1
|
Szczupak D, Schaeffer DJ, Tian X, Choi SH, Fang-Cheng, Iack PM, Campos VP, Mayo JP, Patsch J, Mitter C, Haboosheh A, Kwon HS, Vieira MAC, Reich DS, Jacobson S, Kasprian G, Tovar-Moll F, Lent R, Silva AC. Direct interhemispheric cortical communication via thalamic commissures: a new white matter pathway in the primate brain. Cereb Cortex 2024; 34:bhad394. [PMID: 37950874 PMCID: PMC10793074 DOI: 10.1093/cercor/bhad394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/13/2023] Open
Abstract
Cortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported and named the thalamic commissures (TCs) as an additional interhemispheric axonal fiber pathway connecting the cortex to the contralateral thalamus in the rodent brain. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted MRI, viral axonal tracing, and fMRI. We present evidence of TCs in both New World (Callithrix jacchus and Cebus apella) and Old World primates (Macaca mulatta). Further, like rodents, we show that the TCs in primates develop during the embryonic period, forming anatomical and functionally active connections of the cortex with the contralateral thalamus. We also searched for TCs in the human brain, showing their presence in humans with brain malformations, although we could not identify TCs in healthy subjects. These results pose the TCs as a vital fiber pathway in the primate brain, allowing for more robust interhemispheric connectivity and synchrony and serving as an alternative commissural route in developmental brain malformations.
Collapse
Affiliation(s)
- Diego Szczupak
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - David J Schaeffer
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Xiaoguang Tian
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Sang-Ho Choi
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Fang-Cheng
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Pamela Meneses Iack
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, 373 Carlos Chagas Filho Avenue, Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Vinicius P Campos
- Department of Electrical and Computer Engineering, 400 Trabalhador São-Carlense Avenue, University of São Paulo, São Carlos, SP 13565-905, Brazil
| | - J Patrick Mayo
- Department of Ophthalmology, University of Pittsburgh, 1622 Locust Street, Pittsburgh, PA 15261, USA
| | - Janina Patsch
- Department of Biomedical Imaging and Image-Guided Therapy of the Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria
| | - Christian Mitter
- Department of Biomedical Imaging and Image-Guided Therapy of the Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria
| | - Amit Haboosheh
- Department of Radiology Hadassah Ein Karem Hospital, Kalman Ya'akov Man St, Jerusalem 9112001, Israel
| | - Ha Seung Kwon
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| | - Marcelo A C Vieira
- Department of Electrical and Computer Engineering, 400 Trabalhador São-Carlense Avenue, University of São Paulo, São Carlos, SP 13565-905, Brazil
| | - Daniel S Reich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Steve Jacobson
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy of the Medical University of Vienna, 18-20 Währinger Gürtel, 1090, Vienna, Austria
| | - Fernanda Tovar-Moll
- D’Or Institute of Research and Education, 30 Rua Diniz Cordeiro Street, Rio de Janeiro, Rio de Janeiro 22281-100, Brazil
| | - Roberto Lent
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, 373 Carlos Chagas Filho Avenue, Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- D’Or Institute of Research and Education, 30 Rua Diniz Cordeiro Street, Rio de Janeiro, Rio de Janeiro 22281-100, Brazil
| | - Afonso C Silva
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA
| |
Collapse
|
2
|
Szczupak D, Schaeffer DJ, Tian X, Choi SH, Fang-Cheng, Iack PM, Campos VP, Mayo JP, Patsch J, Mitter C, Haboosheh A, Vieira MA, Kasprian G, Tovar-Moll F, Lent R, Silva AC. Direct interhemispheric cortical communication via thalamic commissures: a new white-matter pathway in the primate brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545128. [PMID: 37398056 PMCID: PMC10312754 DOI: 10.1101/2023.06.15.545128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cortical neurons of eutherian mammals project to the contralateral hemisphere, crossing the midline primarily via the corpus callosum and the anterior, posterior, and hippocampal commissures. We recently reported an additional commissural pathway in rodents, termed the thalamic commissures (TCs), as another interhemispheric axonal fiber pathway that connects cortex to the contralateral thalamus. Here, we demonstrate that TCs also exist in primates and characterize the connectivity of these pathways with high-resolution diffusion-weighted magnetic resonance imaging, viral axonal tracing, and functional MRI. We present evidence of TCs in both New World (Callithrix jacchus and Cebus apella) and Old World primates (Macaca mulatta). Further, like rodents, we show that the TCs in primates develop during the embryonic period, forming anatomical and functionally active connections of the cortex with the contralateral thalamus. We also searched for TCs in the human brain, showing their presence in humans with brain malformations, although we could not identify TCs in healthy subjects. These results pose the TCs as an important fiber pathway in the primate brain, allowing for more robust interhemispheric connectivity and synchrony and serving as an alternative commissural route in developmental brain malformations.
