1
|
Que Z, Olivero-Acosta MI, Robinson M, Chen I, Zhang J, Wettschurack K, Wu J, Xiao T, Otterbacher CM, Shankar V, Harlow H, Hong S, Zirkle B, Wang M, Cui N, Mandal P, Chen X, Deming B, Halurkar M, Zhao Y, Rochet JC, Xu R, Brewster AL, Wu LJ, Yuan C, Skarnes WC, Yang Y. Human iPSC-derived microglia sense and dampen hyperexcitability of cortical neurons carrying the epilepsy-associated SCN2A-L1342P mutation. J Neurosci 2024; 45:e2027232024. [PMID: 39557580 PMCID: PMC11735681 DOI: 10.1523/jneurosci.2027-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/16/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
Neuronal hyperexcitability is a hallmark of epilepsy. It has been recently shown in rodent models of seizures that microglia, the brain's resident immune cells, can respond to and modulate neuronal excitability. However, how human microglia interact with human neurons to regulate hyperexcitability mediated by an epilepsy-causing genetic mutation found in patients is unknown. The SCN2A gene is responsible for encoding the voltage-gated sodium channel Nav1.2, one of the leading contributors to monogenic epilepsies. Previously, we demonstrated that the recurring Nav1.2-L1342P mutation leads to hyperexcitability in a male donor (KOLF2.1) hiPSC-derived cortical neuron model. Microglia originate from a different lineage (yolk sac) and are not naturally present in hiPSCs-derived neuronal cultures. To study how microglia respond to neurons carrying a disease-causing mutation and influence neuronal excitability, we established a co-culture model comprising hiPSC-derived neurons and microglia. We found that microglia display increased branch length and enhanced process-specific calcium signal when co-cultured with Nav1.2-L1342P neurons. Moreover, the presence of microglia significantly lowered the repetitive action potential firing and current density of sodium channels in neurons carrying the mutation. Additionally, we showed that co-culturing with microglia led to a reduction in sodium channel expression within the axon initial segment of Nav1.2-L1342P neurons. Furthermore, we demonstrated that Nav1.2-L1342P neurons release a higher amount of glutamate compared to control neurons. Our work thus reveals a critical role of human iPSCs-derived microglia in sensing and dampening hyperexcitability mediated by an epilepsy-causing mutation.Significance Statement Seizure studies in mouse models have highlighted the role of microglia in modulating neuronal activity, particularly in the promotion or suppression of seizures. However, a gap persists in comprehending the influence of human microglia on intrinsically hyperexcitable neurons carrying epilepsy-associated pathogenic mutations. This research addresses this gap by investigating human microglia and their impact on neuronal functions. Our findings demonstrate that microglia exhibit dynamic morphological alterations and calcium fluctuations in the presence of neurons carrying an epilepsy-associated SCN2A mutation. Furthermore, microglia suppressed the excitability of hyperexcitable neurons, suggesting a potential beneficial role. This study underscores the role of microglia in the regulation of abnormal neuronal activity, providing insights into therapeutic strategies for neurological conditions associated with hyperexcitability.
