph3a), Purkinje-cell protein 4 (PCP4), Chromogranin A and Regulation of G protein signaling-14 (RGS-14). Notably, Rph3a and PCP4 allow to identify the border between CA3 and CA2, while Chromogranin A and RGS-14 give specific staining of CA2. We also provide novel histological data about the composition of human-specific regions of the anterior and posterior hippocampus. The data are given with stereotaxic coordinates along the longitudinal axis. This study provides novel insights for a detailed region-specific parcellation of the human hippocampus useful for human brain imaging and neuropathology.
Collapse
Affiliation(s)
- Emilio González-Arnay
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Basic Medical Science-Division of Human Anatomy, Universidad de La Laguna, Santa Cruz de Tenerife, Canary Islands, Spain
| | - Isabel Pérez-Santos
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lorena Jiménez-Sánchez
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Elena Cid
- Instituto Cajal, CSIC, Madrid, Spain
| | - Beatriz Gal
- Instituto Cajal, CSIC, Madrid, Spain
- Universidad CEU-San Pablo, Madrid, Spain
| | | | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
34
|
Niu L, Song X, Li Q, Peng L, Dai H, Zhang J, Chen K, Lee TMC, Zhang R. Age-related positive emotional reactivity decline associated with the anterior insula based resting-state functional connectivity. Hum Brain Mapp 2024; 45:e26621. [PMID: 38339823 PMCID: PMC10858337 DOI: 10.1002/hbm.26621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Recent studies have suggested that emotional reactivity changes with age, but the neural basis is still unclear. The insula may be critical for the emotional reactivity. The current study examined how ageing affects emotional reactivity using the emotional reactivity task data from a human sample (Cambridge Center for Age and Neuroscience, N = 243, age 18-88 years). The resting-state magnetic resonance measurements from the same sample were used to investigate the potential mechanisms of the insula. In the initial analysis, we conducted partial correlation assessments to examine the associations between emotional reactivity and age, as well as between the gray matter volume (GMV) of the insula and age. Our results revealed that emotional reactivity, especially positive emotional reactivity, decreased with age and that the GMV of the insula was negatively correlated with age. Subsequently, the bilateral insula was divided into six subregions to calculate the whole brain resting-state functional connectivity (rsFC). The mediating effect of the rsFC on age and emotional reactivity was then calculated. The results showed that the rsFC of the left anterior insula (AI) with the right hippocampus, and the rsFCs of the right AI with the striatum and the thalamus were mediated the relationship between positive emotional reactivity and age. Our findings suggest that attenuating emotional reactivity with age may be a strategic adaptation fostering emotional stability and diminishing emotional vulnerability. Meanwhile, the findings implicate a key role for the AI in the changes in positive emotional reactivity with age.
Collapse
Affiliation(s)
- Lijing Niu
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Xiaoqi Song
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
- State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
- Laboratory of Neuropsychology and Human NeuroscienceThe University of Hong KongHong KongSARChina
| | - Qian Li
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Lanxin Peng
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Haowei Dai
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Jiayuan Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Keyin Chen
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
| | - Tatia M. C. Lee
- State Key Laboratory of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
- Laboratory of Neuropsychology and Human NeuroscienceThe University of Hong KongHong KongSARChina
- Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong‐Macao Greater Bay AreaGuangzhouChina
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public HealthSouthern Medical UniversityGuangzhouChina
- Department of Psychiatry, Zhujiang HospitalSouthern Medical UniversityGuangzhouPR China
| |
Collapse
|
35
|
Sambuco N, Bradley MM. Amygdala and hippocampal activation in emotional imagery. Ann N Y Acad Sci 2024; 1532:7-9. [PMID: 38167778 DOI: 10.1111/nyas.15091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Affiliation(s)
- Nicola Sambuco
- Department of Translational Biomedicine and Neuroscience, University of Bari 'Aldo Moro', Bari, Italy
| | - Margaret M Bradley
- Department of Psychology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
36
|
