1
|
Yang H, Han F, Wang Q. A large-scale neuronal network modelling study: Stimulus size modulates gamma oscillations in the primary visual cortex by long-range connections. Eur J Neurosci 2024; 60:4224-4243. [PMID: 38812400 DOI: 10.1111/ejn.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Stimulus size modulation of neuronal firing activity is a fundamental property of the primary visual cortex. Numerous biological experiments have shown that stimulus size modulation is affected by multiple factors at different spatiotemporal scales, but the exact pathways and mechanisms remain incompletely understood. In this paper, we establish a large-scale neuronal network model of primary visual cortex with layer 2/3 to study how gamma oscillation properties are modulated by stimulus size and especially how long-range connections affect the modulation as realistic neuronal properties and spatial distributions of synaptic connections are considered. It is shown that long-range horizontal synaptic connections are sufficient to produce dimensional modulation of firing rates and gamma oscillations. In particular, with increasing grating stimulus size, the firing rate increases and then decreases, the peak frequency of gamma oscillations decreases and the spectral power increases. These are consistent with biological experimental observations. Furthermore, we explain in detail how the number and spatial distribution of long-range connections affect the size modulation of gamma oscillations by using the analysis of neuronal firing activity and synaptic current fluctuations. Our results provide a mechanism explanation for size modulation of gamma oscillations in the primary visual cortex and reveal the important and unique role played by long-range connections, which contributes to a deeper understanding of the cognitive function of gamma oscillations in visual cortex.
Collapse
Affiliation(s)
- Hao Yang
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, China
| |
Collapse
|
2
|
Zheng Z, Hu Q, Bu X, Jiang H, Sui X, Li L, Chai X, Chen Y. Spatial Attention Modulates Neuronal Interactions between Simple and Complex Cells in V1. Int J Mol Sci 2023; 24:ijms24098229. [PMID: 37175939 PMCID: PMC10179430 DOI: 10.3390/ijms24098229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Visual perception is profoundly modulated by spatial attention, which can selectively prioritize goal-related information. Previous studies found spatial attention facilitated the efficacy of neuronal communication between visual cortices with hierarchical organizations. In the primary visual cortex (V1), there is also a hierarchical connection between simple (S) and complex (C) cells. We wonder whether and how spatial attention modulates neuronal communication within V1, especially for neuronal pairs with heterogeneous visual input. We simultaneously recorded the pairs' activity from macaque monkeys when they performed a spatial-attention-involved task, then applied likelihood-based Granger causality analysis to explore attentional modulation of neuronal interactions. First, a significant attention-related decrease in Granger causality was found in S-C pairs, which primarily displayed in the S-to-C feedforward connection. Second, the interaction strength of the feedforward connection was significantly higher than that of the feedback under attend toward (AT) conditions. Although information flow did not alter as the attentional focus shifted, the strength of communications between target- and distractor-stimuli-covered neurons differed only when attending to complex cells' receptive fields (RFs). Furthermore, pairs' communications depended on the attentional modulation of neurons' firing rates. Our findings demonstrate spatial attention does not induce specific information flow but rather amplifies directed communication within V1.
Collapse
Affiliation(s)
- Zhiyan Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiyi Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangdong Bu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongru Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohong Sui
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liming Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Van-Horenbeke FA, Peer A. NILRNN: A Neocortex-Inspired Locally Recurrent Neural Network for Unsupervised Feature Learning in Sequential Data. Cognit Comput 2023. [DOI: 10.1007/s12559-023-10122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
AbstractUnsupervised feature learning refers to the problem of learning useful feature extraction functions from unlabeled data. Despite the great success of deep learning networks in this task in recent years, both for static and for sequential data, these systems can in general still not compete with the high performance of our brain at learning to extract useful representations from its sensory input. We propose the Neocortex-Inspired Locally Recurrent Neural Network: a new neural network for unsupervised feature learning in sequential data that brings ideas from the structure and function of the neocortex to the well-established fields of machine learning and neural networks. By mimicking connection patterns in the feedforward circuits of the neocortex, our system tries to generalize some of the ideas behind the success of convolutional neural networks to types of data other than images. To evaluate the performance of our system at extracting useful features, we have trained different classifiers using those and other learnt features as input and we have compared the obtained accuracies. Our system has shown to outperform other shallow feature learning systems in this task, both in terms of the accuracies achieved and in terms of how fast the classification task is learnt. The results obtained confirm our system as a state-of-the-art shallow feature learning system for sequential data, and suggest that extending it to or integrating it into deep architectures may lead to new successful networks that are competent at dealing with complex sequential tasks.
