1
|
Koc AN, Urgen BA, Afacan Y. Task-modulated neural responses in scene-selective regions of the human brain. Vision Res 2024; 227:108539. [PMID: 39733756 DOI: 10.1016/j.visres.2024.108539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/29/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
The study of scene perception is crucial to the understanding of how one interprets and interacts with their environment, and how the environment impacts various cognitive functions. The literature so far has mainly focused on the impact of low-level and categorical properties of scenes and how they are represented in the scene-selective regions in the brain, PPA, RSC, and OPA. However, higher-level scene perception and the impact of behavioral goals is a developing research area. Moreover, the selection of the stimuli has not been systematic and mainly focused on outdoor environments. In this fMRI experiment, we adopted multiple behavioral tasks, selected real-life indoor stimuli with a systematic categorization approach, and used various multivariate analysis techniques to explain the neural modulation of scene perception in the scene-selective regions of the human brain. Participants (N = 21) performed categorization and approach-avoidance tasks during fMRI scans while they were viewing scenes from built environment categories based on different affordances ((i)access and (ii)circulation elements, (iii)restrooms and (iv)eating/seating areas). ROI-based classification analysis revealed that the OPA was significantly successful in decoding scene category regardless of the task, and that the task condition affected category decoding performances of all the scene-selective regions. Model-based representational similarity analysis (RSA) revealed that the activity patterns in scene-selective regions are best explained by task. These results contribute to the literature by extending the task and stimulus content of scene perception research, and uncovering the impact of behavioral goals on the scene-selective regions of the brain.
Collapse
Affiliation(s)
- Aysu Nur Koc
- Department of Psychology, Justus Liebig University Giessen, Giessen, Germany; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey.
| | - Burcu A Urgen
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey; Aysel Sabuncu Brain Research Center and National Magnetic Resonance Imaging Center, Bilkent University, Ankara, Turkey.
| | - Yasemin Afacan
- Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; Department of Interior Architecture and Environmental Design, Bilkent University, Ankara, Turkey; Aysel Sabuncu Brain Research Center and National Magnetic Resonance Imaging Center, Bilkent University, Ankara, Turkey.
| |
Collapse
|
2
|
Amedi A, Shelly S, Saporta N, Catalogna M. Perceptual learning and neural correlates of virtual navigation in subjective cognitive decline: A pilot study. iScience 2024; 27:111411. [PMID: 39669432 PMCID: PMC11634985 DOI: 10.1016/j.isci.2024.111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/24/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
Spatial navigation deficits in age-related diseases involve brain changes affecting spatial memory and verbal cognition. Studies in blind and blindfolded individuals show that multisensory training can induce neuroplasticity through visual cortex recruitment. This proof-of-concept study introduces a digital navigation training protocol, integrating egocentric and allocentric strategies with multisensory stimulation and visual masking to enhance spatial cognition and brain connectivity in 17 individuals (mean age 57.2 years) with subjective cognitive decline. Results indicate improved spatial memory performance correlated with recruitment of the visual area 6-thalamic pathway and enhanced connectivity between memory, executive frontal areas, and default mode network (DMN) regions. Additionally, increased connectivity between allocentric and egocentric navigation areas via the retrosplenial complex (RSC) hub was observed. These findings suggest that this training has the potential to induce perceptual learning and neuroplasticity through key functional connectivity hubs, offering potential widespread cognitive benefits by enhancing critical brain network functions.
Collapse
Affiliation(s)
- Amir Amedi
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel
| | - Shahar Shelly
- Department of Neurology, Rambam Medical Center, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Merav Catalogna
- The Baruch Ivcher Institute for Brain, Cognition, and Technology, Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel
| |
Collapse
|
3
|
Markostamou I, Coventry KR. Age effects on processing spatial relations within different reference frames: The role of executive functions. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:1279-1295. [PMID: 36121065 DOI: 10.1080/23279095.2022.2121212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mental representations of space can be generated and communicated with respect to different reference frames and perspectives. The present study investigated the effects of age and individual differences in domain-general executive functions on people's ability to process spatial relations as expressed in language within different spatial reference frames (SRFs). Healthy adults aged between 18 and 85 completed a novel task involving self-, third-person-, object-, and environment-centered judgements of spatial relations between two objects, as well as standard tests of working memory, inhibition, and mental flexibility. A psychometric evaluation confirmed the test-retest reliability and the convergent and divergent validity of the new task. Results showed that the lifespan trajectories varied depending on the SRF. Processing from a self-centered perspective or an object-centered frame remained intact throughout the adult-lifespan. By contrast, spatial processing from a third-person-centered perspective or within an environment-centered frame declined in late adulthood. Mediation regression models showed that mental flexibility accounted for a significant part of the age-related variance in spatial processing across all allocentric SRFs. The age effects on environment-centered processing were also partially mediated by age-related changes in visuospatial working memory capacity. These findings suggest that at least partially distinct systems are involved in mentally representing space under different SRFs, which are differentially affected by typical aging. Our results also highlight that people's ability to process spatial relations across different SRFs depends on their capacity to employ domain-general effortful cognitive resources.
