1
|
Fan P, Yang Z, Wang T, Li J, Kim Y, Kim S. Neuromuscular Control Strategies in Basketball Shooting: Distance-Dependent Analysis of Muscle Synergies. J Sports Sci Med 2024; 23:571-580. [PMID: 39228767 PMCID: PMC11366846 DOI: 10.52082/jssm.2024.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/01/2024] [Indexed: 09/05/2024]
Abstract
Basketball victory relies on an athlete's skill to make precise shots at different distances. While extensive research has explored the kinematics and dynamics of different shooting distances, the specific neuromuscular control strategies involved remain elusive. This study aimed to compare the differences in muscle synergies during basketball shooting at different distances, offering insights into neuromuscular control strategies and guiding athletes' training. Ten skilled shooting right-handed male basketball players participated as subjects in this experiment. Electromyographic (EMG) data for full-phase shooting were acquired at short (3.2 m), middle (5.0 m), and long (6.8 m) distances. Non-negative matrix decomposition extracted muscle synergies (motor modules and motor primitives) during shooting. The results of this study show that all three distance shooting can be broken down into three synergies and that there were differences in the synergies between short and long distances, with differences in motor primitive 1 and motor primitive 2 at the phase of 45% - 59% (p < 0.001, t* = 4.418), and 78% - 88% (p < 0.01, t* = 4.579), respectively, and differences in the motor module 3 found in the differences in muscle weights for rectus femoris (RF) (p = 0.001, d = -2.094), and gastrocnemius lateral (GL) (p = 0.001, d = -2.083). Shooting distance doesn't affect the number of muscle synergies in basketball shooting but alters synergy patterns. During long distance shooting training, basketball players should place more emphasis on the timing and synergistic activation of upper and lower limbs, as well as core muscles.
Collapse
Affiliation(s)
- Penglei Fan
- Department of Physical Education, Jeonbuk National University, Jeonju, Republic of Korea
| | - Zhitao Yang
- Department of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou, China
| | - Ting Wang
- Department of Physical Education, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jiaying Li
- Department of Physical Education, Jeonbuk National University, Jeonju, Republic of Korea
| | - Youngsuk Kim
- Department of Physical Education, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sukwon Kim
- Department of Physical Education, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
2
|
Kaufmann P, Koller W, Wallnöfer E, Goncalves B, Baca A, Kainz H. Increased trial-to-trial similarity and reduced temporal overlap of muscle synergy activation coefficients manifest during learning and with increasing movement proficiency. Sci Rep 2024; 14:17638. [PMID: 39085397 PMCID: PMC11291506 DOI: 10.1038/s41598-024-68515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Muscle synergy analyses are used to enhance our understanding of motor control. Spatially fixed synergy weights coordinate multiple co-active muscles through activation commands, known as activation coefficients. To gain a more comprehensive understanding of motor learning, it is essential to understand how activation coefficients vary during a learning task and at different levels of movement proficiency. Participants walked on a line, a beam, and learned to walk on a tightrope-tasks that represent different levels of proficiency. Muscle synergies were extracted from electromyography signals across all conditions and the number of synergies was determined by the knee-point of the total variance accounted for (tVAF) curve. The results indicated that the tVAF of one synergy decreased with task proficiency, with the tightrope task resulting in the highest tVAF compared to the line and beam tasks. Furthermore, with increasing proficiency and after a learning process, trial-to-trial similarity increased and temporal overlap of synergy activation coefficients decreased. Consequently, we propose that precise adjustment and refinement of synergy activation coefficients play a pivotal role in motor learning.
Collapse
Affiliation(s)
- Paul Kaufmann
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a (USZ ||), 1150, Vienna, Austria
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a, 1150, Vienna, Austria
| | - Willi Koller
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a (USZ ||), 1150, Vienna, Austria
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a, 1150, Vienna, Austria
| | - Elias Wallnöfer
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a (USZ ||), 1150, Vienna, Austria
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a, 1150, Vienna, Austria
| | - Basilio Goncalves
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a (USZ ||), 1150, Vienna, Austria
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a, 1150, Vienna, Austria
| | - Arnold Baca
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a (USZ ||), 1150, Vienna, Austria
| | - Hans Kainz
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a (USZ ||), 1150, Vienna, Austria.
