1
|
Leugering J. Neuromorphic engineering: Artificial brains for artificial intelligence. Ann N Y Acad Sci 2024; 1542:5-10. [PMID: 39567436 DOI: 10.1111/nyas.15256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Neuromorphic engineering is a research discipline that tries to bridge the gaps between neuroscience and engineering, cognition and algorithms, and natural and artificial intelligence. Neuromorphic engineering promises revolutionary breakthroughs that could rapidly advance our understanding of the brain and pave the way toward more human-like and sustainable artificial intelligence. But first, it will have to find its way out of the laboratory.
Collapse
Affiliation(s)
- Johannes Leugering
- Institute for Neural Computation, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Spaeth A, Haussler D, Teodorescu M. Model-agnostic neural mean field with a data-driven transfer function. NEUROMORPHIC COMPUTING AND ENGINEERING 2024; 4:034013. [PMID: 39310743 PMCID: PMC11413991 DOI: 10.1088/2634-4386/ad787f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
As one of the most complex systems known to science, modeling brain behavior and function is both fascinating and extremely difficult. Empirical data is increasingly available from ex vivo human brain organoids and surgical samples, as well as in vivo animal models, so the problem of modeling the behavior of large-scale neuronal systems is more relevant than ever. The statistical physics concept of a mean-field model offers a tractable way to bridge the gap between single-neuron and population-level descriptions of neuronal activity, by modeling the behavior of a single representative neuron and extending this to the population. However, existing neural mean-field methods typically either take the limit of small interaction sizes, or are applicable only to the specific neuron models for which they were derived. This paper derives a mean-field model by fitting a transfer function called Refractory SoftPlus, which is simple yet applicable to a broad variety of neuron types. The transfer function is fitted numerically to simulated spike time data, and is entirely agnostic to the underlying neuronal dynamics. The resulting mean-field model predicts the response of a network of randomly connected neurons to a time-varying external stimulus with a high degree of accuracy. Furthermore, it enables an accurate approximate bifurcation analysis as a function of the level of recurrent input. This model does not assume large presynaptic rates or small postsynaptic potential size, allowing mean-field models to be developed even for populations with large interaction terms.
Collapse
Affiliation(s)
- Alex Spaeth
- Electrical and Computer Engineering Department, University of California, Santa Cruz, Santa Cruz, CA, United States of America
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - David Haussler
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States of America
- Biomolecular Engineering Department, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - Mircea Teodorescu
- Electrical and Computer Engineering Department, University of California, Santa Cruz, Santa Cruz, CA, United States of America
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States of America
- Biomolecular Engineering Department, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| |
Collapse
|
3
|
Spaeth A, Haussler D, Teodorescu M. Model-Agnostic Neural Mean Field With The Refractory SoftPlus Transfer Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579047. [PMID: 38370695 PMCID: PMC10871173 DOI: 10.1101/2024.02.05.579047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Due to the complexity of neuronal networks and the nonlinear dynamics of individual neurons, it is challenging to develop a systems-level model which is accurate enough to be useful yet tractable enough to apply. Mean-field models which extrapolate from single-neuron descriptions to large-scale models can be derived from the neuron's transfer function, which gives its firing rate as a function of its synaptic input. However, analytically derived transfer functions are applicable only to the neurons and noise models from which they were originally derived. In recent work, approximate transfer functions have been empirically derived by fitting a sigmoidal curve, which imposes a maximum firing rate and applies only in the diffusion limit, restricting applications. In this paper, we propose an approximate transfer function called Refractory SoftPlus, which is simple yet applicable to a broad variety of neuron types. Refractory SoftPlus activation functions allow the derivation of simple empirically approximated mean-field models using simulation results, which enables prediction of the response of a network of randomly connected neurons to a time-varying external stimulus with a high degree of accuracy. These models also support an accurate approximate bifurcation analysis as a function of the level of recurrent input. Finally, the model works without assuming large presynaptic rates or small postsynaptic potential size, allowing mean-field models to be developed even for populations with large interaction terms.