Collapse
Affiliation(s)
- Ioanna Markostamou
- Division of Psychology, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
- School of Psychology, University of East Anglia, Norwich, UK
| | | |
Collapse
|
4
|
Pishdadian S, Coutrot A, Webber L, Hornberger M, Spiers H, Rosenbaum RS. Combining patient-lesion and big data approaches to reveal hippocampal contributions to spatial memory and navigation. iScience 2024; 27:109977. [PMID: 38947515 PMCID: PMC11214368 DOI: 10.1016/j.isci.2024.109977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/14/2024] [Accepted: 05/11/2024] [Indexed: 07/02/2024] Open
Abstract
Classic findings of impaired allocentric spatial learning and memory following hippocampal lesions indicate that the hippocampus supports cognitive maps of one's environment. Many studies assess navigation in vista space virtual reality environments and compare hippocampal-lesioned individuals' performance to that of small control samples, potentially stifling detection of preserved and impaired performance. Using the mobile app Sea Hero Quest, we examined navigation in diverse complex environments in two individuals with hippocampal lesions relative to demographically matched controls (N = 17,734). We found surprisingly accurate navigation in several environments, particularly those containing a constrained set of sub-goals, paths, and/or turns. Areas of impaired performance may reflect a role for the hippocampus in anterograde memory and more flexible and/or precise spatial representations, even when the need for allocentric processing is minimal. The results emphasize the value of combining single cases with big data and illustrate navigation performance profiles in individuals with hippocampal compromise.
Collapse
Affiliation(s)
- Sara Pishdadian
- Department of Psychology, York University, Toronto M3J 1P3, Canada
- Vision: Science to Application (VISTA) Program, York University, Toronto M3J 1P3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto M6A 2E1, Canada
- Complex Care and Recovery Program, Centre for Addiction and Mental Health (CAMH), Toronto M6J 1H4, Canada
| | - Antoine Coutrot
- Centre National de la Recherche Scientifique (CNRS), University of Lyon, 69361 Lyon, France
| | - Lauren Webber
- Department of Psychology, York University, Toronto M3J 1P3, Canada
| | | | - Hugo Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1N 3AZ, UK
| | - R. Shayna Rosenbaum
- Department of Psychology, York University, Toronto M3J 1P3, Canada
- Vision: Science to Application (VISTA) Program, York University, Toronto M3J 1P3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto M6A 2E1, Canada
| |
Collapse
|
5
|
Zhou S, Yang H, Yang H, Liu T. Bidirectional understanding and cooperation: interbrain neural synchronization during social navigation. Soc Cogn Affect Neurosci 2023; 18:nsad031. [PMID: 37261919 PMCID: PMC10306364 DOI: 10.1093/scan/nsad031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
The complexity of the environment requires humans to solve problems collaboratively. The aim of this study was to investigate the neural mechanism of social navigation in group problem-solving situations. A novel cooperative task was designed in which dyadic participants assumed the role of an operator or a navigator with different skills and knowledge and worked together to complete the task. Using functional near-infrared spectroscopy-based hyperscanning, we found stronger interbrain neural synchronization of the right temporoparietal junction (rTPJ) between dyads when the operator received instructions from the navigator rather than from a computer. The functional connections between the rTPJ and the other brain areas indicated the involvement of the mirror neural system during the task. Further directional analysis using Granger causality analysis revealed a flow of information from the temporal to the parietal and then to the pre-motor cortex in the operator's brain. These findings provide empirical evidence for the neural mechanism of social navigation and highlight the importance of the rTPJ for communication and joint attention in uncertain group problem-solving situations.