Huang J, Cheng R, Liu X, Chen L, Luo T. Unraveling the link: white matter damage, gray matter atrophy and memory impairment in patients with subcortical ischemic vascular disease. Front Neurosci 2024; 18:1355207. [PMID: 38362024 PMCID: PMC10867202 DOI: 10.3389/fnins.2024.1355207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Prior MRI studies have shown that patients with subcortical ischemic vascular disease (SIVD) exhibited white matter damage, gray matter atrophy and memory impairment, but the specific characteristics and interrelationships of these abnormal changes have not been fully elucidated. Materials and methods We collected the MRI data and memory scores from 29 SIVD patients with cognitive impairment (SIVD-CI), 29 SIVD patients with cognitive unimpaired (SIVD-CU) and 32 normal controls (NC). Subsequently, the thicknesses and volumes of the gray matter regions that are closely related to memory function were automatically assessed using FreeSurfer software. Then, the volume, fractional anisotropy (FA), mean diffusivity (MD), amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values of white matter hyperintensity (WMH) region and normal-appearing white matter (NAWM) were obtained using SPM, DPARSF, and FSL software. Finally, the analysis of covariance, spearman correlation and mediation analysis were used to analyze data. Results Compared with NC group, patients in SIVD-CI and SIVD-CU groups showed significantly abnormal volume, FA, MD, ALFF, and ReHo values of WMH region and NAWM, as well as significantly decreased volume and thickness values of gray matter regions, mainly including thalamus, middle temporal gyrus and hippocampal subfields such as cornu ammonis (CA) 1. These abnormal changes were significantly correlated with decreased visual, auditory and working memory scores. Compared with the SIVD-CU group, the significant reductions of the left CA2/3, right amygdala, right parasubiculum and NAWM volumes and the significant increases of the MD values in the WMH region and NAWM were found in the SIVD-CI group. And the increased MD values were significantly related to working memory scores. Moreover, the decreased CA1 and thalamus volumes mediated the correlations between the abnormal microstructure indicators in WMH region and the decreased memory scores in the SIVD-CI group. Conclusion Patients with SIVD had structural and functional damages in both WMH and NAWM, along with specific gray matter atrophy, which were closely related to memory impairment, especially CA1 atrophy and thalamic atrophy. More importantly, the volumes of some temporomesial regions and the MD values of WMH regions and NAWM may be potentially helpful neuroimaging indicators for distinguishing between SIVD-CI and SIVD-CU patients.
Collapse
Affiliation(s)
- Jing Huang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Runtian Cheng
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoshuang Liu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Chen
- Department of Radiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Mabry S, Bradshaw JL, Gardner JJ, Wilson EN, Cunningham R. Sex-dependent effects of chronic intermittent hypoxia: Implication for obstructive sleep apnea. RESEARCH SQUARE 2024:rs.3.rs-3898670. [PMID: 38352622 PMCID: PMC10862974 DOI: 10.21203/rs.3.rs-3898670/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Background Obstructive sleep apnea (OSA) affects 10-26% of adults in the United States with known sex differences in prevalence and severity. OSA is characterized by elevated inflammation, oxidative stress (OS), and cognitive dysfunction. However, there is a paucity of data regarding the role of sex in the OSA phenotype. Prior findings suggest women exhibit different OSA phenotypes than men, which could result in under-reported OSA prevalence in women. To examine the relationship between OSA and sex, we used chronic intermittent hypoxia (CIH) to model OSA in rats. We hypothesized that CIH would produce sex-dependent phenotypes of inflammation, OS, and cognitive dysfunction, and these sex differences would be dependent on mitochondrial oxidative stress (mtOS). Methods Adult male and female Sprague Dawley rats were exposed to CIH or normoxia for 14 days to examine the impact of sex on CIH-associated circulating inflammation (IL-1β, IL-4, IL-6, IL-10, TNF-α), circulating OS, and behavior (recollective and spatial memory; gross and fine motor function; anxiety-like behaviors; and compulsive behaviors). A subset of rats was implanted with osmotic minipumps containing either a mitochondria-targeting antioxidant (MitoTEMPOL) or saline vehicle 1 week prior to CIH initiation to examine how inhibiting mtOS would affect the CIH phenotype. Results Sex-specific differences in CIH-induced inflammation, OS, motor function, and compulsive behavior were observed. In female rats, CIH increased inflammation (plasma IL-6 and IL-6/IL-10 ratio) and impaired fine motor function. Conversely, CIH elevated circulating OS and compulsivity in males. These sex-dependent effects of CIH were blocked by inhibiting mtOS. Interestingly, CIH impaired recollective memory in both sexes but these effects were not mediated by mtOS. No effects of CIH were observed on spatial memory, gross motor function, or anxiety-like behavior, regardless of sex. Conclusions Our results indicate that the impact of CIH is dependent on sex, such as an inflammatory response and OS response in females and males, respectively, that are mediated by mtOS. Interestingly, there was no effect of sex or mtOS in CIH-induced impairment of recollective memory. These results indicate that mtOS is involved in the sex differences observed in CIH, but a different mechanism underlies CIH-induced memory impairments.