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Auf Der Schmelz 6a, 1150, Vienna, Austria.
| |
Collapse
|
3
|
Borjon JI, Abney DH, Yu C, Smith LB. Infant vocal productions coincide with body movements. Dev Sci 2024; 27:e13491. [PMID: 38433472 PMCID: PMC11161311 DOI: 10.1111/desc.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Producing recognizable words is a difficult motor task; a one-syllable word can require the coordination of over 80 muscles. Thus, it is not surprising that the development of word productions in infancy lags considerably behind receptive language and is a known limiting factor in language development. A large literature has focused on the vocal apparatus, its articulators, and language development. There has been limited study of the relations between non-speech motor skills and the quality of early speech productions. Here we present evidence that the spontaneous vocalizations of 9- to 24-month-old infants recruit extraneous, synergistic co-activations of hand and head movements and that the temporal precision of the co-activation of vocal and extraneous muscle groups tightens with age and improved recognizability of speech. These results implicate an interaction between the muscle groups that produce speech and other body movements and provide new empirical pathways for understanding the role of motor development in language acquisition. RESEARCH HIGHLIGHTS: The spontaneous vocalizations of 9- to 24-month-old infants recruit extraneous, synergistic co-activations of hand and head movements. The temporal precision of these hand and head movements during vocal production tighten with age and improved speech recognition. These results implicate an interaction between the muscle groups producing speech with other body movements. These results provide new empirical pathways for understanding the role of motor development in language acquisition.
Collapse
Affiliation(s)
- Jeremy I. Borjon
- Department of Psychology, University of Houston, Houston, USA
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, USA
- Texas Center for Learning Disorders, University of Houston, Houston, USA
| | - Drew H. Abney
- Department of Psychology, University of Georgia, Athens, USA
| | - Chen Yu
- Department of Psychology, University of Texas, Austin, USA
| | - Linda B. Smith
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, USA
| |
Collapse
|
4
|
Kaufmann P, Zweier L, Baca A, Kainz H. Muscle synergies are shared across fundamental subtasks in complex movements of skateboarding. Sci Rep 2024; 14:12860. [PMID: 38834832 DOI: 10.1038/s41598-024-63640-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
A common theory of motor control posits that movement is controlled by muscle synergies. However, the behavior of these synergies during highly complex movements remains largely unexplored. Skateboarding is a hardly researched sport that requires rapid motor control to perform tricks. The objectives of this study were to investigate three key areas: (i) whether motor complexity differs between skateboard tricks, (ii) the inter-participant variability in synergies, and (iii) whether synergies are shared between different tricks. Electromyography data from eight muscles per leg were collected from seven experienced skateboarders performing three different tricks (Ollie, Kickflip, 360°-flip). Synergies were extracted using non-negative matrix factorization. The number of synergies (NoS) was determined using two criteria based on the total variance accounted for (tVAF > 90% and adding an additional synergy does not increase tVAF > 1%). In summary: (i) NoS and tVAF did not significantly differ between tricks, indicating similar motor complexity. (ii) High inter-participant variability exists across participants, potentially caused by the low number of constraints given to perform the tricks. (iii) Shared synergies were observed in every comparison of two tricks. Furthermore, each participant exhibited at least one synergy vector, which corresponds to the fundamental 'jumping' task, that was shared through all three tricks.
Collapse
Affiliation(s)
- Paul Kaufmann
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6a (USZ II), 1150, Vienna, Austria
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Lorenz Zweier
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6a (USZ II), 1150, Vienna, Austria
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Arnold Baca
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6a (USZ II), 1150, Vienna, Austria
| | - Hans Kainz
- Department of Biomechanics, Kinesiology and Computer Science in Sport, Centre for Sport Science and University Sports, University of Vienna, Auf der Schmelz 6a (USZ II), 1150, Vienna, Austria.