Collapse
Affiliation(s)
- Song Zhou
- School of Psychology, Fujian Normal University, Fuzhou 350117, China
| | - Huaqi Yang
- School of Psychology, Fujian Normal University, Fuzhou 350117, China
| | - Haibo Yang
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 350387, China
- Faculty of Psychology, Tianjin Normal University, Tianjin 350387, China
| | - Tao Liu
- School of Management, Shanghai University, Shanghai 200237, China
- School of Health, Fujian Medical University, Fuzhou 350122, China
- School of Management, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Zhou R, Belge T, Wolbers T. Reaching the Goal: Superior Navigators in Late Adulthood Provide a Novel Perspective into Successful Cognitive Aging. Top Cogn Sci 2023; 15:15-45. [PMID: 35582831 DOI: 10.1111/tops.12608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Normal aging is typically associated with declines in navigation and spatial memory abilities. However, increased interindividual variability in performance across various navigation/spatial memory tasks is also evident with advancing age. In this review paper, we shed the spotlight on those older individuals who exhibit exceptional, sometimes even youth-like navigational/spatial memory abilities. Importantly, we (1) showcase observations from existing studies that demonstrate superior navigation/spatial memory performance in late adulthood, (2) explore possible cognitive correlates and neurophysiological mechanisms underlying these preserved spatial abilities, and (3) discuss the potential link between the superior navigators in late adulthood and SuperAgers (older adults with superior episodic memory). In the closing section, given the lack of studies that directly focus on this subpopulation, we highlight several important directions that future studies could look into to better understand the cognitive characteristics of older superior navigators and the factors enabling such successful cognitive aging.
Collapse
Affiliation(s)
- Ruojing Zhou
- Aging, Cognition and Technology Lab, German Center for Neurodegenerative Diseases
| | - Tuğçe Belge
- Aging, Cognition and Technology Lab, German Center for Neurodegenerative Diseases
| | - Thomas Wolbers
- Aging, Cognition and Technology Lab, German Center for Neurodegenerative Diseases.,Center for Behavioral Brain Sciences, Magdeburg
| |
Collapse
|
7
|
Van Ruitenbeek P, Santos Monteiro T, Chalavi S, King BR, Cuypers K, Sunaert S, Peeters R, Swinnen SP. Interactions between the aging brain and motor task complexity across the lifespan: balancing brain activity resource demand and supply. Cereb Cortex 2022; 33:6420-6434. [PMID: 36587289 PMCID: PMC10183738 DOI: 10.1093/cercor/bhac514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 01/02/2023] Open
Abstract
The Compensation Related Utilization of Neural Circuits Hypothesis (CRUNCH) proposes a framework for understanding task-related brain activity changes as a function of healthy aging and task complexity. Specifically, it affords the following predictions: (i) all adult age groups display more brain activation with increases in task complexity, (ii) older adults show more brain activation compared with younger adults at low task complexity levels, and (iii) disproportionately increase brain activation with increased task complexity, but (iv) show smaller (or no) increases in brain activation at the highest complexity levels. To test these hypotheses, performance on a bimanual tracking task at 4 complexity levels and associated brain activation were assessed in 3 age groups (20-40, 40-60, and 60-80 years, n = 99). All age groups showed decreased tracking accuracy and increased brain activation with increased task complexity, with larger performance decrements and activation increases in the older age groups. Older adults exhibited increased brain activation at a lower complexity level, but not the predicted failure to further increase brain activity at the highest complexity level. We conclude that older adults show more brain activation than younger adults and preserve the capacity to deploy increased neural resources as a function of task demand.
Collapse
Affiliation(s)
- P Van Ruitenbeek
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - T Santos Monteiro
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
| | - S Chalavi
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
| | - B R King
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,Department of Health & Kinesiology; University of Utah, 250 South 1850 East, Salt Lake City, Utah 84112
| | - K Cuypers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Agoralaan Gebouw A, 3590,Diepenbeek, Belgium
| | - S Sunaert
- KU Leuven, Department of Imaging and Pathology, Biomedical Sciences, UZ Herestraat 49, box 7003, 3000, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), ON V Herestraat 49, box 1020, 3000, Leuven, Belgium
| | - R Peeters
- KU Leuven, Department of Imaging and Pathology, Biomedical Sciences, UZ Herestraat 49, box 7003, 3000, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), ON V Herestraat 49, box 1020, 3000, Leuven, Belgium
| | - S P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences,Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), ON V Herestraat 49, box 1020, 3000, Leuven, Belgium
| |
Collapse
|
8
|
“Where am I?” A snapshot of the developmental topographical disorientation among young Italian adults. PLoS One 2022; 17:e0271334. [PMID: 35857777 PMCID: PMC9299294 DOI: 10.1371/journal.pone.0271334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
In the last decade, several cases affected by Developmental Topographical Disorientation (DTD) have been described. DTD consists of a neurodevelopmental disorder affecting the ability to orient in the environment despite well-preserved cognitive functions, and in the absence of a brain lesion or other neurological or psychiatric conditions. Described cases showed different impairments in navigational skills ranging from topographic memory deficits to landmark agnosia. All cases lacked a mental representation of the environment that would allow them to use high-order spatial orientation strategies. In addition to the single case studies, a group study performed in Canada showed that the disorder is more widespread than imagined. The present work intends to investigate the occurrence of the disorder in 1,698 young Italian participants. The sample is deliberately composed of individuals aged between 18 and 35 years to exclude people who could manifest the loss of the ability to navigate as a result of an onset of cognitive decline. The sample was collected between 2016 and 2019 using the Qualtrics platform, by which the Familiarity and Spatial Cognitive Style Scale and anamnestic interview were administered. The data showed that the disorder is present in 3% of the sample and that the sense of direction is closely related to town knowledge, navigational strategies adopted, and gender. In general, males use more complex navigational strategies than females, although DTD is more prevalent in males than in females, in line with the already described cases. Finally, the paper discusses which protective factors can reduce DTD onset and which intervention measures should be implemented to prevent the spread of navigational disorders, which severely impact individuals’ autonomy and social relationships.