Collapse
|
4
|
Li B, Todo Y, Tang Z, Tang C. The mechanism of orientation detection based on color-orientation jointly selective cells. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Hu Q, Zheng Z, Sui X, Li L, Chai X, Chen Y. Spatial Attention Modulates Spike Count Correlations and Granger Causality in the Primary Visual Cortex. Front Cell Neurosci 2022; 16:838049. [PMID: 35783091 PMCID: PMC9246483 DOI: 10.3389/fncel.2022.838049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
The influence of spatial attention on neural interactions has been revealed even in early visual information processing stages. It resolves the process of competing for sensory information about objects perceived as targets and distractors. However, the attentional modulation of the interaction between pairs of neurons with non-overlapping receptive fields (RFs) is not well known. Here, we investigated the activity of anatomically distant neurons in two behaving monkeys’ primary visual cortex (V1), when they performed a spatial attention task detecting color change. We compared attentional modulation from the perspective of spike count correlations and Granger causality among simple and complex cells. An attention-related increase in spike count correlations and a decrease in Granger causality were found. The results showed that spatial attention significantly influenced only the interactions between rather than within simple and complex cells. Furthermore, we found that the attentional modulation of neuronal interactions changed with neuronal pairs’ preferred directions differences. Thus, we found that spatial attention increased the functional communications and competing connectivities when attending to the neurons’ RFs, which impacts the interactions only between simple and complex cells. Our findings enrich the model of simple and complex cells and further understand the way that attention influences the neurons’ activities.
Collapse
Affiliation(s)
- Qiyi Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyan Zheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohong Sui
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liming Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Najafian S, Koch E, Teh KL, Jin J, Rahimi-Nasrabadi H, Zaidi Q, Kremkow J, Alonso JM. A theory of cortical map formation in the visual brain. Nat Commun 2022; 13:2303. [PMID: 35484133 PMCID: PMC9050665 DOI: 10.1038/s41467-022-29433-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/16/2022] [Indexed: 11/11/2022] Open
Abstract
The cerebral cortex receives multiple afferents from the thalamus that segregate by stimulus modality forming cortical maps for each sense. In vision, the primary visual cortex maps the multiple dimensions of the visual stimulus in patterns that vary across species for reasons unknown. Here we introduce a general theory of cortical map formation, which proposes that map diversity emerges from species variations in the thalamic afferent density sampling sensory space. In the theory, increasing afferent sampling density enlarges the cortical domains representing the same visual point, allowing the segregation of afferents and cortical targets by multiple stimulus dimensions. We illustrate the theory with an afferent-density model that accurately replicates the maps of different species through afferent segregation followed by thalamocortical convergence pruned by visual experience. Because thalamocortical pathways use similar mechanisms for axon segregation and pruning, the theory may extend to other sensory areas of the mammalian brain.
Collapse
Affiliation(s)
- Sohrab Najafian
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, 10036, United States
| | - Erin Koch
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, 10036, United States
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA, 91125, United States
| | - Kai Lun Teh
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, 10115, Berlin, Germany
| | - Jianzhong Jin
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, 10036, United States
| | - Hamed Rahimi-Nasrabadi
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, 10036, United States
| | - Qasim Zaidi
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, 10036, United States
| | - Jens Kremkow
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstraße 13, 10115, Berlin, Germany
| | - Jose-Manuel Alonso
- Department of Biological and Visual Sciences, SUNY College of Optometry, New York, NY, 10036, United States.
| |
Collapse
|
7
|
Artificial Visual System for Orientation Detection Based on Hubel–Wiesel Model. Brain Sci 2022; 12:brainsci12040470. [PMID: 35448001 PMCID: PMC9025109 DOI: 10.3390/brainsci12040470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 01/18/2023] Open
Abstract
The Hubel–Wiesel (HW) model is a classical neurobiological model for explaining the orientation selectivity of cortical cells. However, the HW model still has not been fully proved physiologically, and there are few concise but efficient systems to quantify and simulate the HW model and can be used for object orientation detection applications. To realize a straightforward and efficient quantitive method and validate the HW model’s reasonability and practicality, we use McCulloch-Pitts (MP) neuron model to simulate simple cells and complex cells and implement an artificial visual system (AVS) for two-dimensional object orientation detection. First, we realize four types of simple cells that are only responsible for detecting a specific orientation angle locally. Complex cells are realized with the sum function. Every local orientation information of an object is collected by simple cells and subsequently converged to the corresponding same type complex cells for computing global activation degree. Finally, the global orientation is obtained according to the activation degree of each type of complex cell. Based on this scheme, an AVS for global orientation detection is constructed. We conducted computer simulations to prove the feasibility and effectiveness of our scheme and the AVS. Computer simulations show that the mechanism-based AVS can make accurate orientation discrimination and shows striking biological similarities with the natural visual system, which indirectly proves the rationality of the Hubel–Wiesel model. Furthermore, compared with traditional CNN, we find that our AVS beats CNN on orientation detection tasks in identification accuracy, noise resistance, computation and learning cost, hardware implementation, and reasonability.