Collapse
Affiliation(s)
- Alex Spaeth
- Electrical and Computer Engineering Department, University of California, Santa Cruz, Santa Cruz, CA, United States
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - David Haussler
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States
- Biomolecular Engineering Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Mircea Teodorescu
- Electrical and Computer Engineering Department, University of California, Santa Cruz, Santa Cruz, CA, United States
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, United States
- Biomolecular Engineering Department, University of California, Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
4
|
Aboumerhi K, Güemes A, Liu H, Tenore F, Etienne-Cummings R. Neuromorphic applications in medicine. J Neural Eng 2023; 20:041004. [PMID: 37531951 DOI: 10.1088/1741-2552/aceca3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
In recent years, there has been a growing demand for miniaturization, low power consumption, quick treatments, and non-invasive clinical strategies in the healthcare industry. To meet these demands, healthcare professionals are seeking new technological paradigms that can improve diagnostic accuracy while ensuring patient compliance. Neuromorphic engineering, which uses neural models in hardware and software to replicate brain-like behaviors, can help usher in a new era of medicine by delivering low power, low latency, small footprint, and high bandwidth solutions. This paper provides an overview of recent neuromorphic advancements in medicine, including medical imaging and cancer diagnosis, processing of biosignals for diagnosis, and biomedical interfaces, such as motor, cognitive, and perception prostheses. For each section, we provide examples of how brain-inspired models can successfully compete with conventional artificial intelligence algorithms, demonstrating the potential of neuromorphic engineering to meet demands and improve patient outcomes. Lastly, we discuss current struggles in fitting neuromorphic hardware with non-neuromorphic technologies and propose potential solutions for future bottlenecks in hardware compatibility.
Collapse
Affiliation(s)
- Khaled Aboumerhi
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Amparo Güemes
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge CB3 0FA, United Kingdom
| | - Hongtao Liu
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Francesco Tenore
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States of America
| | - Ralph Etienne-Cummings
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
5
|
Wang J, Lin S, Liu A. Bioinspired Perception and Navigation of Service Robots in Indoor Environments: A Review. Biomimetics (Basel) 2023; 8:350. [PMID: 37622955 PMCID: PMC10452487 DOI: 10.3390/biomimetics8040350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Biological principles draw attention to service robotics because of similar concepts when robots operate various tasks. Bioinspired perception is significant for robotic perception, which is inspired by animals' awareness of the environment. This paper reviews the bioinspired perception and navigation of service robots in indoor environments, which are popular applications of civilian robotics. The navigation approaches are classified by perception type, including vision-based, remote sensing, tactile sensor, olfactory, sound-based, inertial, and multimodal navigation. The trend of state-of-art techniques is moving towards multimodal navigation to combine several approaches. The challenges in indoor navigation focus on precise localization and dynamic and complex environments with moving objects and people.
Collapse
Affiliation(s)
- Jianguo Wang
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Shiwei Lin
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Ang Liu
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
6
|
Patanè L, Zhao G. Editorial: Focus on methods: neural algorithms for bio-inspired robotics. Front Neurorobot 2023; 17:1250645. [PMID: 37560410 PMCID: PMC10407788 DOI: 10.3389/fnbot.2023.1250645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Affiliation(s)
- Luca Patanè
- Department of Engineering, University of Messina, Messina, Italy
| | - Guoping Zhao
- Lauflabor Locomotion Laboratory, Centre for Cognitive Science, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
7
|
Nilsson M, Schelén O, Lindgren A, Bodin U, Paniagua C, Delsing J, Sandin F. Integration of neuromorphic AI in event-driven distributed digitized systems: Concepts and research directions. Front Neurosci 2023; 17:1074439. [PMID: 36875653 PMCID: PMC9981939 DOI: 10.3389/fnins.2023.1074439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
Increasing complexity and data-generation rates in cyber-physical systems and the industrial Internet of things are calling for a corresponding increase in AI capabilities at the resource-constrained edges of the Internet. Meanwhile, the resource requirements of digital computing and deep learning are growing exponentially, in an unsustainable manner. One possible way to bridge this gap is the adoption of resource-efficient brain-inspired "neuromorphic" processing and sensing devices, which use event-driven, asynchronous, dynamic neurosynaptic elements with colocated memory for distributed processing and machine learning. However, since neuromorphic systems are fundamentally different from conventional von Neumann computers and clock-driven sensor systems, several challenges are posed to large-scale adoption and integration of neuromorphic devices into the existing distributed digital-computational infrastructure. Here, we describe the current landscape of neuromorphic computing, focusing on characteristics that pose integration challenges. Based on this analysis, we propose a microservice-based conceptual framework for neuromorphic systems integration, consisting of a neuromorphic-system proxy, which would provide virtualization and communication capabilities required in distributed systems of systems, in combination with a declarative programming approach offering engineering-process abstraction. We also present concepts that could serve as a basis for the realization of this framework, and identify directions for further research required to enable large-scale system integration of neuromorphic devices.