Collapse
|
9
|
Basso JC, Oberlin DJ, Satyal MK, O’Brien CE, Crosta C, Psaras Z, Metpally A, Suzuki WA. Examining the Effect of Increased Aerobic Exercise in Moderately Fit Adults on Psychological State and Cognitive Function. Front Hum Neurosci 2022; 16:833149. [PMID: 35903787 PMCID: PMC9317941 DOI: 10.3389/fnhum.2022.833149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Regular physical exercise can decrease the risk for obesity, diabetes, and cardiovascular disease, increase life expectancy, and promote psychological health and neurocognitive functioning. Cross-sectional studies show that cardiorespiratory fitness level (VO2 max) is associated with enhanced brain health, including improved mood state and heightened cognitive performance. Interventional studies are consistent with these cross-sectional studies, but most have focused on low-fit populations. Few such studies have asked if increasing levels of physical activity in moderately fit people can significantly enhance mood, motivation, and cognition. Therefore, the current study investigated the effects of increasing aerobic exercise in moderately fit individuals on psychological state and cognitive performance. We randomly assigned moderately fit healthy adults, 25-59 years of age, who were engaged in one or two aerobic exercise sessions per week to either maintain their exercise regimen (n = 41) or increase their exercise regimen (i.e., 4-7 aerobic workouts per week; n = 39) for a duration of 3 months. Both before and after the intervention, we assessed aerobic capacity using a modified cardiorespiratory fitness test, and hippocampal functioning via various neuropsychological assessments including a spatial navigation task and the Mnemonic Similarity Task as well as self-reported measures including the Positive and Negative Affect Scale, Beck Anxiety Inventory, State-Trait Anxiety Inventory, Perceived Stress Scale, Rumination Scale, Eating Disorders Examination, Eating Attitudes Test, Body Attitudes Test, and Behavioral Regulation of Exercise Questionnaire. Consistent with our initial working hypotheses, we found that increasing exercise significantly decreased measures of negative affect, including fear, sadness, guilt, and hostility, as well as improved body image. Further, we found that the total number of workouts was significantly associated with improved spatial navigation abilities and body image as well as reduced anxiety, general negative affect, fear, sadness, hostility, rumination, and disordered eating. In addition, increases in fitness levels were significantly associated with improved episodic memory and exercise motivation as well as decreased stress and disordered eating. Our findings are some of the first to indicate that in middle-aged moderately-fit adults, continuing to increase exercise levels in an already ongoing fitness regimen is associated with additional benefits for both psychological and cognitive health.
Collapse
Affiliation(s)
- Julia C. Basso
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, VA, United States
- School of Neuroscience, Virginia Tech, VA, United States
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States
- Center for Neural Science, New York University, New York, NY, United States
| | - Douglas J. Oberlin
- Center for Neural Science, New York University, New York, NY, United States
- Department of Health Sciences, Lehman College, City University of New York, Bronx, NY, United States
| | - Medha K. Satyal
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, VA, United States
| | | | - Christen Crosta
- Center for Neural Science, New York University, New York, NY, United States
| | - Zach Psaras
- Center for Neural Science, New York University, New York, NY, United States
| | - Anvitha Metpally
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, VA, United States
| | - Wendy A. Suzuki
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
10
|
Battineni G, Hossain MA, Chintalapudi N, Amenta F. A Survey on the Role of Artificial Intelligence in Biobanking Studies: A Systematic Review. Diagnostics (Basel) 2022; 12:1179. [PMID: 35626333 PMCID: PMC9140088 DOI: 10.3390/diagnostics12051179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction: In biobanks, participants' biological samples are stored for future research. The application of artificial intelligence (AI) involves the analysis of data and the prediction of any pathological outcomes. In AI, models are used to diagnose diseases as well as classify and predict disease risks. Our research analyzed AI's role in the development of biobanks in the healthcare industry, systematically. Methods: The literature search was conducted using three digital reference databases, namely PubMed, CINAHL, and WoS. Guidelines for preferred reporting elements for systematic reviews and meta-analyses (PRISMA)-2020 in conducting the systematic review were followed. The search terms included "biobanks", "AI", "machine learning", and "deep learning", as well as combinations such as "biobanks with AI", "deep learning in the biobanking field", and "recent advances in biobanking". Only English-language papers were included in the study, and to assess the quality of selected works, the Newcastle-Ottawa scale (NOS) was used. The good quality range (NOS ≥ 7) is only considered for further review. Results: A literature analysis of the above entries resulted in 239 studies. Based on their relevance to the study's goal, research characteristics, and NOS criteria, we included 18 articles for reviewing. In the last decade, biobanks and artificial intelligence have had a relatively large impact on the medical system. Interestingly, UK biobanks account for the highest percentage of high-quality works, followed by Qatar, South Korea, Singapore, Japan, and Denmark. Conclusions: Translational bioinformatics probably represent a future leader in precision medicine. AI and machine learning applications to biobanking research may contribute to the development of biobanks for the utility of health services and citizens.