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Jeon W, Dong XN, Dalby A, Goh CH. The influence of smoothness and speed of stand-to-sit movement on joint kinematics, kinetics, and muscle activation patterns. Front Hum Neurosci 2024; 18:1399179. [PMID: 38784522 PMCID: PMC11112120 DOI: 10.3389/fnhum.2024.1399179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Background Stand-to-sit (StandTS) is an important daily activity widely used in rehabilitation settings to improve strength, postural stability, and mobility. Modifications in movement smoothness and speed significantly influence the kinematics, kinetics, and muscle activation patterns of the movement. Understanding the impact of StandTS speed and smoothness on movement control can provide valuable insights for designing effective and personalized rehabilitation training programs. Research question How do the smoothness and speed of StandTS movement affect joint kinematics, kinetics, muscle activation patterns, and postural stability during StandTS? Methods Twelve healthy younger adults participated in this study. There were two StandTS conditions. In the reference condition, participants stood in an upright position with their feet positioned shoulder-width apart on the force plate. Upon receiving a visual cue, participants performed StandTS at their preferred speed. In the smooth condition, participants were instructed to perform StandTS as smoothly as possible, aiming to minimize contact pressure on the seat. Lower leg kinetics, kinematics, and coordination patterns of muscle activation during StandTS were measured: (1) angular displacement of the trunk, knee, and hip flexion; (2) knee and hip extensor eccentric work; (3) muscle synergy pattern derived from electromyography (EMG) activity of the leg muscles; and (4) postural sway in the anterior-posterior (A-P), medio-lateral (M-L), and vertical directions. Results Compared to the reference condition, the smooth condition demonstrated greater eccentric knee extensor flexion and increased joint work in both the knee and hip joints. Analysis of specific muscle synergy from EMG activity revealed a significant increase in the relative contribution of hip joint muscles during the smooth condition. Additionally, a negative correlation was observed between knee extensor and vertical postural sway, as well as hip extensor work and M-L postural sway. Conclusion Smooth StandTS facilitates enhanced knee eccentric control and increased joint work at both the hip and knee joints, along with increased involvement of hip joint muscles to effectively manage falling momentum during StandTS. Furthermore, the increased contributions of knee and hip joint work reduced postural sway in the vertical and M-L directions, respectively. These findings provide valuable insights for the development of targeted StandTS rehabilitation training.
Collapse
Affiliation(s)
- Woohyoung Jeon
- Department of Kinesiology, University of Texas at Tyler, Tyler, TX, United States
| | - Xuanliang Neil Dong
- Department of Kinesiology, University of Texas at Tyler, Tyler, TX, United States
| | - Ashley Dalby
- Department of Kinesiology, University of Texas at Tyler, Tyler, TX, United States
| | - Chung-Hyun Goh
- Department of Mechanical Engineering, University of Texas at Tyler, Tyler, TX, United States
| |
Collapse
|
6
|
Aoyama T, Ae K, Taguchi T, Kawamori Y, Sasaki D, Kawamura T, Kohno Y. Spatiotemporal patterns of throwing muscle synergies in yips-affected baseball players. Sci Rep 2024; 14:2649. [PMID: 38302478 PMCID: PMC10834996 DOI: 10.1038/s41598-024-52332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
"Yips" are involuntary movements that interfere with the automatic execution of sports movements. However, how the coordination among the various muscles necessary for sports movements is impaired in athletes with yips remains to be fully understood. This study aimed to assess whether muscle synergy analysis through non-negative matrix factorization (NMF) could identify impaired spatiotemporal muscle coordination in baseball players with throwing yips. Twenty-two college baseball players, including 12 with and 10 without yips symptoms participated in the study. Electromyographic activity was recorded from 13 ipsilateral upper extremity muscles during full-effort throwing. Muscle synergies were extracted through NMF. Cluster analysis was conducted to identify any common spatiotemporal patterns of muscle synergies in players with yips. Whether individual players with yips showed deviations in spatiotemporal patterns of muscle synergies compared with control players was also investigated. Four muscle synergies were extracted for each player, but none were specific to the yips group. However, a more detailed analysis of individual players revealed that two of the three players who presented dystonic symptoms during the experiment exhibited specific patterns that differed from those in control players. By contrast, each player whose symptoms were not reproduced during the experiment presented spatiotemporal patterns of muscle synergies similar to those of the control group. The results of this study indicate no common spatiotemporal pattern of muscle synergies specific to the yips group. Furthermore, these results suggest that the spatiotemporal pattern of muscle synergies in baseball throwing motion is not impaired in situations where symptoms are not reproduced even if the players have yips symptoms. However, muscle synergy analysis can identify the characteristics of muscle coordination of players who exhibit dystonic movements. These findings can be useful in developing personalized therapeutic strategies based on individual characteristics of yips symptoms.
Collapse
Affiliation(s)
- Toshiyuki Aoyama
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-Machi, Inashiki-gun, Ibaraki, Japan.