Collapse
|
38
|
Yan Y, Truitt B, Tao J, Boyles SM, Antoine D, Hulme W, Roy S. Single-cell profiling of glial cells from the mouse amygdala under opioid dependent and withdrawal states. iScience 2023; 26:108166. [PMID: 37915593 PMCID: PMC10616319 DOI: 10.1016/j.isci.2023.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/28/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
The cycle of substance use disorder (SUD) leading to dependence is a complex process involving multiple neurocircuitries and brain regions. The amygdala is the core brain region that is involved in processing withdrawal and anxiety and depressive-like behaviors. However, the transcriptional changes in each cell type within the amygdala during SUD remains unknown. Here, we performed single-cell RNA sequencing and classified all cell types in the mouse amygdala. We particularly focused on gene expression changes in glial cells under dependent state and compared to either naive or withdrawal state. Our data revealed distinct changes in key biological processes, such as gene expression, immune response, inflammation, synaptic transmission, and mitochondrial respiration. Significant differences were unraveled in the transcriptional profiles between dependence and withdrawal states. This report is the first single-cell RNA sequencing dataset from the amygdala under opioid dependence and withdrawal conditions, providing unique insights in understanding brain alterations during SUD.
Collapse
Affiliation(s)
- Yan Yan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bridget Truitt
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Junyi Tao
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sean Michael Boyles
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Danielle Antoine
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - William Hulme
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
39
|
Mabry S, Wilson EN, Bradshaw JL, Gardner JJ, Fadeyibi O, Vera E, Osikoya O, Cushen SC, Karamichos D, Goulopoulou S, Cunningham RL. Sex and age differences in social and cognitive function in offspring exposed to late gestational hypoxia. Biol Sex Differ 2023; 14:81. [PMID: 37951901 PMCID: PMC10640736 DOI: 10.1186/s13293-023-00557-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Gestational sleep apnea is a hypoxic sleep disorder that affects 8-26% of pregnancies and increases the risk for central nervous system dysfunction in offspring. Specifically, there are sex differences in the sensitivity of the fetal hippocampus to hypoxic insults, and hippocampal impairments are associated with social dysfunction, repetitive behaviors, anxiety, and cognitive impairment. Yet, it is unclear whether gestational sleep apnea impacts these hippocampal-associated functions and if sex and age modify these effects. To examine the relationship between gestational sleep apnea and hippocampal-associated behaviors, we used chronic intermittent hypoxia (CIH) to model late gestational sleep apnea in pregnant rats. We hypothesized that late gestational CIH would produce sex- and age-specific social, anxiety-like, repetitive, and cognitive impairments in offspring. METHODS Timed pregnant Long-Evans rats were exposed to CIH or room air normoxia from GD 15-19. Behavioral testing of offspring occurred during either puberty or young adulthood. To examine gestational hypoxia-induced behavioral phenotypes, we quantified hippocampal-associated behaviors (social function, repetitive behaviors, anxiety-like behaviors, and spatial memory and learning), hippocampal neuronal activity (glutamatergic NMDA receptors, dopamine transporter, monoamine oxidase-A, early growth response protein 1, and doublecortin), and circulating hormones in offspring. RESULTS Late gestational CIH induced sex- and age-specific differences in social, repetitive, and memory functions in offspring. In female pubertal offspring, CIH impaired social function, increased repetitive behaviors, and elevated circulating corticosterone levels but did not impact memory. In contrast, CIH transiently induced spatial memory dysfunction in pubertal male offspring but did not impact social or repetitive functions. Long-term effects of gestational CIH on social behaviors were only observed in female offspring, wherein CIH induced social disengagement and suppression of circulating corticosterone levels in young adulthood. No effects of gestational CIH were observed in anxiety-like behaviors, hippocampal neuronal activity, or circulating testosterone and estradiol levels, regardless of sex or age of offspring. CONCLUSIONS Our results indicate that hypoxia-associated pregnancy complications during late gestation can increase the risk for behavioral and physiological outcomes in offspring, such as social dysfunction, repetitive behaviors, and cognitive impairment, that are dependent on sex and age.
Collapse
Affiliation(s)
- Steve Mabry
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - E Nicole Wilson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jessica L Bradshaw
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Jennifer J Gardner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Oluwadarasimi Fadeyibi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
| | - Edward Vera
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Oluwatobiloba Osikoya
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Spencer C Cushen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Dimitrios Karamichos
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science, Fort Worth, TX, 76107, USA
| | - Styliani Goulopoulou
- Departments of Basic Sciences, Gynecology and Obstetrics, Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX, 76107, USA.