Collapse
|
8
|
Kim G, Jang J, Paik SB. Periodic clustering of simple and complex cells in visual cortex. Neural Netw 2021; 143:148-160. [PMID: 34146895 DOI: 10.1016/j.neunet.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Neurons in the primary visual cortex (V1) are often classified as simple or complex cells, but it is debated whether they are discrete hierarchical classes of neurons or if they represent a continuum of variation within a single class of cells. Herein, we show that simple and complex cells may arise commonly from the feedforward projections from the retina. From analysis of the cortical receptive fields in cats, we show evidence that simple and complex cells originate from the periodic variation of ON-OFF segregation in the feedforward projection of retinal mosaics, by which they organize into periodic clusters in V1. From data in cats, we observed that clusters of simple and complex receptive fields correlate topographically with orientation maps, which supports our model prediction. Our results suggest that simple and complex cells are not two distinct neural populations but arise from common retinal afferents, simultaneous with orientation tuning.
Collapse
Affiliation(s)
- Gwangsu Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jaeson Jang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
9
|
Lian Y, Almasi A, Grayden DB, Kameneva T, Burkitt AN, Meffin H. Learning receptive field properties of complex cells in V1. PLoS Comput Biol 2021; 17:e1007957. [PMID: 33651790 PMCID: PMC7954310 DOI: 10.1371/journal.pcbi.1007957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 03/12/2021] [Accepted: 02/09/2021] [Indexed: 11/24/2022] Open
Abstract
There are two distinct classes of cells in the primary visual cortex (V1): simple cells and complex cells. One defining feature of complex cells is their spatial phase invariance; they respond strongly to oriented grating stimuli with a preferred orientation but with a wide range of spatial phases. A classical model of complete spatial phase invariance in complex cells is the energy model, in which the responses are the sum of the squared outputs of two linear spatially phase-shifted filters. However, recent experimental studies have shown that complex cells have a diverse range of spatial phase invariance and only a subset can be characterized by the energy model. While several models have been proposed to explain how complex cells could learn to be selective to orientation but invariant to spatial phase, most existing models overlook many biologically important details. We propose a biologically plausible model for complex cells that learns to pool inputs from simple cells based on the presentation of natural scene stimuli. The model is a three-layer network with rate-based neurons that describes the activities of LGN cells (layer 1), V1 simple cells (layer 2), and V1 complex cells (layer 3). The first two layers implement a recently proposed simple cell model that is biologically plausible and accounts for many experimental phenomena. The neural dynamics of the complex cells is modeled as the integration of simple cells inputs along with response normalization. Connections between LGN and simple cells are learned using Hebbian and anti-Hebbian plasticity. Connections between simple and complex cells are learned using a modified version of the Bienenstock, Cooper, and Munro (BCM) rule. Our results demonstrate that the learning rule can describe a diversity of complex cells, similar to those observed experimentally. Many cortical functions originate from the learning ability of the brain. How the properties of cortical cells are learned is vital for understanding how the brain works. There are many models that explain how V1 simple cells can be learned. However, how V1 complex cells are learned still remains unclear. In this paper, we propose a model of learning in complex cells based on the Bienenstock, Cooper, and Munro (BCM) rule. We demonstrate that properties of receptive fields of complex cells can be learned using this biologically plausible learning rule. Quantitative comparisons between the model and experimental data are performed. Results show that model complex cells can account for the diversity of complex cells found in experimental studies. In summary, this study provides a plausible explanation for how complex cells can be learned using biologically plausible plasticity mechanisms. Our findings help us to better understand biological vision processing and provide us with insights into the general signal processing principles that the visual cortex employs to process visual information.
Collapse
Affiliation(s)
- Yanbo Lian
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- * E-mail:
| | - Ali Almasi
- National Vision Research Institute, The Australian College of Optometry, Melbourne, Australia
| | - David B. Grayden
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Tatiana Kameneva
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- Faculty of Science, Engineering and Technology, Swinburne University, Melbourne, Australia
| | - Anthony N. Burkitt
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Hamish Meffin
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- National Vision Research Institute, The Australian College of Optometry, Melbourne, Australia
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
10
|
Dematties D, Rizzi S, Thiruvathukal GK, Pérez MD, Wainselboim A, Zanutto BS. A Computational Theory for the Emergence of Grammatical Categories in Cortical Dynamics. Front Neural Circuits 2020; 14:12. [PMID: 32372918 PMCID: PMC7179825 DOI: 10.3389/fncir.2020.00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/16/2020] [Indexed: 11/22/2022] Open
Abstract
A general agreement in psycholinguistics claims that syntax and meaning are unified precisely and very quickly during online sentence processing. Although several theories have advanced arguments regarding the neurocomputational bases of this phenomenon, we argue that these theories could potentially benefit by including neurophysiological data concerning cortical dynamics constraints in brain tissue. In addition, some theories promote the integration of complex optimization methods in neural tissue. In this paper we attempt to fill these gaps introducing a computational model inspired in the dynamics of cortical tissue. In our modeling approach, proximal afferent dendrites produce stochastic cellular activations, while distal dendritic branches–on the other hand–contribute independently to somatic depolarization by means of dendritic spikes, and finally, prediction failures produce massive firing events preventing formation of sparse distributed representations. The model presented in this paper combines semantic and coarse-grained syntactic constraints for each word in a sentence context until grammatically related word function discrimination emerges spontaneously by the sole correlation of lexical information from different sources without applying complex optimization methods. By means of support vector machine techniques, we show that the sparse activation features returned by our approach are well suited—bootstrapping from the features returned by Word Embedding mechanisms—to accomplish grammatical function classification of individual words in a sentence. In this way we develop a biologically guided computational explanation for linguistically relevant unification processes in cortex which connects psycholinguistics to neurobiological accounts of language. We also claim that the computational hypotheses established in this research could foster future work on biologically-inspired learning algorithms for natural language processing applications.