Collapse
Affiliation(s)
- Zhefu Que
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Maria I. Olivero-Acosta
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Morgan Robinson
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
- Department of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - Ian Chen
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Jingliang Zhang
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Kyle Wettschurack
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Jiaxiang Wu
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Tiange Xiao
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Conrad Max Otterbacher
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Vinayak Shankar
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Hope Harlow
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Seoyong Hong
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Benjamin Zirkle
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Muhan Wang
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Ningren Cui
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Purba Mandal
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Xiaoling Chen
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Brody Deming
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Manasi Halurkar
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Yuanrui Zhao
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Jean-Christophe Rochet
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| | - Ranjie Xu
- Purdue University College of Veterinary Medicine, West Lafayette, Indiana 47907
| | - Amy L. Brewster
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75205
| | - Long-jun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905
| | - Chongli Yuan
- Department of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907
| | - William C. Skarnes
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06032
| | - Yang Yang
- Borsch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
2
|
Que Z, Olivero-Acosta MI, Chen I, Zhang J, Wettschurack K, Wu J, Xiao T, Otterbacher CM, Wang M, Harlow H, Cui N, Chen X, Deming B, Halurkar M, Zhao Y, Rochet JC, Xu R, Brewster AL, Wu LJ, Yuan C, Skarnes WC, Yang Y. Human iPSC-derived microglia sense and dampen hyperexcitability of cortical neurons carrying the epilepsy-associated SCN2A-L1342P mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.563426. [PMID: 37961213 PMCID: PMC10634902 DOI: 10.1101/2023.10.26.563426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Neuronal hyperexcitability is a hallmark of seizures. It has been recently shown in rodent models of seizures that microglia, the brain's resident immune cells, can respond to and modulate neuronal excitability. However, how human microglia interacts with human neurons to regulate hyperexcitability mediated by epilepsy-causing genetic mutation found in human patients remains unknown. The SCN2A genetic locus is responsible for encoding the voltage-gated sodium channel Nav1.2, recognized as one of the leading contributors to monogenic epilepsies. Previously, we demonstrated that the recurring Nav1.2-L1342P mutation identified in patients with epilepsy leads to hyperexcitability in a hiPSC-derived cortical neuron model from a male donor. While microglia play an important role in the brain, these cells originate from a different lineage (yolk sac) and thus are not naturally present in hiPSCs-derived neuronal culture. To study how microglia respond to diseased neurons and influence neuronal excitability, we established a co-culture model comprising hiPSC-derived neurons and microglia. We found that microglia display altered morphology with increased branch length and enhanced calcium signal when co-cultured with neurons carrying the Nav1.2-L1342P mutation. Moreover, the presence of microglia significantly lowers the action potential firing of neurons carrying the mutation. Interestingly, we further demonstrated that the current density of sodium channels in neurons carrying the epilepsy-associated mutation was reduced in the presence of microglia. Taken together, our work reveals a critical role of human iPSCs-derived microglia in sensing and dampening hyperexcitability mediated by an epilepsy-causing mutation present in human neurons, highlighting the importance of neuron-microglia interactions in human pathophysiology.
Collapse
Affiliation(s)
- Zhefu Que
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Maria I. Olivero-Acosta
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Ian Chen
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Jingliang Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Kyle Wettschurack
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Jiaxiang Wu
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Tiange Xiao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - C. Max Otterbacher
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Muhan Wang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Hope Harlow
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Ningren Cui
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Xiaoling Chen
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Brody Deming
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Manasi Halurkar
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Yuanrui Zhao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Jean-Christophe Rochet
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| | - Ranjie Xu
- Purdue University College of Veterinary Medicine, West Lafayette, IN 47907
| | - Amy L. Brewster
- Department of Biological Sciences, Southern Methodist University, Dallas TX 75205
| | - Long-jun Wu
- Department of Neurology at Mayo Clinic, Rochester MN 55905
| | - Chongli Yuan
- Department of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | | | - Yang Yang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience (PIIN), Purdue University, West Lafayette, IN 47907
| |
Collapse
|
3
|
Sardi S, Vardi R, Tugendhaft Y, Sheinin A, Goldental A, Kanter I. Long anisotropic absolute refractory periods with rapid rise times to reliable responsiveness. Phys Rev E 2022; 105:014401. [PMID: 35193251 DOI: 10.1103/physreve.105.014401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/22/2021] [Indexed: 11/07/2022]
Abstract
Refractoriness is a fundamental property of excitable elements, such as neurons, indicating the probability for re-excitation in a given time lag, and is typically linked to the neuronal hyperpolarization following an evoked spike. Here we measured the refractory periods (RPs) in neuronal cultures and observed that an average anisotropic absolute RP could exceed 10 ms and its tail is 20 ms, independent of a large stimulation frequency range. It is an order of magnitude longer than anticipated and comparable with the decaying membrane potential time scale. It is followed by a sharp rise-time (relative RP) of merely ∼1 md to complete responsiveness. Extracellular stimulations result in longer absolute RPs than solely intracellular ones, and a pair of extracellular stimulations from two different routes exhibits distinct absolute RPs, depending on their order. Our results indicate that a neuron is an accurate excitable element, where the diverse RPs cannot be attributed solely to the soma and imply fast mutual interactions between different stimulation routes and dendrites. Further elucidation of neuronal computational capabilities and their interplay with adaptation mechanisms is warranted.