| | - Kazumichi Ae
- Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Takahiro Taguchi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuna Kawamori
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-Machi, Inashiki-gun, Ibaraki, Japan
| | - Daisuke Sasaki
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-Machi, Inashiki-gun, Ibaraki, Japan
| | - Takashi Kawamura
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yutaka Kohno
- Centre for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ami, Japan
| |
Collapse
|
7
|
钟 旭, 张 弼, 李 纪, 张 亮, 元 香, 张 鹏, 赵 新. [Multi-modal synergistic quantitative analysis and rehabilitation assessment of lower limbs for exoskeleton]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:953-964. [PMID: 37879925 PMCID: PMC10600416 DOI: 10.7507/1001-5515.202212028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/24/2023] [Indexed: 10/27/2023]
Abstract
In response to the problem that the traditional lower limb rehabilitation scale assessment method is time-consuming and difficult to use in exoskeleton rehabilitation training, this paper proposes a quantitative assessment method for lower limb walking ability based on lower limb exoskeleton robot training with multimodal synergistic information fusion. The method significantly improves the efficiency and reliability of the rehabilitation assessment process by introducing quantitative synergistic indicators fusing electrophysiological and kinematic level information. First, electromyographic and kinematic data of the lower extremity were collected from subjects trained to walk wearing an exoskeleton. Then, based on muscle synergy theory, a synergistic quantification algorithm was used to construct synergistic index features of electromyography and kinematics. Finally, the electrophysiological and kinematic level information was fused to build a modal feature fusion model and output the lower limb motor function score. The experimental results showed that the correlation coefficients of the constructed synergistic features of electromyography and kinematics with the clinical scale were 0.799 and 0.825, respectively. The results of the fused synergistic features in the K-nearest neighbor (KNN) model yielded higher correlation coefficients ( r = 0.921, P < 0.01). This method can modify the rehabilitation training mode of the exoskeleton robot according to the assessment results, which provides a basis for the synchronized assessment-training mode of "human in the loop" and provides a potential method for remote rehabilitation training and assessment of the lower extremity.
Collapse
Affiliation(s)
- 旭 钟
- 中国科学院 沈阳自动化研究所 机器人学国家重点实验室(沈阳 110016)State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- 中国科学院 机器人与智能制造创新研究院(沈阳 110016)Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- 扬州大学附属医院 医学工程处(江苏扬州 225003)Medical Engineering Department, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu 225003, P. R. China
| | - 弼 张
- 中国科学院 沈阳自动化研究所 机器人学国家重点实验室(沈阳 110016)State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- 中国科学院 机器人与智能制造创新研究院(沈阳 110016)Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, P. R. China
| | - 纪桅 李
- 中国科学院 沈阳自动化研究所 机器人学国家重点实验室(沈阳 110016)State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- 中国科学院 机器人与智能制造创新研究院(沈阳 110016)Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, P. R. China
| | - 亮 张
- 中国科学院 沈阳自动化研究所 机器人学国家重点实验室(沈阳 110016)State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, P. R. China
| | - 香南 元
- 中国科学院 沈阳自动化研究所 机器人学国家重点实验室(沈阳 110016)State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, P. R. China
| | - 鹏 张
- 中国科学院 沈阳自动化研究所 机器人学国家重点实验室(沈阳 110016)State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, P. R. China
| | - 新刚 赵
- 中国科学院 沈阳自动化研究所 机器人学国家重点实验室(沈阳 110016)State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- 中国科学院 机器人与智能制造创新研究院(沈阳 110016)Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, P. R. China
| |
Collapse
|
8
|
Fleming A, Liu W, Huang HH. Neural prosthesis control restores near-normative neuromechanics in standing postural control. Sci Robot 2023; 8:eadf5758. [PMID: 37851818 PMCID: PMC10882517 DOI: 10.1126/scirobotics.adf5758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Current lower-limb prostheses do not provide active assistance in postural control tasks to maintain the user's balance, particularly in situations of perturbation. In this study, we aimed to address this missing function by enabling neural control of robotic lower-limb prostheses. Specifically, electromyographic (EMG) signals (amplified neural control signals) recorded from antagonistic residual ankle muscles were used to drive a robotic prosthetic ankle directly and continuously. Participants with transtibial amputation were recruited and trained in using the EMG-driven robotic ankle. We studied how using the EMG-controlled ankle affected the participants' anticipatory and compensatory postural control strategies and stability under expected perturbations compared with using their daily passive devices. We investigated the similarity of neuromuscular coordination (by analyzing motor modules) of the participants, using either device in a postural sway task, to that of able-bodied controls. Results showed that, compared with their passive prosthesis, the EMG-controlled prosthesis enabled participants to use near-normative postural control strategies, as evidenced by improved between-limb symmetry in intact-prosthetic center-of-pressure and joint angle excursions. Participants substantially improved postural stability, as evidenced by a reduction in steps or falls using the EMG-controlled prosthetic ankle. Furthermore, after relearning to use residual ankle muscles to drive the robotic ankle in postural control, nearly all participants' motor module structure shifted toward that observed in individuals without limb amputations. Here, we have demonstrated the potential benefit of direct EMG control of robotic lower limb prostheses to restore normative postural control strategies (both neural and biomechanical) toward enhancing standing postural stability in amputee users.