Collapse
Affiliation(s)
- Gopi Battineni
- Clinical Research Centre, School of Medicinal and Health Products Sciences, University of Camerino, 62032 Camerino, Italy; (M.A.H.); (N.C.); (F.A.)
| | | | | | | |
Collapse
|
11
|
Assessing Photoreceptor Status in Retinal Dystrophies: From High-Resolution Imaging to Functional Vision. Am J Ophthalmol 2021; 230:12-47. [PMID: 34000280 PMCID: PMC8682761 DOI: 10.1016/j.ajo.2021.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023]
Abstract
Purpose To describe the value of integrating phenotype/genotype data, disease staging, and evaluation of functional vision in patient-centered management of retinal dystrophies. Methods (1) Cross-sectional structure-function and retrospective longitudinal studies to assess the correlations between standard fundus autofluorescence (FAF), optical coherence tomography, visual acuity (VA), and perimetry (visual field [VF]) examinations to evaluate photoreceptor functional loss in a cohort of patients with rod-cone dystrophy (RCD); (2) flood-illumination adaptive optics (FIAO) imaging focusing on photoreceptor misalignment and orientation of outer segments; and (3) evaluation of the impact of visual impairment in daily life activities, based on functional (visual and mobility) vision assessment in a naturalistic environment in visually impaired subjects with RCD and subjects treated with LuxturnaⓇ for RPE65-related Leber congenital amaurosis before and after therapy. Results The results of the cross-sectional transversal study showed that (1) VA and macular sensitivity were weakly correlated with the structural variables; and (2) functional impairment (VF) was correlated with reduction of anatomical markers of photoreceptor structure and increased width of autofluorescent ring. The dimensions of the ring of increased FAF evolved faster. Other criteria that differed among groups were the lengths of the ellipsoid zone, the external limiting membrane, and the foveal thickness. FIAO revealed a variety of phenotypes: paradoxical visibility of foveal cones; heterogeneous brightness of cones; dim, inner segment–like, and RPE-like mosaic. Directional illumination by varying orientation of incident light (Stiles-Crawford effect) and the amount of side illumination (gaze-dependent imaging) affected photoreceptor visibility. Mobility assessment under different lighting conditions showed correlation with VF, VA, contrast sensitivity (CS), and dark adaptation, with different predictive values depending on mobility study paradigms and illumination level. At high illumination level (235 lux), VF was a predictor for all mobility performance models. Under low illumination (1 and 2 lux), VF was the most significant predictor of mobility performance variables, while CS best explained the number of collisions and segments. In subjects treated with LuxturnaⓇ, a very favorable impact on travel speed and reduction in the number of collisions, especially at low luminance, was observable 6 months following injection, in both children and adults. Conclusions Our results suggest the benefit of development and implementation of quantitative and reproducible tools to evaluate the status of photoreceptors and the impact of both visual impairment and novel therapies in real-life conditions. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.
Collapse
|
12
|
Giancola M, Verde P, Cacciapuoti L, Angelino G, Piccardi L, Bocchi A, Palmiero M, Nori R. Do Advanced Spatial Strategies Depend on the Number of Flight Hours? The Case of Military Pilots. Brain Sci 2021; 11:brainsci11070851. [PMID: 34202312 PMCID: PMC8301766 DOI: 10.3390/brainsci11070851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Military pilots show advanced visuospatial skills. Previous studies demonstrate that they are better at mentally rotating a target, taking different perspectives, estimating distances and planning travel and have a topographic memory. Here, we compared navigational cognitive styles between military pilots and people without flight experience. Pilots were expected to be more survey-style users than nonpilots, showing more advanced navigational strategies. METHOD A total of 106 military jet pilots from the Italian Air Force and 92 nonpilots from the general population matched for education with the pilots were enrolled to investigate group differences in navigational styles. The participants were asked to perform a reduced version of the Spatial Cognitive Style Test (SCST), consisting of six tasks that allow us to distinguish individuals in terms of landmark (people orient themselves by using a figurative memory for environmental objects), route (people use an egocentric representation of the space) and survey (people have a map-like representation of the space) user styles. RESULTS In line with our hypothesis, military pilots mainly adopt the survey style, whereas nonpilots mainly adopt the route style. In addition, pilots outperformed nonpilots in both the 3D Rotation Task and Map Description Task. CONCLUSIONS Military flight expertise influences some aspects of spatial ability, leading to enhanced human navigation. However, it must be considered that they are a population whose navigational skills were already high at the time of selection at the academy before formal training began.