Collapse
Affiliation(s)
- Dario Dematties
- Universidad de Buenos Aires, Facultad de Ingeniería, Instituto de Ingeniería Biomédica, Buenos Aires, Argentina
| | - Silvio Rizzi
- Argonne National Laboratory, Lemont, IL, United States
| | - George K Thiruvathukal
- Argonne National Laboratory, Lemont, IL, United States.,Computer Science Department, Loyola University Chicago, Chicago, IL, United States
| | - Mauricio David Pérez
- Microwaves in Medical Engineering Group, Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, Uppsala, Sweden
| | - Alejandro Wainselboim
- Centro Científico Tecnológico Conicet Mendoza, Instituto de Ciencias Humanas, Sociales y Ambientales, Mendoza, Argentina
| | - B Silvano Zanutto
- Universidad de Buenos Aires, Facultad de Ingeniería, Instituto de Ingeniería Biomédica, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental-CONICET, Buenos Aires, Argentina
| |
Collapse
|
11
|
Westö J, May PJC. Describing complex cells in primary visual cortex: a comparison of context and multifilter LN models. J Neurophysiol 2018; 120:703-719. [PMID: 29718805 PMCID: PMC6139451 DOI: 10.1152/jn.00916.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 11/24/2022] Open
Abstract
Receptive field (RF) models are an important tool for deciphering neural responses to sensory stimuli. The two currently popular RF models are multifilter linear-nonlinear (LN) models and context models. Models are, however, never correct, and they rely on assumptions to keep them simple enough to be interpretable. As a consequence, different models describe different stimulus-response mappings, which may or may not be good approximations of real neural behavior. In the current study, we take up two tasks: 1) we introduce new ways to estimate context models with realistic nonlinearities, that is, with logistic and exponential functions, and 2) we evaluate context models and multifilter LN models in terms of how well they describe recorded data from complex cells in cat primary visual cortex. Our results, based on single-spike information and correlation coefficients, indicate that context models outperform corresponding multifilter LN models of equal complexity (measured in terms of number of parameters), with the best increase in performance being achieved by the novel context models. Consequently, our results suggest that the multifilter LN-model framework is suboptimal for describing the behavior of complex cells: the context-model framework is clearly superior while still providing interpretable quantizations of neural behavior. NEW & NOTEWORTHY We used data from complex cells in primary visual cortex to estimate a wide variety of receptive field models from two frameworks that have previously not been compared with each other. The models included traditionally used multifilter linear-nonlinear models and novel variants of context models. Using mutual information and correlation coefficients as performance measures, we showed that context models are superior for describing complex cells and that the novel context models performed the best.