| |
Collapse
|
40
|
Pan Y, Zong Q, Li G, Wu Z, Du T, Zhang Y, Huang Z, Ma K. Nuclear localization of alpha-synuclein induces anxiety-like behavior in mice by decreasing hippocampal neurogenesis and pathologically affecting amygdala circuits. Neurosci Lett 2023; 816:137490. [PMID: 37742940 DOI: 10.1016/j.neulet.2023.137490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Fear and anxiety are common in Parkinson's disease (PD) and may be caused by pathologies outside the dopaminergic system. Increasing evidence has shown that alpha-synuclein (α-syn) is involved in the development of anxiety in PD. In this study, we examined the effects of α-syn nuclear translocation on anxiety-like behavior in mice by overexpressing α-syn in the nuclei of the cell in the hippocampus. Our results show that α-syn overexpression in the nuclei increased the excitability of hippocampal neurons and activated NG2 glial cells and promoted the synthesis and release of γ-aminobutyric acid (GABA). And nuclear localization of α-syn led to the loss of neurotrophic factors and decreased neurogenesis. Meanwhile, the hippocampus and amygdala acted synergistically, resulting in pathologic accumulation of α-syn and gliosis in the amygdala and caused loss of interneurons. These events led to the impairments of hippocampus and amygdala function, which ultimately induced anxiety-like behavior in mice. The findings obtained in our present study indicate that excessive nuclear translocation of α-syn in hippocampal neurons and damage to the amygdala circuits may be important in the development of anxiety in PD.
Collapse
Affiliation(s)
- Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Qinglan Zong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Guoxiang Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Zhengcun Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Tingfu Du
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| | - Zhangqiong Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|
41
|
Wronski ML, Geisler D, Bernardoni F, Seidel M, Bahnsen K, Doose A, Steinhäuser JL, Gronow F, Böldt LV, Plessow F, Lawson EA, King JA, Roessner V, Ehrlich S. Differential alterations of amygdala nuclei volumes in acutely ill patients with anorexia nervosa and their associations with leptin levels. Psychol Med 2023; 53:6288-6303. [PMID: 36464660 PMCID: PMC10358440 DOI: 10.1017/s0033291722003609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The amygdala is a subcortical limbic structure consisting of histologically and functionally distinct subregions. New automated structural magnetic resonance imaging (MRI) segmentation tools facilitate the in vivo study of individual amygdala nuclei in clinical populations such as patients with anorexia nervosa (AN) who show symptoms indicative of limbic dysregulation. This study is the first to investigate amygdala nuclei volumes in AN, their relationships with leptin, a key indicator of AN-related neuroendocrine alterations, and further clinical measures. METHODS T1-weighted MRI scans were subsegmented and multi-stage quality controlled using FreeSurfer. Left/right hemispheric amygdala nuclei volumes were cross-sectionally compared between females with AN (n = 168, 12-29 years) and age-matched healthy females (n = 168) applying general linear models. Associations with plasma leptin, body mass index (BMI), illness duration, and psychiatric symptoms were analyzed via robust linear regression. RESULTS Globally, most amygdala nuclei volumes in both hemispheres were reduced in AN v. healthy control participants. Importantly, four specific nuclei (accessory basal, cortical, medial nuclei, corticoamygdaloid transition in the rostral-medial amygdala) showed greater volumetric reduction even relative to reductions of whole amygdala and total subcortical gray matter volumes, whereas basal, lateral, and paralaminar nuclei were less reduced. All rostral-medially clustered nuclei were positively associated with leptin in AN independent of BMI. Amygdala nuclei volumes were not associated with illness duration or psychiatric symptom severity in AN. CONCLUSIONS In AN, amygdala nuclei are altered to different degrees. Severe volume loss in rostral-medially clustered nuclei, collectively involved in olfactory/food-related reward processing, may represent a structural correlate of AN-related symptoms. Hypoleptinemia might be linked to rostral-medial amygdala alterations.
Collapse
Affiliation(s)
- Marie-Louis Wronski
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Daniel Geisler
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Fabio Bernardoni
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Maria Seidel
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Klaas Bahnsen
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Arne Doose
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Jonas L. Steinhäuser
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Franziska Gronow
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Institute of Medical Psychology, Charité University Medicine Berlin, Berlin, Germany
| | - Luisa V. Böldt
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Charité University Medicine Berlin, Berlin, Germany
| | - Franziska Plessow
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth A. Lawson
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph A. King
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
- Eating Disorder Treatment and Research Center, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
42
|
Sengupta A, Wang F, Mishra A, Reed JL, Chen LM, Gore JC. Detection and characterization of resting state functional networks in squirrel monkey brain. Cereb Cortex Commun 2023; 4:tgad018. [PMID: 37753115 PMCID: PMC10518810 DOI: 10.1093/texcom/tgad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Resting-state fMRI based on analyzing BOLD signals is widely used to derive functional networks in the brain and how they alter during disease or injury conditions. Resting-state networks can also be used to study brain functional connectomes across species, which provides insights into brain evolution. The squirrel monkey (SM) is a non-human primate (NHP) that is widely used as a preclinical model for experimental manipulations to understand the organization and functioning of the brain. We derived resting-state networks from the whole brain of anesthetized SMs using Independent Component Analysis of BOLD acquisitions. We detected 15 anatomically constrained resting-state networks localized in the cortical and subcortical regions as well as in the white-matter. Networks encompassing visual, somatosensory, executive control, sensorimotor, salience and default mode regions, and subcortical networks including the Hippocampus-Amygdala, thalamus, basal-ganglia and brainstem region correspond well with previously detected networks in humans and NHPs. The connectivity pattern between the networks also agrees well with previously reported seed-based resting-state connectivity of SM brain. This study demonstrates that SMs share remarkable homologous network organization with humans and other NHPs, thereby providing strong support for their suitability as a translational animal model for research and additional insight into brain evolution across species.