Collapse
Affiliation(s)
- Marco Giancola
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.G.); (M.P.)
| | - Paola Verde
- Aerospace Medicine Department, Aerospace Test Division, Italian Air Force, 00071 Pomezia, Italy; (L.C.); (G.A.)
- Correspondence:
| | - Luigi Cacciapuoti
- Aerospace Medicine Department, Aerospace Test Division, Italian Air Force, 00071 Pomezia, Italy; (L.C.); (G.A.)
| | - Gregorio Angelino
- Aerospace Medicine Department, Aerospace Test Division, Italian Air Force, 00071 Pomezia, Italy; (L.C.); (G.A.)
| | - Laura Piccardi
- Department of Psychology “Sapienza”, University of Rome, 00185 Rome, Italy; (L.P.); (A.B.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Alessia Bocchi
- Department of Psychology “Sapienza”, University of Rome, 00185 Rome, Italy; (L.P.); (A.B.)
| | - Massimiliano Palmiero
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.G.); (M.P.)
| | - Raffaella Nori
- Department of Psychology, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
13
|
Dhamala E, Jamison KW, Jaywant A, Dennis S, Kuceyeski A. Distinct functional and structural connections predict crystallised and fluid cognition in healthy adults. Hum Brain Mapp 2021; 42:3102-3118. [PMID: 33830577 PMCID: PMC8193532 DOI: 10.1002/hbm.25420] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
White matter pathways between neurons facilitate neuronal coactivation patterns in the brain. Insight into how these structural and functional connections underlie complex cognitive functions provides an important foundation with which to delineate disease‐related changes in cognitive functioning. Here, we integrate neuroimaging, connectomics, and machine learning approaches to explore how functional and structural brain connectivity relate to cognition. Specifically, we evaluate the extent to which functional and structural connectivity predict individual crystallised and fluid cognitive abilities in 415 unrelated healthy young adults (202 females) from the Human Connectome Project. We report three main findings. First, we demonstrate functional connectivity is more predictive of cognitive scores than structural connectivity, and, furthermore, integrating the two modalities does not increase explained variance. Second, we show the quality of cognitive prediction from connectome measures is influenced by the choice of grey matter parcellation, and, possibly, how that parcellation is derived. Third, we find that distinct functional and structural connections predict crystallised and fluid abilities. Taken together, our results suggest that functional and structural connectivity have unique relationships with crystallised and fluid cognition and, furthermore, studying both modalities provides a more comprehensive insight into the neural correlates of cognition.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Keith W Jamison
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Abhishek Jaywant
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA.,Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, New York, USA.,NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - Sarah Dennis
- Sarah Lawrence College, Bronxville, New York, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
14
|
Chen Q, Qing Z, Jin J, Sun Y, Chen W, Lu J, Lv P, Liu J, Li X, Wang J, Zhang W, Wu S, Yan X, Nedelska Z, Hort J, Zhang X, Zhang B. Ego- and allo-network disconnection underlying spatial disorientation in subjective cognitive decline. Cortex 2021; 137:35-48. [PMID: 33588131 DOI: 10.1016/j.cortex.2020.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/27/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022]
Abstract
Patients with Alzheimer's disease (AD) related dementia and mild cognitive impairment experience difficulties with spatial navigation (SN). However, SN has rarely been investigated in individuals with subjective cognitive decline (SCD), a preclinical stage with elevated progression rate to symptomatic AD. In this study, 30 SCD subjects and 30 controls underwent cognitive scale (CS) evaluation, a 2D computerized SN test, and resting-state functional magnetic resonance imaging scanning. Two SN brain networks (ego-network and allo-network), each with 10 selected spherical regions, were defined. We calculated the average network functional connectivity (FC) and region-to-region FC within the two networks and evaluated correlations with SN performance. Compared with the controls, the SCD group performed worse in the SN test and showed decreased FC between the right retrosplenial and right prefrontal cortices in the ego-network, and between the right retrosplenial cortex and right hippocampus in the allo-network. The logistic regression model based on SN and FC measures revealed a high area under the curve of .880 in differentiating SCD individuals from controls. These results suggest that SN network disconnection contributes to spatial deficits in SCD, and SN and FC measures could benefit the preclinical detection of subjects with incipient AD dementia.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Zhao Qing
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China; Institute of Brain Science, Nanjing University, Nanjing, 210008, China
| | - Jiaxuan Jin
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Yi Sun
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Wenqian Chen
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jiaming Lu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Pin Lv
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jiani Liu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xin Li