Collapse
Affiliation(s)
- Aaron Fleming
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wentao Liu
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - He Helen Huang
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Jeon W, Ramadan A, Whitall J, Alissa N, Westlake K. Age-related differences in lower limb muscle activation patterns and balance control strategies while walking over a compliant surface. Sci Rep 2023; 13:16555. [PMID: 37783842 PMCID: PMC10545684 DOI: 10.1038/s41598-023-43728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023] Open
Abstract
Substantial evidence demonstrates that falls in older adults are leading causes of fatal and non-fatal injuries and lead to negative impacts on the quality of life in the aging population. Most falls in older fallers result from unrecoverable limb collapse during falling momentum control in the single limb support (SLS) phase. To understand why older adults are more likely to fall than younger adults, we investigated age-related differences in knee extensor eccentric control, lower limb muscle activation patterns, and their relation to balance control. Ten older and ten younger healthy adults were compared during balance control while walking on a compliant surface. There was a positive correlation between knee extensor eccentric work in the perturbed leg and the swinging leg's speed and margin of stability. In comparison to younger adults, older adults demonstrated (1) less eccentric work, reduced eccentric electromyography burst duration in the perturbed leg, (2) higher postural sway during SLS, and (3) impaired swinging leg balance control. The group-specific muscle synergy showed that older adults had a prominent ankle muscle activation, while younger adults exhibited a more prominent hip muscle activation. These findings provide insight into targeted balance rehabilitation directions to improve postural stability and reduce falls in older adults.
Collapse
Affiliation(s)
- Woohyoung Jeon
- Department of Health and Kinesiology, University of Texas at Tyler, Tyler, TX, USA.
| | - Ahmed Ramadan
- Department of Biomedical Engineering, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Jill Whitall
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nesreen Alissa
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kelly Westlake
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Santos PDG, Vaz JR, Correia J, Neto T, Pezarat-Correia P. Long-Term Neurophysiological Adaptations to Strength Training: A Systematic Review With Cross-Sectional Studies. J Strength Cond Res 2023; 37:2091-2105. [PMID: 37369087 DOI: 10.1519/jsc.0000000000004543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
ABSTRACT Santos, PDG, Vaz, JR, Correia, J, Neto, T, and Pezarat-Correia, P. Long-term neurophysiological adaptations to strength training: a systematic review with cross-sectional studies. J Strength Cond Res 37(10): 2091-2105, 2023-Neuromuscular adaptations to strength training are an extensively studied topic in sports sciences. However, there is scarce information about how neural mechanisms during force production differ between trained and untrained individuals. The purpose of this systematic review is to better understand the differences between highly trained and untrained individuals to establish the long-term neural adaptations to strength training. Three databases were used for the article search (PubMed, Web of Science, and Scopus). Studies were included if they compared groups of resistance-trained with untrained people, aged 18-40 year, and acquired electromyography (EMG) signals during strength tasks. Twenty articles met the eligibility criteria. Generally, strength-trained individuals produced greater maximal voluntary activation, while reducing muscle activity in submaximal tasks, which may affect the acute response to strength training. These individuals also presented lower co-contraction of the antagonist muscles, although it depends on the specific training background. Global intermuscular coordination may be another important mechanism of adaptation in response to long-term strength training; however, further research is necessary to understand how it develops over time. Although these results should be carefully interpreted because of the great disparity of analyzed variables and methods of EMG processing, chronic neural adaptations seem to be decisive to greater force production. It is crucial to know the timings at which these adaptations stagnate and need to be stimulated with advanced training methods. Thus, training programs should be adapted to training status because the same stimulus in different training stages will lead to different responses.