Collapse
Affiliation(s)
- Mattias Nilsson
- Embedded Intelligent Systems Lab (EISLAB), Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Lulea, Sweden
| | - Olov Schelén
- Embedded Intelligent Systems Lab (EISLAB), Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Lulea, Sweden
| | - Anders Lindgren
- Embedded Intelligent Systems Lab (EISLAB), Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Lulea, Sweden
- Applied AI and IoT, Industrial Systems, Digital Systems, RISE Research Institutes of Sweden, Kista, Sweden
| | - Ulf Bodin
- Embedded Intelligent Systems Lab (EISLAB), Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Lulea, Sweden
| | - Cristina Paniagua
- Embedded Intelligent Systems Lab (EISLAB), Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Lulea, Sweden
| | - Jerker Delsing
- Embedded Intelligent Systems Lab (EISLAB), Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Lulea, Sweden
| | - Fredrik Sandin
- Embedded Intelligent Systems Lab (EISLAB), Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Lulea, Sweden
| |
Collapse
|
8
|
Vanarse A, Osseiran A, Rassau A, van der Made P. Application of Neuromorphic Olfactory Approach for High-Accuracy Classification of Malts. SENSORS (BASEL, SWITZERLAND) 2022; 22:440. [PMID: 35062402 PMCID: PMC8778084 DOI: 10.3390/s22020440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Current developments in artificial olfactory systems, also known as electronic nose (e-nose) systems, have benefited from advanced machine learning techniques that have significantly improved the conditioning and processing of multivariate feature-rich sensor data. These advancements are complemented by the application of bioinspired algorithms and architectures based on findings from neurophysiological studies focusing on the biological olfactory pathway. The application of spiking neural networks (SNNs), and concepts from neuromorphic engineering in general, are one of the key factors that has led to the design and development of efficient bioinspired e-nose systems. However, only a limited number of studies have focused on deploying these models on a natively event-driven hardware platform that exploits the benefits of neuromorphic implementation, such as ultra-low-power consumption and real-time processing, for simplified integration in a portable e-nose system. In this paper, we extend our previously reported neuromorphic encoding and classification approach to a real-world dataset that consists of sensor responses from a commercial e-nose system when exposed to eight different types of malts. We show that the proposed SNN-based classifier was able to deliver 97% accurate classification results at a maximum latency of 0.4 ms per inference with a power consumption of less than 1 mW when deployed on neuromorphic hardware. One of the key advantages of the proposed neuromorphic architecture is that the entire functionality, including pre-processing, event encoding, and classification, can be mapped on the neuromorphic system-on-a-chip (NSoC) to develop power-efficient and highly-accurate real-time e-nose systems.
Collapse
Affiliation(s)
- Anup Vanarse
- Brainchip Research Institute, Perth 6000, Australia; (A.O.); (P.v.d.M.)
| | - Adam Osseiran
- Brainchip Research Institute, Perth 6000, Australia; (A.O.); (P.v.d.M.)
| | - Alexander Rassau
- School of Engineering, Edith Cowan University, Joondalup 6027, Australia;
| | | |
Collapse
|