Collapse
Affiliation(s)
- Shira Sardi
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Roni Vardi
- Gonda Interdisciplinary Brain Research Center and the Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Yael Tugendhaft
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Anton Sheinin
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amir Goldental
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ido Kanter
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel.,Gonda Interdisciplinary Brain Research Center and the Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
4
|
Abstract
This work is aimed to give an electrochemical insight into the ionic transport phenomena in the cellular environment of organized brain tissue. The Nernst–Planck–Poisson (NPP) model is presented, and its applications in the description of electrodiffusion phenomena relevant in nanoscale neurophysiology are reviewed. These phenomena include: the signal propagation in neurons, the liquid junction potential in extracellular space, electrochemical transport in ion channels, the electrical potential distortions invisible to patch-clamp technique, and calcium transport through mitochondrial membrane. The limitations, as well as the extensions of the NPP model that allow us to overcome these limitations, are also discussed.
Collapse
|
5
|
Zhu C, Liu N, Tian M, Ma L, Yang J, Lan X, Ma H, Niu J, Yu J. Effects of alkaloids on peripheral neuropathic pain: a review. Chin Med 2020; 15:106. [PMID: 33024448 PMCID: PMC7532100 DOI: 10.1186/s13020-020-00387-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/20/2020] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain is a debilitating pathological pain condition with a great therapeutic challenge in clinical practice. Currently used analgesics produce deleterious side effects. Therefore, it is necessary to investigate alternative medicines for neuropathic pain. Chinese herbal medicines have been widely used in treating intractable pain. Compelling evidence revealed that the bioactive alkaloids of Chinese herbal medicines stand out in developing novel drugs for neuropathic pain due to multiple targets and satisfactory efficacy. In this review, we summarize the recent progress in the research of analgesic effects of 20 alkaloids components for peripheral neuropathic pain and highlight the potential underlying molecular mechanisms. We also point out the opportunities and challenges of the current studies and shed light on further in-depth pharmacological and toxicological studies of these bioactive alkaloids. In conclusion, the alkaloids hold broad prospects and have the potentials to be novel drugs for treating neuropathic pain. This review provides a theoretical basis for further applying some alkaloids in clinical trials and developing new drugs of neuropathic pain.
Collapse
Affiliation(s)
- Chunhao Zhu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Miaomiao Tian
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Lin Ma
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Hanxiang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region, 750004 Ningxia China
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Collaborative Innovation Center of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, No. 692 Shengli Street, Yinchuan, 750004 Ningxia China.,Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 Ningxia China
| |
Collapse
|
6
|
Hofmann V, Chacron MJ. Novel Functions of Feedback in Electrosensory Processing. Front Integr Neurosci 2019; 13:52. [PMID: 31572137 PMCID: PMC6753188 DOI: 10.3389/fnint.2019.00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
Environmental signals act as input and are processed across successive stages in the brain to generate a meaningful behavioral output. However, a ubiquitous observation is that descending feedback projections from more central to more peripheral brain areas vastly outnumber ascending feedforward projections. Such projections generally act to modify how sensory neurons respond to afferent signals. Recent studies in the electrosensory system of weakly electric fish have revealed novel functions for feedback pathways in that their transformation of the afferent input generates neural firing rate responses to sensory signals mediating perception and behavior. In this review, we focus on summarizing these novel and recently uncovered functions and put them into context by describing the more "classical" functions of feedback in the electrosensory system. We further highlight the parallels between the electrosensory system and other systems as well as outline interesting future directions.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|