1
|
Zhang F, Yang Y, Xin Y, Sun Y, Wang C, Zhu J, Tang T, Zhang J, Xu K. Efficacy of different strategies of responsive neurostimulation on seizure control and their association with acute neurophysiological effects in rats. Epilepsy Behav 2023; 143:109212. [PMID: 37172446 DOI: 10.1016/j.yebeh.2023.109212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/01/2023] [Indexed: 05/15/2023]
Abstract
Responsive neurostimulation (RNS) has shown promising but limited efficacy in the treatment of drug-resistant epilepsy. The clinical utility of RNS is hindered by the incomplete understanding of the mechanism behind its therapeutic effects. Thus, assessing the acute effects of responsive stimulation (AERS) based on intracranial EEG recordings in the temporal lobe epilepsy rat model may provide a better understanding of the potential therapeutic mechanisms underlying the antiepileptic effect of RNS. Furthermore, clarifying the correlation between AERS and seizure severity may help guide the optimization of RNS parameter settings. In this study, RNS with high (130 Hz) and low frequencies (5 Hz) was applied to the subiculum (SUB) and CA1. To quantify the changes induced by RNS, we calculated the AERS during synchronization by Granger causality and analyzed the band power ratio in the classic power band after different stimulations were delivered in the interictal and seizure onset periods, respectively. This demonstrates that only targets combined with an appropriate stimulation frequency could be efficient for seizure control. High-frequency stimulation of CA1 significantly shortened the ongoing seizure duration, which may be causally related to increased synchronization after stimulation. Both high-frequency stimulation of the CA1 and low-frequency stimulation delivered to the SUB reduced seizure frequency, and the reduced seizure risk may correlate with the change in power ratio near the theta band. It indicated that different stimulations may control seizures in diverse manners, perhaps with disparate mechanisms. More focus should be placed on understanding the correlation between seizure severity and synchronization and rhythm around theta bands to simplify the process of parameter optimization.
Collapse
Affiliation(s)
- Fang Zhang
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Yufang Yang
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Yanjie Xin
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Yuting Sun
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Chang Wang
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Junming Zhu
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; The MOE Frontier Science Center for Brain Science and Brain-machine Integration, China; Department of Neurosurgery, Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Zhejiang, China
| | - Tao Tang
- Zhejiang Lab, Hangzhou 311100, China
| | - Jianmin Zhang
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; The MOE Frontier Science Center for Brain Science and Brain-machine Integration, China; Department of Neurosurgery, Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang University, Zhejiang, China
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; The MOE Frontier Science Center for Brain Science and Brain-machine Integration, China; Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Caron D, Canal-Alonso Á, Panuccio G. Mimicking CA3 Temporal Dynamics Controls Limbic Ictogenesis. BIOLOGY 2022; 11:371. [PMID: 35336745 PMCID: PMC8944954 DOI: 10.3390/biology11030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Mesial temporal lobe epilepsy (MTLE) is the most common partial complex epilepsy in adults and the most unresponsive to medications. Electrical deep brain stimulation (DBS) of the hippocampus has proved effective in controlling seizures in epileptic rodents and in drug-refractory MTLE patients. However, current DBS paradigms implement arbitrary fixed-frequency or patterned stimuli, disregarding the temporal profile of brain electrical activity. The latter, herein included hippocampal spontaneous firing, has been shown to follow lognormal temporal dynamics. Here, we present a novel paradigm to devise DBS protocols based on stimulation patterns fashioned as a surrogate brain signal. We focus on the interictal activity originating in the hippocampal subfield CA3, which has been shown to be anti-ictogenic. Using 4-aminopyridine-treated hippocampus-cortex slices coupled to microelectrode array, we pursue three specific aims: (1) address whether lognormal temporal dynamics can describe the CA3-driven interictal pattern, (2) explore the possibility of restoring the non-seizing state by mimicking the temporal dynamics of this anti-ictogenic pattern with electrical stimulation, and (3) compare the performance of the CA3-surrogate against periodic stimulation. We show that the CA3-driven interictal activity follows lognormal temporal dynamics. Further, electrical stimulation fashioned as a surrogate interictal pattern exhibits similar efficacy but uses less pulses than periodic stimulation. Our results support the possibility of mimicking the temporal dynamics of relevant brain signals as a straightforward DBS strategy to ameliorate drug-refractory epilepsy. Further, they herald a paradigm shift in neuromodulation, wherein a compromised brain signal can be recreated by the appropriate stimuli distribution to bypass trial-and-error studies and attain physiologically meaningful DBS operating modes.
Collapse
Affiliation(s)
- Davide Caron
- Enhanced Regenerative Medicine, Istituto Italiano di Tecnologia, 16163 Genova, Italy;
| | - Ángel Canal-Alonso
- BISITE Research Group, University of Salamanca, 37008 Salamanca, Spain;
- Institute for Biomedical Research of Salamanca, University of Salamanca, 37008 Salamanca, Spain
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Istituto Italiano di Tecnologia, 16163 Genova, Italy;
| |
Collapse
|
3
|
Foutz T, Wong M. Brain Stimulation Treatments in Epilepsy: Basic Mechanisms and Clinical Advances. Biomed J 2021; 45:27-37. [PMID: 34482013 PMCID: PMC9133258 DOI: 10.1016/j.bj.2021.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
Drug-resistant epilepsy, characterized by ongoing seizures despite appropriate trials of anti-seizure medications, affects approximately one-third of people with epilepsy. Brain stimulation has recently become available as an alternative treatment option to reduce symptomatic seizures in short and long-term follow-up studies. Several questions remain on how to optimally develop patient-specific treatments and manage therapy over the long term. This review aims to discuss the clinical use and mechanisms of action of Responsive Neural Stimulation and Deep Brain Stimulation in the treatment of epilepsy and highlight recent advances that may both improve outcomes and present new challenges. Finally, a rational approach to device selection is presented based on current mechanistic understanding, clinical evidence, and device features.
Collapse
Affiliation(s)
- Thomas Foutz
- Department of Neurology, Washington University in St. Louis, USA.
| | - Michael Wong
- Department of Neurology, Washington University in St. Louis, USA.
| |
Collapse
|