1
|
Volotsky S, Segev R. Object identity representation occurs early in the archerfish visual system. Sci Rep 2025; 15:4102. [PMID: 39900793 PMCID: PMC11790826 DOI: 10.1038/s41598-025-88660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Archerfish hunt by shooting a jet of water at aerial targets, a behavior used to study their visual processing by presenting a set of images on a screen above the water tank and observing the behavioral response. Building on this unique behavior, it was recently shown that archerfish can be trained to distinguish between different object categories by generalizing from examples. Analysis of the archerfish's behavior revealed that the fish visual system relies on a small set of visual features for categorization and is more sensitive to object contours than to textures. To understand the neural basis of this object recognition, we investigated the neural representation of features and objects in the archerfish optic tectum using recording of single cells. We found that, although the optic tectum is an early stage of visual processing, a small population of neurons in this region contains information about the object category. This contrasts with the primate visual system, where the representation of objects emerges only at later stages of visual processing. These results suggest that early-stage feature extraction and object categorization in archerfish might represent a form of specialized visual processing. This contributes to a broader understanding of visual processing across taxa.
Collapse
Affiliation(s)
- Svetlana Volotsky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
- School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel
| | - Ronen Segev
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel.
- School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, 8410501, Israel.
| |
Collapse
|
2
|
Volotsky S, Segev R. Figure-ground segmentation based on motion in the archerfish. Anim Cogn 2024; 27:33. [PMID: 38616235 PMCID: PMC11016505 DOI: 10.1007/s10071-024-01873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Figure-ground segmentation is a fundamental process in visual perception that involves separating visual stimuli into distinct meaningful objects and their surrounding context, thus allowing the brain to interpret and understand complex visual scenes. Mammals exhibit varying figure-ground segmentation capabilities, ranging from primates that can perform well on figure-ground segmentation tasks to rodents that perform poorly. To explore figure-ground segmentation capabilities in teleost fish, we studied how the archerfish, an expert visual hunter, performs figure-ground segmentation. We trained archerfish to discriminate foreground objects from the background, where the figures were defined by motion as well as by discontinuities in intensity and texture. Specifically, the figures were defined by grating, naturalistic texture, and random noise moving in counterphase with the background. The archerfish performed the task well and could distinguish between all three types of figures and grounds. Their performance was comparable to that of primates and outperformed rodents. These findings suggest the existence of a complex visual process in the archerfish visual system that enables the delineation of figures as distinct from backgrounds, and provide insights into object recognition in this animal.
Collapse
Affiliation(s)
- Svetlana Volotsky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel
- School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beersheba, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ronen Segev
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel.
- School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, Beersheba, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel.
| |
Collapse
|
3
|
Volotsky S, Ben-Shahar O, Donchin O, Segev R. Recognition of natural objects in the archerfish. J Exp Biol 2022; 225:274265. [PMID: 35142811 PMCID: PMC8918800 DOI: 10.1242/jeb.243237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022]
Abstract
Recognition of individual objects and their categorization is a complex computational task. Nevertheless, visual systems can perform this task in a rapid and accurate manner. Humans and other animals can efficiently recognize objects despite countless variations in their projection on the retina due to different viewing angles, distance, illumination conditions and other parameters. To gain a better understanding of the recognition process in teleosts, we explored it in archerfish, a species that hunts by shooting a jet of water at aerial targets and thus can benefit from ecologically relevant recognition of natural objects. We found that archerfish not only can categorize objects into relevant classes but also can do so for novel objects, and additionally they can recognize an individual object presented under different conditions. To understand the mechanisms underlying this capability, we developed a computational model based on object features and a machine learning classifier. The analysis of the model revealed that a small number of features was sufficient for categorization, and the fish were more sensitive to object contours than textures. We tested these predictions in additional behavioral experiments and validated them. Our findings suggest the existence of a complex visual process in the archerfish visual system that enables object recognition and categorization. Highlighted Article: Archerfish are capable of natural object recognition and categorization based on a small number of visual features.
Collapse
Affiliation(s)
- Svetlana Volotsky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Ohad Ben-Shahar
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Department of Computer Science, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Opher Donchin
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| | - Ronen Segev
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, 8410501, Israel
| |
Collapse
|
4
|
Volotsky S, Vinepinsky E, Donchin O, Segev R. Long-range neural inhibition and stimulus competition in the archerfish optic tectum. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:537-552. [PMID: 31123813 DOI: 10.1007/s00359-019-01345-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 04/28/2019] [Accepted: 05/10/2019] [Indexed: 11/26/2022]
Abstract
The archerfish, which is unique in its ability to hunt insects above the water level by shooting a jet of water at its prey, operates in a complex visual environment. The fish needs to quickly select one object from among many others. In animals other than the archerfish, long-range inhibition is considered to drive selection. As a result of long-range inhibition, a potential target outside a neuron's receptive field suppresses the activity elicited by another potential target within the receptive field. We tested whether a similar mechanism operates in the archerfish by recording the activity of neurons in the optic tectum while presenting a target stimulus inside the receptive field and a competing stimulus outside the receptive field. We held the features of the target constant while varying the size, speed, and distance of the competing stimulus. We found cells that exhibit long-range inhibition; i.e., inhibition that extends to a significant part of the entire visual field of the animal. The competing stimulus depressed the firing rate. In some neurons, this effect was dependent on the features of the competing stimulus. These findings suggest that long-range inhibition may play a crucial role in the target selection process in the archerfish.
Collapse
Affiliation(s)
- Svetlana Volotsky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Ehud Vinepinsky
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Opher Donchin
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Ronen Segev
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
| |
Collapse
|