Collapse
Affiliation(s)
- Johan Westö
- Department of Neuroscience and Biomedical Engineering Aalto University , Espoo , Finland
| | - Patrick J C May
- Department of Psychology, Lancaster University , Lancaster , United Kingdom
| |
Collapse
|
12
|
Philips RT, Sur M, Chakravarthy VS. The influence of astrocytes on the width of orientation hypercolumns in visual cortex: A computational perspective. PLoS Comput Biol 2017; 13:e1005785. [PMID: 29077710 PMCID: PMC5678733 DOI: 10.1371/journal.pcbi.1005785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 11/08/2017] [Accepted: 09/20/2017] [Indexed: 11/20/2022] Open
Abstract
Orientation preference maps (OPMs) are present in carnivores (such as cats and ferrets) and primates but are absent in rodents. In this study we investigate the possible link between astrocyte arbors and presence of OPMs. We simulate the development of orientation maps with varying hypercolumn widths using a variant of the Laterally Interconnected Synergetically Self-Organizing Map (LISSOM) model, the Gain Control Adaptive Laterally connected (GCAL) model, with an additional layer simulating astrocytic activation. The synaptic activity of V1 neurons is given as input to the astrocyte layer. The activity of this astrocyte layer is now used to modulate bidirectional plasticity of lateral excitatory connections in the V1 layer. By simply varying the radius of the astrocytes, the extent of lateral excitatory neuronal connections can be manipulated. An increase in the radius of lateral excitatory connections subsequently increases the size of a single hypercolumn in the OPM. When these lateral excitatory connections become small enough the OPM disappears and a salt-and-pepper organization emerges. Columns of neurons in the primary visual cortex (V1) are known to be tuned to visual stimuli containing edges of a particular orientation. The arrangement of these cortical columns varies across species. In many species such as in ferrets, cats, and monkeys a topology preserving map is observed, wherein similarly tuned columns are observed in close proximity to each other, resulting in the formation of Orientation Preference Maps (OPMs). The width of the hypercolumns, the fundamental unit of an OPM, also varies across species. However, such an arrangement is not observed in rodents, wherein a more random arrangement of these cortical columns is reported. We explore the role of astrocytes in the arrangement of these cortical columns using a self-organizing computational model. Invoking evidence that astrocytes could influence bidirectional plasticity among effective lateral excitatory connections in V1, we introduce a mechanism by which astrocytic inputs can influence map formation in the neuronal network. In the resulting model-generated OPMs the radius of the hypercolumns is found to be correlated with that of astrocytic arbors, a feature that finds support in experimental studies.
Collapse
Affiliation(s)
- Ryan T. Philips
- Computational Neuroscience Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - V. Srinivasa Chakravarthy
- Computational Neuroscience Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
- * E-mail:
| |
Collapse
|
13
|
Antolík J. Rapid Long-Range Disynaptic Inhibition Explains the Formation of Cortical Orientation Maps. Front Neural Circuits 2017; 11:21. [PMID: 28408869 PMCID: PMC5374876 DOI: 10.3389/fncir.2017.00021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/13/2017] [Indexed: 11/15/2022] Open
Abstract
Competitive interactions are believed to underlie many types of cortical processing, ranging from memory formation, attention and development of cortical functional organization (e.g., development of orientation maps in primary visual cortex). In the latter case, the competitive interactions happen along the cortical surface, with local populations of neurons reinforcing each other, while competing with those displaced more distally. This specific configuration of lateral interactions is however in stark contrast with the known properties of the anatomical substrate, i.e., excitatory connections (mediating reinforcement) having longer reach than inhibitory ones (mediating competition). No satisfactory biologically plausible resolution of this conflict between anatomical measures, and assumed cortical function has been proposed. Recently a specific pattern of delays between different types of neurons in cat cortex has been discovered, where direct mono-synaptic excitation has approximately the same delay, as the combined delays of the disynaptic inhibitory interactions between excitatory neurons (i.e., the sum of delays from excitatory to inhibitory and from inhibitory to excitatory neurons). Here we show that this specific pattern of delays represents a biologically plausible explanation for how short-range inhibition can support competitive interactions that underlie the development of orientation maps in primary visual cortex. We demonstrate this statement analytically under simplifying conditions, and subsequently show using network simulations that development of orientation maps is preserved when long-range excitation, direct inhibitory to inhibitory interactions, and moderate inequality in the delays between excitatory and inhibitory pathways is added.
Collapse
Affiliation(s)
- Ján Antolík
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique UPR 3293Gif-sur-Yvette, France
| |
Collapse
|
14
|
Philips RT, Chakravarthy VS. A Global Orientation Map in the Primary Visual Cortex (V1): Could a Self Organizing Model Reveal Its Hidden Bias? Front Neural Circuits 2017; 10:109. [PMID: 28111542 PMCID: PMC5216665 DOI: 10.3389/fncir.2016.00109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/14/2016] [Indexed: 11/13/2022] Open
Abstract
A remarkable accomplishment of self organizing models is their ability to simulate the development of feature maps in the cortex. Additionally, these models have been trained to tease out the differential causes of multiple feature maps, mapped on to the same output space. Recently, a Laterally Interconnected Synergetically Self Organizing Map (LISSOM) model has been used to simulate the mapping of eccentricity and meridional angle onto orthogonal axes in the primary visual cortex (V1). This model is further probed to simulate the development of the radial bias in V1, using a training set that consists of both radial (rectangular bars of random size and orientation) as well as non-radial stimuli. The radial bias describes the preference of the visual system toward orientations that match the angular position (meridional angle) of that orientation with respect to the point of fixation. Recent fMRI results have shown that there exists a coarse scale orientation map in V1, which resembles the meridional angle map, thereby providing a plausible neural basis for the radial bias. The LISSOM model, trained for the development of the retinotopic map, on probing for orientation preference, exhibits a coarse scale orientation map, consistent with these experimental results, quantified using the circular cross correlation (rc ). The rc between the orientation map developed on probing with a thin annular ring containing sinusoidal gratings with a spatial frequency of 0.5 cycles per degree (cpd) and the corresponding meridional map for the same annular ring, has a value of 0.8894. The results also suggest that the radial bias goes beyond the current understanding of a node to node correlation between the two maps.