Collapse
Affiliation(s)
- Diego Szczupak
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David J. Schaeffer
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaoguang Tian
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sang-Ho Choi
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Fang-Cheng
- Department of Neurological Surgery University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pamela Meneses Iack
- Department of Neurological Surgery University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | - J. Patrick Mayo
- Department of Electrical and Computer Engineering, University of São Paulo, São Carlos, SP 13565-905, Brazil
| | - Janina Patsch
- Department of Biomedical Imaging and Image-guided therapy of the Medical University of Vienna, 1090, Austria
| | - Christian Mitter
- Department of Biomedical Imaging and Image-guided therapy of the Medical University of Vienna, 1090, Austria
| | - Amit Haboosheh
- Department Of Radiology Hadassah Ein Karem Hospital, Jerusalem 9112001, Israel
| | - Marcelo A.C. Vieira
- Department of Electrical and Computer Engineering, University of São Paulo, São Carlos, SP 13565-905, Brazil
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided therapy of the Medical University of Vienna, 1090, Austria
| | | | - Roberto Lent
- Federal University of Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- D’Or Institute of Research and Education, Rio de Janeiro 22281-100, Brazil
| | - Afonso C. Silva
- University of Pittsburgh Brain Institute, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
3
|
Szczupak D, Lent R, Tovar-Moll F, Silva AC. Heterotopic connectivity of callosal dysgenesis in mice and humans. Front Neurosci 2023; 17:1191859. [PMID: 37274193 PMCID: PMC10232863 DOI: 10.3389/fnins.2023.1191859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 06/06/2023] Open
Abstract
The corpus callosum (CC), the largest brain commissure and the primary white matter pathway for interhemispheric cortical connectivity, was traditionally viewed as a predominantly homotopic structure, connecting mirror areas of the cortex. However, new studies verified that most callosal commissural fibers are heterotopic. Recently, we reported that ~75% of the callosal connections in the brains of mice, marmosets, and humans are heterotopic, having an essential role in determining the global properties of brain networks. In the present study, we leveraged high-resolution diffusion-weighted imaging and graph network modeling to investigate the relationship between heterotopic and homotopic callosal fibers in human subjects and in a spontaneous mouse model of Corpus Callosum Dysgenesis (CCD), a congenital developmental CC malformation that leads to widespread whole-brain reorganization. Our results show that the CCD brain is more heterotopic than the normotypical brain, with both mouse and human CCD subjects displaying highly variable heterotopicity maps. CCD mice have a clear heterotopicity cluster in the anterior CC, while hypoplasic humans have strongly variable patterns. Graph network-based connectivity profile showed a direct impact of heterotopic connections on CCD brains altering several network-based statistics. Our collective results show that CCD directly alters heterotopic connections and brain connectivity.
Collapse
Affiliation(s)
- Diego Szczupak
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- D’Or Institute Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Afonso C. Silva
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Schaeffer DJ, Klassen LM, Hori Y, Tian X, Szczupak D, Yen CCC, Cléry JC, Gilbert KM, Gati JS, Menon RS, Liu C, Everling S, Silva AC. An open access resource for functional brain connectivity from fully awake marmosets. Neuroimage 2022; 252:119030. [PMID: 35217206 PMCID: PMC9048130 DOI: 10.1016/j.neuroimage.2022.119030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is quickly gaining traction as a premier neuroscientific model. However, considerable progress is still needed in understanding the functional and structural organization of the marmoset brain to rival that documented in longstanding preclinical model species, like mice, rats, and Old World primates. To accelerate such progress, we present the Marmoset Functional Brain Connectivity Resource (marmosetbrainconnectome.org), currently consisting of over 70 h of resting-state fMRI (RS-fMRI) data acquired at 500 µm isotropic resolution from 31 fully awake marmosets in a common stereotactic space. Three-dimensional functional connectivity (FC) maps for every cortical and subcortical gray matter voxel are stored online. Users can instantaneously view, manipulate, and download any whole-brain functional connectivity (FC) topology (at the subject- or group-level) along with the raw datasets and preprocessing code. Importantly, researchers can use this resource to test hypotheses about FC directly - with no additional analyses required - yielding whole-brain correlations for any gray matter voxel on demand. We demonstrate the resource's utility for presurgical planning and comparison with tracer-based neuronal connectivity as proof of concept. Complementing existing structural connectivity resources for the marmoset brain, the Marmoset Functional Brain Connectivity Resource affords users the distinct advantage of exploring the connectivity of any voxel in the marmoset brain, not limited to injection sites nor constrained by regional atlases. With the entire raw database (RS-fMRI and structural images) and preprocessing code openly available for download and use, we expect this resource to be broadly valuable to test novel hypotheses about the functional organization of the marmoset brain.
Collapse
Affiliation(s)
- David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| | - L Martyn Klassen
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Xiaoguang Tian
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Diego Szczupak
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Cecil Chern-Chyi Yen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - CiRong Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|