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Junxia Wang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Wen Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Sichu Wu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Xian Yan
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Xin Zhang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China; Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China; Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China; Institute of Brain Science, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
15
|
Tuena C, Mancuso V, Stramba-Badiale C, Pedroli E, Stramba-Badiale M, Riva G, Repetto C. Egocentric and Allocentric Spatial Memory in Mild Cognitive Impairment with Real-World and Virtual Navigation Tasks: A Systematic Review. J Alzheimers Dis 2021; 79:95-116. [PMID: 33216034 PMCID: PMC7902987 DOI: 10.3233/jad-201017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Spatial navigation is the ability to estimate one's position on the basis of environmental and self-motion cues. Spatial memory is the cognitive substrate underlying navigation and relies on two different reference frames: egocentric and allocentric. These spatial frames are prone to decline with aging and impairment is even more pronounced in Alzheimer's disease (AD) or in mild cognitive impairment (MCI). OBJECTIVE To conduct a systematic review of experimental studies investigating which MCI population and tasks are used to evaluate spatial memory and how allocentric and egocentric deficits are impaired in MCI after navigation. METHODS PRISMA and PICO guidelines were applied to carry out the systematic search. Down and Black checklist was used to assess methodological quality. RESULTS Our results showed that amnestic MCI and AD pathology are the most investigated typologies; both egocentric and allocentric memory are impaired in MCI individuals, and MCI due to AD biomarkers has specific encoding and retrieval impairments; secondly, spatial navigation is principally investigated with the hidden goal task (virtual and real-world version), and among studies involving virtual reality, the privileged setting consists of non-immersive technology; thirdly, despite subtle differences, real-world and virtual versions showed good overlap for the assessment of MCI spatial memory. CONCLUSION Considering that MCI is a subclinical entity with potential risk for conversion to dementia, investigating spatial memory deficits with navigation tasks might be crucial to make accurate diagnosis and rehabilitation.
Collapse
Affiliation(s)
- Cosimo Tuena
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Valentina Mancuso
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Chiara Stramba-Badiale
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Elisa Pedroli
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Faculty of Psychology, Universitá eCampus, Novedrate, Italy
| | - Marco Stramba-Badiale
- Department of Geriatrics and Cardiovascular Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Humane Technology Lab, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Claudia Repetto
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
16
|
Rounds JD, Cruz-Garza JG, Kalantari S. Using Posterior EEG Theta Band to Assess the Effects of Architectural Designs on Landmark Recognition in an Urban Setting. Front Hum Neurosci 2020; 14:584385. [PMID: 33362491 PMCID: PMC7759667 DOI: 10.3389/fnhum.2020.584385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/13/2020] [Indexed: 11/27/2022] Open
Abstract
The process of urban landmark-based navigation has proven to be difficult to study in a rigorous fashion, primarily due to confounding variables and the problem of obtaining reliable data in real-world contexts. The development of high-resolution, immersive virtual reality technologies has opened exciting new possibilities for gathering data on human wayfinding that could not otherwise be readily obtained. We developed a research platform using a virtual environment and electroencephalography (EEG) to better understand the neural processes associated with landmark usage and recognition during urban navigation tasks. By adjusting the architectural parameters of different buildings in this virtual environment, we isolated and tested specific design features to determine whether or not they served as a target for landmarking. EEG theta band (4-7 Hz) event-related synchronization/desynchronization over posterior scalp areas was evaluated at the time when participants observed each target building along a predetermined self-paced route. A multi-level linear model was used to investigate the effects of salient architectural features on posterior scalp areas. Our results support the conclusion that highly salient architectural features-those that contrast sharply with the surrounding environment-are more likely to attract visual attention, remain in short-term memory, and activate brain regions associated with wayfinding compared with non-salient buildings. After establishing this main aggregate effect, we evaluated specific salient architectural features and neural correlates of navigation processing. The buildings that most strongly associated extended gaze time, location recall accuracy, and changes in theta-band neural patterns with landmarking in our study were those that incorporated rotational twist designs and natural elements such as trees and gardens. Other building features, such as unusual façade patterns or building heights, were to a lesser extent also associated with landmarking.