Collapse
Affiliation(s)
- Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Nashville, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Nashville, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Nashville, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Nashville, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Department of Psychology, Vanderbilt University, Nashville, TN, United States of America
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Nashville, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Nashville, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States of America
- Biomedical Engineering, Vanderbilt University, Nashville, TN, United States of America
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States of America
| |
Collapse
|
43
|
Peay DN, Acuna A, Reynolds CM, Willis C, Takalkar R, Bryce Ortiz J, Conrad CD. Chronic stress leads to persistent and contrasting stellate neuron dendritic hypertrophy in the amygdala of male and female rats, an effect not found in the hippocampus. Neurosci Lett 2023; 812:137403. [PMID: 37473795 DOI: 10.1016/j.neulet.2023.137403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/02/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
In males, chronic stress enhances dendritic complexity in the amygdala, a region important in emotion regulation. An amygdalar subregion, the basolateral amygdala (BLA), is influenced by the hippocampus and prefrontal cortex to coordinate emotional learning and memory. This study quantified changes in dendritic complexity of BLA stellate neurons ten days after an unpredictable chronic stressor ended in both male and female rats. In addition, dendritic complexity of hippocampal neurons in male rats was assessed at a similar timepoint. Following Golgi processing, stressed male and female rats showed enhanced BLA dendritic complexity; increased arborization occurred near the soma in males and distally in females. As the brain was sampled ten days after chronic stress ended, BLA dendritic hypertrophy persisted in both sexes after the stressor had ended. For the hippocampus, CA3 dendritic complexity was similar for control and stressed males when assessed eight days after stress ended, suggesting that any stress-induced changes had resolved. These results show persistent enhancement of BLA dendritic arborization in both sexes following chronic stress, reveal sex differences in how BLA hypertrophy manifests, and suggest a putative neurobiological substrate by which chronic stress may create a vulnerable phenotype for emotional dysfunction.
Collapse
Affiliation(s)
- Dylan N Peay
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104, United States
| | - Amanda Acuna
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104, United States
| | - Cindy M Reynolds
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104, United States
| | - Chris Willis
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104, United States
| | - Rujuta Takalkar
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104, United States
| | - J Bryce Ortiz
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104, United States
| | - Cheryl D Conrad
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104, United States.
| |
Collapse
|
44
|
Schmill MP, Thompson Z, Lee D, Haddadin L, Mitra S, Ezzat R, Shelton S, Levin P, Behnam S, Huffman KJ, Garland T. Hippocampal, Whole Midbrain, Red Nucleus, and Ventral Tegmental Area Volumes Are Increased by Selective Breeding for High Voluntary Wheel-Running Behavior. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:245-263. [PMID: 37604130 DOI: 10.1159/000533524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
Uncovering relationships between neuroanatomy, behavior, and evolution are important for understanding the factors that control brain function. Voluntary exercise is one key behavior that both affects, and may be affected by, neuroanatomical variation. Moreover, recent studies suggest an important role for physical activity in brain evolution. We used a unique and ongoing artificial selection model in which mice are bred for high voluntary wheel-running behavior, yielding four replicate lines of high runner (HR) mice that run ∼3-fold more revolutions per day than four replicate nonselected control (C) lines. Previous studies reported that, with body mass as a covariate, HR mice had heavier whole brains, non-cerebellar brains, and larger midbrains than C mice. We sampled mice from generation 66 and used high-resolution microscopy to test the hypothesis that HR mice have greater volumes and/or cell densities in nine key regions from either the midbrain or limbic system. In addition, half of the mice were given 10 weeks of wheel access from weaning, and we predicted that chronic exercise would increase the volumes of the examined brain regions via phenotypic plasticity. We replicated findings that both selective breeding and wheel access increased total brain mass, with no significant interaction between the two factors. In HR compared to C mice, adjusting for body mass, both the red nucleus (RN) of the midbrain and the hippocampus (HPC) were significantly larger, and the whole midbrain tended to be larger, with no effect of wheel access nor any interactions. Linetype and wheel access had an interactive effect on the volume of the periaqueductal gray (PAG), such that wheel access increased PAG volume in C mice but decreased volume in HR mice. Neither linetype nor wheel access affected volumes of the substantia nigra, ventral tegmental area, nucleus accumbens, ventral pallidum (VP), or basolateral amygdala. We found no main effect of either linetype or wheel access on neuronal densities (numbers of cells per unit area) for any of the regions examined. Taken together, our results suggest that the increased exercise phenotype of HR mice is related to increased RN and hippocampal volumes, but that chronic exercise alone does not produce such phenotypes.