Collapse
Affiliation(s)
- Paulo D G Santos
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
| | - João R Vaz
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
- CIPER, Faculty of Human Kinetics, Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz-Cooperativa de Ensino Superior, Monte da Caparica, Portugal; and
| | - Joana Correia
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
| | - Tiago Neto
- Department of Physiotherapy, LUNEX International University of Health, Exercise and Sports, Differdange, Luxembourg
| | - Pedro Pezarat-Correia
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon, Portugal
- CIPER, Faculty of Human Kinetics, Lisbon, Portugal
| |
Collapse
|
11
|
Hakariya N, Kibushi B, Okada J. Differences in muscle synergies between skilled and unskilled athletes in power clean exercise at various loads. J Sports Sci 2023; 41:1136-1145. [PMID: 37732561 DOI: 10.1080/02640414.2023.2259268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/05/2023] [Indexed: 09/22/2023]
Abstract
The purpose of this study was to determine the differences in muscle synergy between skilled and unskilled participants using various loading conditions for power clean. Nineteen participants (ten skilled and nine unskilled) performed power clean at 60-90% one repetition maximum (1RM), while measured 12 muscles across the entire body. The vertical impulse was calculated for the unweighting associated with the double-knee bend (DKB) manoeuvre in power clean. Muscle synergies were extracted using non-negative matrix factorization. The weighting of muscle synergies was subsequently compared between the two groups for all loads, and confidence intervals were calculated. The number of muscle synergies in both groups was three, and the functions of all muscle synergies were similar. Muscle synergy 1 involved the first pull, muscle synergy 2 involved the transition and the second pull, and muscle synergy 3 involved DKB. No significant difference in either muscle synergy was observed at 60-80% 1RM weight, while the 90% 1RM showed significantly active in the ankle plantar flexor and knee extensor muscles for muscle synergy 3, which involved DKB only in the skilled group. This indicates that increased joint stiffness during DKB may minimize unweighting. Unskilled individuals may acquire such muscle synergies to lift greater weights.
Collapse
Affiliation(s)
- Nadaka Hakariya
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Benio Kibushi
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Junichi Okada
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
12
|
Jeong H, Haghighat P, Kantharaju P, Jacobson M, Jeong H, Kim M. Muscle coordination and recruitment during squat assistance using a robotic ankle-foot exoskeleton. Sci Rep 2023; 13:1363. [PMID: 36693935 PMCID: PMC9873637 DOI: 10.1038/s41598-023-28229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Squatting is an intensive activity routinely performed in the workplace to lift and lower loads. The effort to perform a squat can decrease using an exoskeleton that considers individual worker's differences and assists them with a customized solution, namely, personalized assistance. Designing such an exoskeleton could be improved by understanding how the user's muscle activity changes when assistance is provided. This study investigated the change in the muscle recruitment and activation pattern when personalized assistance was provided. The personalized assistance was provided by an ankle-foot exoskeleton during squatting and we compared its effect with that of the no-device and unpowered exoskeleton conditions using previously collected data. We identified four main muscle recruitment strategies across ten participants. One of the strategies mainly used quadriceps muscles, and the activation level corresponding to the strategy was reduced under exoskeleton assistance compared to the no-device and unpowered conditions. These quadriceps dominant synergy and rectus femoris activations showed reasonable correlations (r = 0.65, 0.59) to the metabolic cost of squatting. These results indicate that the assistance helped reduce quadriceps activation, and thus, the metabolic cost of squatting. These outcomes suggest that the muscle recruitment and activation patterns could be used to design an exoskeleton and training methods.
Collapse
Affiliation(s)
- Hyeongkeun Jeong
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Parian Haghighat
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Prakyath Kantharaju
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Michael Jacobson
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Heejin Jeong
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Ira A. Fulton Schools of Engineering, Arizona State University, Arizona, Mesa, AZ, 85212, USA
| | - Myunghee Kim
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
13
|
Saito H, Yokoyama H, Sasaki A, Matsushita K, Nakazawa K. Variability of trunk muscle synergies underlying the multidirectional movements and stability trunk motor tasks in healthy individuals. Sci Rep 2023; 13:1193. [PMID: 36681745 PMCID: PMC9867711 DOI: 10.1038/s41598-023-28467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Muscle synergy analysis is useful for investigating trunk coordination patterns based on the assumption that the central nervous system reduces the dimensionality of muscle activation to simplify movement. This study aimed to quantify the variability in trunk muscle synergy during various trunk motor tasks in healthy participants to provide reference data for evaluating trunk control strategies in patients and athletes. Sixteen healthy individuals performed 11 trunk movement and stability tasks with electromyography (EMG) recording of their spinal and abdominal muscles (6 bilaterally). Non-negative matrix factorization applied to the concatenated EMG of all tasks identified the five trunk muscle synergies (W) with their corresponding temporal patterns (C). The medians of within-cluster similarity defined by scalar products in W and rmax coefficient using the cross-correlation function in C were 0.73-0.86 and 0.64-0.75, respectively, while the inter-session similarities were 0.81-0.96 and 0.74-0.84, respectively. However, the lowest and highest values of both similarity indices were broad, reflecting the musculoskeletal system's redundancy within and between participants. Furthermore, the significant differences in the degree of variability between the trunk synergies may represent the different neural features of synergy organization and strategies to overcome the various mechanical demands of a motor task.