Collapse
Affiliation(s)
- Ryan T Philips
- Computational Neuroscience Laboratory, Department of Biotechnology, Indian Institute of Technology Madras Chennai, India
| | - V Srinivasa Chakravarthy
- Computational Neuroscience Laboratory, Department of Biotechnology, Indian Institute of Technology Madras Chennai, India
| |
Collapse
|
15
|
Abstract
In this article, we review functional organization in sensory cortical regions—how the cortex represents the world. We consider four interrelated aspects of cortical organization: (1) the set of receptive fields of individual cortical sensory neurons, (2) how lateral interaction between cortical neurons reflects the similarity of their receptive fields, (3) the spatial distribution of receptive-field properties across the horizontal extent of the cortical tissue, and (4) how the spatial distributions of different receptive-field properties interact with one another. We show how these data are generally well explained by the theory of input-driven self-organization, with a family of computational models of cortical maps offering a parsimonious account for a wide range of map-related phenomena. We then discuss important challenges to this explanation, with respect to the maps present at birth, maps present under activity blockade, the limits of adult plasticity, and the lack of some maps in rodents. Because there is not at present another credible general theory for cortical map development, we conclude by proposing key experiments to help uncover other mechanisms that might also be operating during map development.
Collapse
Affiliation(s)
- James A. Bednar
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Stuart P. Wilson
- Department of Psychology, University of Sheffield, Sheffield, UK
| |
Collapse
|
16
|
Wilson SP, Bednar JA. What, if anything, are topological maps for? Dev Neurobiol 2015; 75:667-81. [PMID: 25683193 DOI: 10.1002/dneu.22281] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 11/10/2022]
Abstract
What, if anything, is the functional significance of spatial patterning in cortical feature maps? We ask this question of four major theories of cortical map formation: self-organizing maps, wiring optimization, place coding, and reaction-diffusion. We argue that (i) self-organizing maps yield spatial patterning only as a by-product of efficient mechanisms for developing environmentally appropriate distributions of feature preferences, (ii) wiring optimization assumes rather than explains a map-like organization, (iii) place-coding mechanisms can at best explain only a subset of maps in functional terms, and (iv) reaction-diffusion models suggest two factors in the evolution of maps, the first based on efficient development of feature distributions, and the second based on generating feature-specific long-range recurrent cortical circuitry. None of these explanations for the existence of topological maps requires spatial patterning in maps to be useful. Thus despite these useful frameworks for understanding how maps form and how they are wired, the possibility that patterns are merely epiphenomena in the evolution of mammalian neocortex cannot be rejected. The article is intended as a nontechnical introduction to the assumptions and predictions of these four important classes of models, along with other possible functional explanations for maps.
Collapse
Affiliation(s)
- Stuart P Wilson
- Adaptive Behaviour Research Group, Department of Psychology, The University of Sheffield, Sheffield, S10 2TP, United Kingdom
| | - James A Bednar
- Institute for Adaptive & Neural Computation, School of Informatics, The University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom
| |
Collapse
|
17
|
Ziskind AJ, Emondi AA, Kurgansky AV, Rebrik SP, Miller KD. Neurons in cat V1 show significant clustering by degree of tuning. J Neurophysiol 2015; 113:2555-81. [PMID: 25652921 DOI: 10.1152/jn.00646.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/04/2015] [Indexed: 11/22/2022] Open
Abstract
Neighboring neurons in cat primary visual cortex (V1) have similar preferred orientation, direction, and spatial frequency. How diverse is their degree of tuning for these properties? To address this, we used single-tetrode recordings to simultaneously isolate multiple cells at single recording sites and record their responses to flashed and drifting gratings of multiple orientations, spatial frequencies, and, for drifting gratings, directions. Orientation tuning width, spatial frequency tuning width, and direction selectivity index (DSI) all showed significant clustering: pairs of neurons recorded at a single site were significantly more similar in each of these properties than pairs of neurons from different recording sites. The strength of the clustering was generally modest. The percent decrease in the median difference between pairs from the same site, relative to pairs from different sites, was as follows: for different measures of orientation tuning width, 29-35% (drifting gratings) or 15-25% (flashed gratings); for DSI, 24%; and for spatial frequency tuning width measured in octaves, 8% (drifting gratings). The clusterings of all of these measures were much weaker than for preferred orientation (68% decrease) but comparable to that seen for preferred spatial frequency in response to drifting gratings (26%). For the above properties, little difference in clustering was seen between simple and complex cells. In studies of spatial frequency tuning to flashed gratings, strong clustering was seen among simple-cell pairs for tuning width (70% decrease) and preferred frequency (71% decrease), whereas no clustering was seen for simple-complex or complex-complex cell pairs.