Collapse
Affiliation(s)
- Margaret P Schmill
- Neuroscience Graduate Program, University of California, Riverside, California, USA
| | - Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, California, USA
- Department of Biology, Utah Valley University, Orem, Utah, USA
| | - Daisy Lee
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Laurence Haddadin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Shaarang Mitra
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Raymond Ezzat
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Samantha Shelton
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Phillip Levin
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Sogol Behnam
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| | - Kelly J Huffman
- Neuroscience Graduate Program, University of California, Riverside, California, USA
- Department of Psychology, University of California, Riverside, California, USA
| | - Theodore Garland
- Neuroscience Graduate Program, University of California, Riverside, California, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| |
Collapse
|
45
|
Lo Y, Yi PL, Hsiao YT, Lee TY, Chang FC. A prolonged stress rat model recapitulates some PTSD-like changes in sleep and neuronal connectivity. Commun Biol 2023; 6:716. [PMID: 37438582 DOI: 10.1038/s42003-023-05090-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/02/2023] [Indexed: 07/14/2023] Open
Abstract
Chronic post-traumatic stress disorder (PTSD) exhibits psychological abnormalities during fear memory processing in rodent models. To simulate long-term impaired fear extinction in PTSD patients, we constructed a seven-day model with multiple prolonged stress (MPS) by modifying manipulation repetitions, intensity, and unpredictability of stressors. Behavioral and neural changes following MPS conveyed longitudinal PTSD-like effects in rats for 6 weeks. Extended fear memory was estimated through fear retrieval induced-freezing behavior and increased long-term serum corticosterone concentrations after MPS manipulation. Additionally, memory retrieval and behavioral anxiety tasks continued enhancing theta oscillation activity in the prefrontal cortex-basal lateral amygdala-ventral hippocampus pathway for an extended period. Moreover, MPS and remote fear retrieval stimuli disrupted sleep-wake activities to consolidate fear memory. Our prolonged fear memory, neuronal connectivity, anxiety, and sleep alteration results demonstrated integrated chronic PTSD symptoms in an MPS-induced rodent model.
Collapse
Affiliation(s)
- Yun Lo
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Pei-Lu Yi
- Department of Sport Management, College of Tourism, Leisure and Sports, Aletheia University, New Taipei City, 25103, Taiwan.
| | - Yi-Tse Hsiao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Tung-Yen Lee
- Graduate Institute of Brain & Mind Sciences, College of Medicine, National Taiwan University, Taipei, 110225, Taiwan
| | - Fang-Chia Chang
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan.
- Graduate Institute of Brain & Mind Sciences, College of Medicine, National Taiwan University, Taipei, 110225, Taiwan.
- Neurobiology & Cognitive Science Center, National Taiwan University, Taipei, 10617, Taiwan.
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
- Department of Medicine, College of Medicine, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
46
|
Kong Q, Sacca V, Zhu M, Ursitti AK, Kong J. Anatomical and Functional Connectivity of Critical Deep Brain Structures and Their Potential Clinical Application in Brain Stimulation. J Clin Med 2023; 12:4426. [PMID: 37445460 DOI: 10.3390/jcm12134426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Subcortical structures, such as the hippocampus, amygdala, and nucleus accumbens (NAcc), play crucial roles in human cognitive, memory, and emotional processing, chronic pain pathophysiology, and are implicated in various psychiatric and neurological diseases. Interventions modulating the activities of these deep brain structures hold promise for improving clinical outcomes. Recently, non-invasive brain stimulation (NIBS) has been applied to modulate brain activity and has demonstrated its potential for treating psychiatric and neurological disorders. However, modulating the above deep brain structures using NIBS may be challenging due to the nature of these stimulations. This study attempts to identify brain surface regions as source targets for NIBS to reach these deep brain structures by integrating functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). We used resting-state functional connectivity (rsFC) and probabilistic tractography (PTG) analysis to identify brain surface stimulation targets that are functionally and structurally connected to the hippocampus, amygdala, and NAcc in 119 healthy participants. Our results showed that the medial prefrontal cortex (mPFC) is functionally and anatomically connected to all three subcortical regions, while the precuneus is connected to the hippocampus and amygdala. The mPFC and precuneus, two key hubs of the default mode network (DMN), as well as other cortical areas distributed at the prefrontal cortex and the parietal, temporal, and occipital lobes, were identified as potential locations for NIBS to modulate the function of these deep structures. The findings may provide new insights into the NIBS target selections for treating psychiatric and neurological disorders and chronic pain.