Collapse
Affiliation(s)
- James D. Rounds
- Human Development, Cornell University, Ithaca, NY, United States
| | | | - Saleh Kalantari
- Department of Design and Environmental Analysis, Cornell University, Ithaca, NY, United States
| |
Collapse
|
17
|
Ramanoël S, Durteste M, Bécu M, Habas C, Arleo A. Differential Brain Activity in Regions Linked to Visuospatial Processing During Landmark-Based Navigation in Young and Healthy Older Adults. Front Hum Neurosci 2020; 14:552111. [PMID: 33240060 PMCID: PMC7668216 DOI: 10.3389/fnhum.2020.552111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
Older adults have difficulties in navigating unfamiliar environments and updating their wayfinding behavior when faced with blocked routes. This decline in navigational capabilities has traditionally been ascribed to memory impairments and dysexecutive function, whereas the impact of visual aging has often been overlooked. The ability to perceive visuospatial information such as salient landmarks is essential to navigating efficiently. To date, the functional and neurobiological factors underpinning landmark processing in aging remain insufficiently characterized. To address this issue, functional magnetic resonance imaging (fMRI) was used to investigate the brain activity associated with landmark-based navigation in young and healthy older participants. The performances of 25 young adults (μ = 25.4 years, σ = 2.7; seven females) and 17 older adults (μ = 73.0 years, σ = 3.9; 10 females) were assessed in a virtual-navigation task in which they had to orient using salient landmarks. The underlying whole-brain patterns of activity as well as the functional roles of specific cerebral regions involved in landmark processing, namely the parahippocampal place area (PPA), the occipital place area (OPA), and the retrosplenial cortex (RSC), were analyzed. Older adults' navigational abilities were overall diminished compared to young adults. Also, the two age groups relied on distinct navigational strategies to solve the task. Better performances during landmark-based navigation were associated with increased neural activity in an extended neural network comprising several cortical and cerebellar regions. Direct comparisons between age groups revealed that young participants had greater anterior temporal activity. Also, only young adults showed significant activity in occipital areas corresponding to the cortical projection of the central visual field during landmark-based navigation. The region-of-interest analysis revealed an increased OPA activation in older adult participants during the landmark condition. There were no significant between-group differences in PPA and RSC activations. These preliminary results hint at the possibility that aging diminishes fine-grained information processing in occipital and temporal regions, thus hindering the capacity to use landmarks adequately for navigation. Keeping sight of its exploratory nature, this work helps towards a better comprehension of the neural dynamics subtending landmark-based navigation and it provides new insights on the impact of age-related visuospatial processing differences on navigation capabilities.
Collapse
Affiliation(s)
- Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- University of Côte d’Azur, LAMHESS, Nice, France
| | - Marion Durteste
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marcia Bécu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
18
|
Uwisengeyimana JDD, Nguchu BA, Wang Y, Zhang D, Liu Y, Qiu B, Wang X. Cognitive function and cerebellar morphometric changes relate to abnormal intra-cerebellar and cerebro-cerebellum functional connectivity in old adults. Exp Gerontol 2020; 140:111060. [PMID: 32814097 DOI: 10.1016/j.exger.2020.111060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Numerous structural studies have already reported volumetric reduction in cerebellum with aging. However, there are still limited studies particularly focusing on analysis of the cerebellar resting state FC in old adults. Even so, the least related studies were unable to include some important cerebellar lobules due to limited cerebellum segmentation methods. OBJECTIVE The purpose of this study is to explore cognitive function in relation to cerebellar lobular morphometry and cortico-cerebellar connectivity changes in old adults' lifespan by incorporating previously undetected cerebellar lobules. METHODS This study includes a sample of 264 old adults subdivided into five cognitively normal age groups (G1 through G5). Cerebellum Segmentation (CERES) software was used to obtain morphometric measures and brain masks of all the 24 cerebellar lobules. We then defined individual lobules as seed regions and mapped the whole-brain to get functional connectivity maps. To analyze age group differences in cortico-cerebellar connectivity and cerebellar lobular volume, we used one way ANOVA and post hoc analysis was performed for multiple comparisons using Bonferroni method. RESULTS Our results report cerebellar lobular volumetric reduction, disrupted intra-cerebellar connectivity and significant differences in cortico-cerebellar resting state FC across age groups. In addition, our results show that disrupted FC between left Crus-II and right ACC relates to well emotion regulation and cognitive decline and is associated with poor performance on TMT-B and logical memory tests in older adults. CONCLUSION Overall, our findings confirm that as humans get older and older, the cerebellar lobular volumes as well as the cortico-cerebellar functional connectivity are affected and hence reduces cognition.
Collapse
Affiliation(s)
- Jean de Dieu Uwisengeyimana
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China; Department of Electrical and Electronics Engineering, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Benedictor Alexander Nguchu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanming Wang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Du Zhang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanpeng Liu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoxiao Wang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|