Collapse
Affiliation(s)
- Avi J Ziskind
- Center for Theoretical Neuroscience, Columbia University, New York, New York
| | - Al A Emondi
- Center for Theoretical Neuroscience, Columbia University, New York, New York
| | - Andrei V Kurgansky
- Center for Theoretical Neuroscience, Columbia University, New York, New York
| | - Sergei P Rebrik
- Center for Theoretical Neuroscience, Columbia University, New York, New York
| | - Kenneth D Miller
- Center for Theoretical Neuroscience, Columbia University, New York, New York
| |
Collapse
|
18
|
Jain R, Millin R, Mel BW. Multimap formation in visual cortex. J Vis 2015; 15:3. [PMID: 26641946 PMCID: PMC4675321 DOI: 10.1167/15.16.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 09/29/2015] [Indexed: 12/12/2022] Open
Abstract
An extrastriate visual area such as V2 or V4 contains neurons selective for a multitude of complex shapes, all sharing a common topographic organization. Simultaneously developing multiple interdigitated maps--hereafter a "multimap"--is challenging in that neurons must compete to generate a diversity of response types locally, while cooperating with their dispersed same-type neighbors to achieve uniform visual field coverage for their response type at all orientations, scales, etc. Previously proposed map development schemes have relied on smooth spatial interaction functions to establish both topography and columnar organization, but by locally homogenizing cells' response properties, local smoothing mechanisms effectively rule out multimap formation. We found in computer simulations that the key requirements for multimap development are that neurons are enabled for plasticity only within highly active regions of cortex designated "learning eligibility regions" (LERs), but within an LER, each cell's learning rate is determined only by its activity level with no dependence on location. We show that a hybrid developmental rule that combines spatial and activity-dependent learning criteria in this way successfully produces multimaps when the input stream contains multiple distinct feature types, or in the degenerate case of a single feature type, produces a V1-like map with "salt-and-pepper" structure. Our results support the hypothesis that cortical maps containing a fine mixture of different response types, whether in monkey extrastriate cortex, mouse V1 or elsewhere in the cortex, rather than signaling a breakdown of map formation mechanisms at the fine scale, are a product of a generic cortical developmental scheme designed to map cells with a diversity of response properties across a shared topographic space.
Collapse
|
19
|
Kozai TDY, Du Z, Gugel ZV, Smith MA, Chase SM, Bodily LM, Caparosa EM, Friedlander RM, Cui XT. Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays. J Neurosci Methods 2014; 242:15-40. [PMID: 25542351 DOI: 10.1016/j.jneumeth.2014.12.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Intracortical electrode arrays that can record extracellular action potentials from small, targeted groups of neurons are critical for basic neuroscience research and emerging clinical applications. In general, these electrode devices suffer from reliability and variability issues, which have led to comparative studies of existing and emerging electrode designs to optimize performance. Comparisons of different chronic recording devices have been limited to single-unit (SU) activity and employed a bulk averaging approach treating brain architecture as homogeneous with respect to electrode distribution. NEW METHOD In this study, we optimize the methods and parameters to quantify evoked multi-unit (MU) and local field potential (LFP) recordings in eight mice visual cortices. RESULTS These findings quantify the large recording differences stemming from anatomical differences in depth and the layer dependent relative changes to SU and MU recording performance over 6-months. For example, performance metrics in Layer V and stratum pyramidale were initially higher than Layer II/III, but decrease more rapidly. On the other hand, Layer II/III maintained recording metrics longer. In addition, chronic changes at the level of layer IV are evaluated using visually evoked current source density. COMPARISON WITH EXISTING METHOD(S) The use of MU and LFP activity for evaluation and tracking biological depth provides a more comprehensive characterization of the electrophysiological performance landscape of microelectrodes. CONCLUSIONS A more extensive spatial and temporal insight into the chronic electrophysiological performance over time will help uncover the biological and mechanical failure mechanisms of the neural electrodes and direct future research toward the elucidation of design optimization for specific applications.