Collapse
Affiliation(s)
- Qiao Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Valeria Sacca
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Meixuan Zhu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Amy Katherine Ursitti
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| | - Jian Kong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Building 120, 2nd Ave., Charlestown, MA 02129, USA
| |
Collapse
|
47
|
Jamieson GA, Page J, Evans ID, Hamlin A. Conflict and control in cortical responses to inconsistent emotional signals in a face-word Stroop. Front Hum Neurosci 2023; 17:955171. [PMID: 37457498 PMCID: PMC10349396 DOI: 10.3389/fnhum.2023.955171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 05/09/2023] [Indexed: 07/18/2023] Open
Abstract
Social communication is fraught with ambiguity. Negotiating the social world requires interpreting the affective signals we receive and often selecting between channels of conflicting affective information. The affective face-word Stroop (AFWS) provides an experimental paradigm which may identify cognitive-affective control mechanisms underpinning essential social-affective skills. Initial functional magnetic resonance imaging (fMRI) study of the AFWS identified right amygdala as driving this affective conflict and left rostral anterior cingulate cortex (rACC) as the locus of conflict control. We employed electroencephalogram (EEG) and eLORETA source localization to investigate the timing, location, and sequence of control processes when responding to affective conflict generated during the AFWS. However we designated affective word as the response target and affective face as the distractor to maximize conflict and control effects. Reaction times showed slowed responses in high vs. low control conditions, corresponding to a Rabbitt type control effect rather than the previously observed Grattan effect. Control related activation occurred in right rACC 96-118 ms post-stimulus, corresponding to the resolution of the P1 peak in the Visual Evoked Potential (VEP). Face distractors elicit right hemisphere control, while word distractors elicit left hemisphere control. Low control trials require rapid "booting up" control resources observable through VEPs. Incongruent trial activity in right fusiform face area is suppressed 118-156 ms post stimulus corresponding to onset and development of the N170 VEP component. Results are consistent with a predicted sequence of rapid early amygdala activation by affective conflict, then rACC inhibition of amygdala decreasing facilitation of affective face processing (however, amygdala activity is not observable with EEG).
Collapse
Affiliation(s)
- Graham A. Jamieson
- School of Psychology, University of New England, Armidale, NSW, Australia
| | - Julia Page
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Ian D. Evans
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Adam Hamlin
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
48
|
Mabry S, Wilson EN, Bradshaw JL, Gardner JJ, Fadeyibi O, Vera E, Osikoya O, Cushen SC, Karamichos D, Goulopoulou S, Cunningham RL. Sex and age differences in social and cognitive function in offspring exposed to late gestational hypoxia. RESEARCH SQUARE 2023:rs.3.rs-2507737. [PMID: 37333114 PMCID: PMC10275064 DOI: 10.21203/rs.3.rs-2507737/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Background Gestational sleep apnea affects 8-26% of pregnancies and can increase the risk for autism spectrum disorder (ASD) in offspring. ASD is a neurodevelopmental disorder associated with social dysfunction, repetitive behaviors, anxiety, and cognitive impairment. To examine the relationship between gestational sleep apnea and ASD-associated behaviors, we used a chronic intermittent hypoxia (CIH) protocol between gestational days (GD) 15-19 in pregnant rats to model late gestational sleep apnea. We hypothesized that late gestational CIH would produce sex- and age-specific social, mood, and cognitive impairments in offspring. Methods Timed pregnant Long-Evans rats were exposed to CIH or room air normoxia from GD 15-19. Behavioral testing of offspring occurred during either puberty or young adulthood. To examine ASD-associated phenotypes, we quantified ASD-associated behaviors (social function, repetitive behaviors, anxiety-like behaviors, and spatial memory and learning), hippocampal activity (glutamatergic NMDA receptors, dopamine transporter, monoamine oxidase-A, EGR-1, and doublecortin), and circulating hormones in offspring. Results Late gestational CIH induced sex- and age-specific differences in social, repetitive and memory functions in offspring. These effects were mostly transient and present during puberty. In female pubertal offspring, CIH impaired social function, increased repetitive behaviors, and increased circulating corticosterone levels, but did not impact memory. In contrast, CIH transiently induced spatial memory dysfunction in pubertal male offspring but did not impact social or repetitive functions. Long-term effects of gestational CIH were only observed in female offspring, wherein CIH induced social disengagement and suppression of circulating corticosterone levels in young adulthood. No effects of gestational CIH were observed on anxiety-like behaviors, hippocampal activity, circulating testosterone levels, or circulating estradiol levels, regardless of sex or age of offspring. Conclusions Our results indicate that hypoxia-associated pregnancy complications during late gestation can increase the risk for ASD-associated behavioral and physiological outcomes, such as pubertal social dysfunction, corticosterone dysregulation, and memory impairments.