Collapse
Affiliation(s)
- Hiroki Saito
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Physical Therapy, Tokyo University of Technology, Tokyo, Japan
| | - Hikaru Yokoyama
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | - Atsushi Sasaki
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | | | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Aoyama T, Ae K, Kohno Y. Interindividual differences in upper limb muscle synergies during baseball throwing motion in male college baseball players. J Biomech 2022; 145:111384. [PMID: 36403527 DOI: 10.1016/j.jbiomech.2022.111384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Throwing is a fundamental human motor behavior that has evolved to aid hunting and defense against predators. In modern humans, accurate throwing is an important skill required in many sports. However, the spatiotemporal coordination of muscles during baseball throwing has not been fully elucidated. We herein aimed to identify the muscle synergies involved in baseball throwing and determine whether their spatiotemporal patterns are shared among individuals. Ten college baseball players participated in this study. Electromyographic activity was recorded from 13 ipsilateral upper limb muscles during throwing using full effort. Non-negative matrix factorization was used to extract the motor module composition and temporal activation patterns during baseball throwing, followed by k-means analysis to cluster the extracted motor modules based on their similarity. Four motor modules were extracted for each player. These were classified into four clusters (Clusters 1-4), each reaching the peak activity sequentially from the early cocking phase to ball release. Spatiotemporal interindividual similarity in the muscle synergy cluster comprising the muscles activated during the transition from early cocking to late cocking (Cluster 2) was significantly lower than that in the other clusters. There was no individual-specific muscle synergy. These results suggest that the skilled baseball throwing motion acquired through years of practice may consist of four basic muscle synergies that are common among individuals with some differences in their spatiotemporal patterns.
Collapse
Affiliation(s)
- Toshiyuki Aoyama
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-Machi, Inashiki-gun, Ibaraki, Japan.
| | - Kazumichi Ae
- Nippon Sport Science University, 7-1-1 Fukasawa, Setagaya-ward, Tokyo, Japan
| | - Yutaka Kohno
- Centre for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-Machi, Inashiki-gun, Ibaraki, Japan
| |
Collapse
|
15
|
Song H, Israel EA, Gutierrez-Arango S, Teng AC, Srinivasan SS, Freed LE, Herr HM. Agonist-antagonist muscle strain in the residual limb preserves motor control and perception after amputation. COMMUNICATIONS MEDICINE 2022; 2:97. [PMID: 35942078 PMCID: PMC9356003 DOI: 10.1038/s43856-022-00162-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Background Elucidating underlying mechanisms in subject-specific motor control and perception after amputation could guide development of advanced surgical and neuroprosthetic technologies. In this study, relationships between preserved agonist-antagonist muscle strain within the residual limb and preserved motor control and perception capacity are investigated. Methods Fourteen persons with unilateral transtibial amputations spanning a range of ages, etiologies, and surgical procedures underwent evaluations involving free-space mirrored motions of their lower limbs. Research has shown that varied motor control in biologically intact limbs is executed by the activation of muscle synergies. Here, we assess the naturalness of phantom joint motor control postamputation based on extracted muscle synergies and their activation profiles. Muscle synergy extraction, degree of agonist-antagonist muscle strain, and perception capacity are estimated from electromyography, ultrasonography, and goniometry, respectively. Results Here, we show significant positive correlations (P < 0.005-0.05) between sensorimotor responses and residual limb agonist-antagonist muscle strain. Identified trends indicate that preserving even 20-26% of agonist-antagonist muscle strain within the residuum compared to a biologically intact limb is effective in preserving natural motor control postamputation, though preserving limb perception capacity requires more (61%) agonist-antagonist muscle strain preservation. Conclusions The results suggest that agonist-antagonist muscle strain is a characteristic, readily ascertainable residual limb structural feature that can help explain variability in amputation outcome, and agonist-antagonist muscle strain preserving surgical amputation strategies are one way to enable more effective and biomimetic sensorimotor control postamputation.