Collapse
Affiliation(s)
- Takashi D Y Kozai
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States.
| | - Zhanhong Du
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States
| | - Zhannetta V Gugel
- Bioengineering, University of Pittsburgh, United States; Division of Biology and Biological Engineering, California Institute of Technology, United States
| | - Matthew A Smith
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States; Ophthalmology, University of Pittsburgh, United States
| | - Steven M Chase
- Center for the Neural Basis of Cognition, United States; Biomedical Engineering, Carnegie Mellon University, United States
| | - Lance M Bodily
- Neurological Surgery, University of Pittsburgh, United States
| | | | | | - X Tracy Cui
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States
| |
Collapse
|
20
|
Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. J Neurosci 2013; 33:15747-66. [PMID: 24089483 DOI: 10.1523/jneurosci.1037-13.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development of orientation maps in ferret and cat primary visual cortex (V1) has been shown to be stable, in that the earliest measurable maps are similar in form to the eventual adult map, robust, in that similar maps develop in both dark rearing and in a variety of normal visual environments, and yet adaptive, in that the final map pattern reflects the statistics of the specific visual environment. How can these three properties be reconciled? Using mechanistic models of the development of neural connectivity in V1, we show for the first time that realistic stable, robust, and adaptive map development can be achieved by including two low-level mechanisms originally motivated from single-neuron results. Specifically, contrast-gain control in the retinal ganglion cells and the lateral geniculate nucleus reduces variation in the presynaptic drive due to differences in input patterns, while homeostatic plasticity of V1 neuron excitability reduces the postsynaptic variability in firing rates. Together these two mechanisms, thought to be applicable across sensory systems in general, lead to biological maps that develop stably and robustly, yet adapt to the visual environment. The modeling results suggest that topographic map stability is a natural outcome of low-level processes of adaptation and normalization. The resulting model is more realistic, simpler, and far more robust, and is thus a good starting point for future studies of cortical map development.
Collapse
|
21
|
Griffen TC, Wang L, Fontanini A, Maffei A. Developmental regulation of spatio-temporal patterns of cortical circuit activation. Front Cell Neurosci 2013; 6:65. [PMID: 23316135 PMCID: PMC3539829 DOI: 10.3389/fncel.2012.00065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/15/2012] [Indexed: 12/26/2022] Open
Abstract
Neural circuits are refined in an experience-dependent manner during early postnatal development. How development modulates the spatio-temporal propagation of activity through cortical circuits is poorly understood. Here we use voltage-sensitive dye imaging (VSD) to show that there are significant changes in the spatio-temporal patterns of intracortical signals in primary visual cortex (V1) from postnatal day 13 (P13), eye opening, to P28, the peak of the critical period for rodent visual cortical plasticity. Upon direct stimulation of layer 4 (L4), activity spreads to L2/3 and to L5 at all ages. However, while from eye opening to the peak of the critical period, the amplitude and persistence of the voltage signal decrease, peak activation is reached more quickly and the interlaminar gain increases with age. The lateral spread of activation within layers remains unchanged throughout the time window under analysis. These developmental changes in spatio-temporal patterns of intracortical circuit activation are mediated by differences in the contributions of excitatory and inhibitory synaptic components. Our results demonstrate that after eye opening the circuit in V1 is refined through a progression of changes that shape the spatio-temporal patterns of circuit activation. Signals become more efficiently propagated across layers through developmentally regulated changes in interlaminar gain.
Collapse
Affiliation(s)
- Trevor C Griffen
- Program in Neuroscience, Stony Brook University Stony Brook, NY, USA ; Medical Scientist Training Program, Stony Brook University Stony Brook, NY, USA
| | | | | | | |
Collapse
|
22
|
Bednar JA. Building a mechanistic model of the development and function of the primary visual cortex. ACTA ACUST UNITED AC 2012; 106:194-211. [PMID: 22343520 DOI: 10.1016/j.jphysparis.2011.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 10/28/2022]
Abstract
Researchers have used a very wide range of different experimental and theoretical approaches to help understand mammalian visual systems. These approaches tend to have quite different assumptions, strengths, and weaknesses. Computational models of the visual cortex, in particular, have typically implemented either a proposed circuit for part of the visual cortex of the adult, assuming a very specific wiring pattern based on findings from adults, or else attempted to explain the long-term development of a visual cortex region from an initially undifferentiated starting point. Previous models of adult V1 have been able to account for many of the measured properties of V1 neurons, while not explaining how these properties arise or why neurons have those properties in particular. Previous developmental models have been able to reproduce the overall organization of specific feature maps in V1, such as orientation maps, but are generally formulated at an abstract level that does not allow testing with real images or analysis of detailed neural properties relevant for visual function. In this review of results from a large set of new, integrative models developed from shared principles and a set of shared software components, I show how these models now represent a single, consistent explanation for a wide body of experimental evidence, and form a compact hypothesis for much of the development and behavior of neurons in the visual cortex. The models are the first developmental models with wiring consistent with V1, the first to have realistic behavior with respect to visual contrast, and the first to include all of the demonstrated visual feature dimensions. The goal is to have a comprehensive explanation for why V1 is wired as it is in the adult, and how that circuitry leads to the observed behavior of the neurons during visual tasks.
Collapse
Affiliation(s)
- James A Bednar
- Institute for Adaptive and Neural Computation, The University of Edinburgh, 10 Crichton St., EH8 9AB Edinburgh, UK.
| |
Collapse
|