Collapse
Affiliation(s)
- Steve Mabry
- UNTHSC: University of North Texas Health Science Center
| | | | | | | | | | - Edward Vera
- UNTHSC: University of North Texas Health Science Center
| | | | | | | | | | | |
Collapse
|
49
|
Song J. Amygdala activity and amygdala-hippocampus connectivity: Metabolic diseases, dementia, and neuropsychiatric issues. Biomed Pharmacother 2023; 162:114647. [PMID: 37011482 DOI: 10.1016/j.biopha.2023.114647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
With rapid aging of the population worldwide, the number of people with dementia is dramatically increasing. Some studies have emphasized that metabolic syndrome, which includes obesity and diabetes, leads to increased risks of dementia and cognitive decline. Factors such as insulin resistance, hyperglycemia, high blood pressure, dyslipidemia, and central obesity in metabolic syndrome are associated with synaptic failure, neuroinflammation, and imbalanced neurotransmitter levels, leading to the progression of dementia. Due to the positive correlation between diabetes and dementia, some studies have called it "type 3 diabetes". Recently, the number of patients with cognitive decline due to metabolic imbalances has considerably increased. In addition, recent studies have reported that neuropsychiatric issues such as anxiety, depressive behavior, and impaired attention are common factors in patients with metabolic disease and those with dementia. In the central nervous system (CNS), the amygdala is a central region that regulates emotional memory, mood disorders, anxiety, attention, and cognitive function. The connectivity of the amygdala with other brain regions, such as the hippocampus, and the activity of the amygdala contribute to diverse neuropathological and neuropsychiatric issues. Thus, this review summarizes the significant consequences of the critical roles of amygdala connectivity in both metabolic syndromes and dementia. Further studies on amygdala function in metabolic imbalance-related dementia are needed to treat neuropsychiatric problems in patients with this type of dementia.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
50
|
Delavari F, Rafi H, Sandini C, Murray RJ, Latrèche C, Van De Ville D, Eliez S. Amygdala subdivisions exhibit aberrant whole-brain functional connectivity in relation to stress intolerance and psychotic symptoms in 22q11.2DS. Transl Psychiatry 2023; 13:145. [PMID: 37142582 PMCID: PMC10160125 DOI: 10.1038/s41398-023-02458-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
The amygdala is a key region in emotional regulation, which is often impaired in psychosis. However, it is unclear if amygdala dysfunction directly contributes to psychosis, or whether it contributes to psychosis through symptoms of emotional dysregulation. We studied the functional connectivity of amygdala subdivisions in patients with 22q11.2DS, a known genetic model for psychosis susceptibility. We investigated how dysmaturation of each subdivision's connectivity contributes to positive psychotic symptoms and impaired tolerance to stress in deletion carriers. Longitudinally-repeated MRI scans from 105 patients with 22q11.2DS (64 at high-risk for psychosis and 37 with impaired tolerance to stress) and 120 healthy controls between the ages of 5 to 30 years were included. We calculated seed-based whole-brain functional connectivity for amygdalar subdivisions and employed a longitudinal multivariate approach to evaluate the developmental trajectory of functional connectivity across groups. Patients with 22q11.2DS presented a multivariate pattern of decreased basolateral amygdala (BLA)-frontal connectivity alongside increased BLA-hippocampal connectivity. Moreover, associations between developmental drops in centro-medial amygdala (CMA)-frontal connectivity to both impaired tolerance to stress and positive psychotic symptoms in deletion carriers were detected. Superficial amygdala hyperconnectivity to the striatum was revealed as a specific pattern arising in patients who develop mild to moderate positive psychotic symptoms. Overall, CMA-frontal dysconnectivity was found as a mutual neurobiological substrate in both impaired tolerance to stress and psychosis, suggesting a role in prodromal dysregulation of emotions in psychosis. While BLA dysconnectivity was found to be an early finding in patients with 22q11.2DS, which contributes to impaired tolerance to stress.
Collapse
Affiliation(s)
- Farnaz Delavari
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Halima Rafi
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
- Developmental Clinical Psychology Research Unit, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Corrado Sandini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Ryan J Murray
- Psychiatry Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, Geneva, Switzerland
| | - Caren Latrèche
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|