Collapse
Affiliation(s)
- Hyungeun Song
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Erica A. Israel
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA USA
| | | | - Ashley C. Teng
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA USA
- Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Shriya S. Srinivasan
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Lisa E. Freed
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Hugh M. Herr
- K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, MA USA
- Harvard Medical School, Cambridge, MA USA
| |
Collapse
|
16
|
Estimation of Time-Frequency Muscle Synergy in Wrist Movements. ENTROPY 2022; 24:e24050707. [PMID: 35626589 PMCID: PMC9140749 DOI: 10.3390/e24050707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023]
Abstract
Muscle synergy analysis is a kind of modularized decomposition of muscles during exercise controlled by the central nervous system (CNS). It can not only extract the synergistic muscles in exercise, but also obtain the activation states of muscles to reflect the coordination and control relationship between muscles. However, previous studies have mainly focused on the time-domain synergy without considering the frequency-specific characteristics within synergy structures. Therefore, this study proposes a novel method, named time-frequency non-negative matrix factorization (TF-NMF), to explore the time-varying regularity of muscle synergy characteristics of multi-channel surface electromyogram (sEMG) signals at different frequency bands. In this method, the wavelet packet transform (WPT) is used to transform the time-scale signals into time-frequency dimension. Then, the NMF method is calculated in each time-frequency window to extract the synergy modules. Finally, this method is used to analyze the sEMG signals recorded from 8 muscles during the conversion between wrist flexion (WF stage) and wrist extension (WE stage) movements in 12 healthy people. The experimental results show that the number of synergy modules in wrist flexion transmission to wrist extension (Motion Conversion, MC stage) is more than that in the WF stage and WE stage. Furthermore, the number of flexor and extensor muscle synergies in the frequency band of 0–125 Hz during the MC stage is more than that in the frequency band of 125–250 Hz. Further analysis shows that the flexion muscle synergies mostly exist in the frequency band of 140.625–156.25 Hz during the WF stage, and the extension muscle synergies appear in the frequency band of 125–156.25 Hz during the WE stage. These results can help to better understand the time-frequency features of muscle synergy, and expand study perspective related to motor control in nervous system.
Collapse
|
17
|
Berger DJ, Borzelli D, d'Avella A. Task space exploration improves adaptation after incompatible virtual surgeries. J Neurophysiol 2022; 127:1127-1146. [PMID: 35320031 DOI: 10.1152/jn.00356.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans have a remarkable capacity to learn new motor skills, a process that requires novel muscle activity patterns. Muscle synergies may simplify the generation of muscle patterns through the selection of a small number of synergy combinations. Learning new motor skills may then be achieved by acquiring novel muscle synergies. In a previous study, we used myoelectric control to construct virtual surgeries that altered the mapping from muscle activity to cursor movements. After compatible virtual surgeries, which could be compensated by recombining subject-specific muscle synergies, participants adapted quickly. In contrast, after incompatible virtual surgeries, which could not be compensated by recombining existing synergies, participants explored new muscle patterns, but failed to adapt. Here, we tested whether task space exploration can promote learning of novel muscle synergies, required to overcome an incompatible surgery. Participants performed the same reaching task as in our previous study, but with more time to complete each trial, thus allowing for exploration. We found an improvement in trial success after incompatible virtual surgeries. Remarkably, improvements in movement direction accuracy after incompatible surgeries occurred faster for corrective movements than for the initial movement, suggesting that learning of new synergies is more effective when used for feedback control. Moreover, reaction time was significantly higher after incompatible than after compatible virtual surgeries, suggesting an increased use of an explicit adaptive strategy to overcome incompatible surgeries. Taken together, these results indicate that exploration is important for skill learning and suggest that human participants, with sufficient time, can learn new muscle synergies.
Collapse
Affiliation(s)
- Denise Jennifer Berger
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine and Centre of Space Bio-medicine, University of Rome Tor Vergata, Italy
| | - Daniele Borzelli
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| | - Andrea d'Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| |
Collapse
|
18
|
The association between motor modules and movement primitives of gait: A muscle and kinematic synergy study. J Biomech 2022; 134:110997. [DOI: 10.1016/j.jbiomech.2022.110997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022]
|
19
|
Williams MD, Strafford BW, Stone JA, Moran J. Parkour-Based Activities in the Athletic Development of Youth Basketball Players. Front Physiol 2021; 12:771368. [PMID: 34721090 PMCID: PMC8554233 DOI: 10.3389/fphys.2021.771368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
While ideas from long-term athlete development (LTAD) models have been adopted and integrated across different sports, issues related to early specialization, such as increased risk of injury and burnout, are still common. Although some benefits may be associated with early sport specialization, sports sampling is purported to be a more effective approach to the long-term health and wellbeing of children. Furthermore, the concept of developing what are commonly referred to as "fundamental movement skills" (FMS) is central to the rationale for delaying single sports specialization. However, in place of sports sampling, it appears that the practice of strength and conditioning (S&C) has become a driving force behind developmental models for youth athletes, highlighted by the growing body of literature regarding youth athletic development training. In this perspective piece, we explore how conventional S&C practice may insufficiently develop FMS because typically, it only emphasizes a narrow range of foundational exercises that serve a limited role toward the development of action capabilities in youth athletic populations. We further discuss how this approach may limit the transferability of physical qualities, such as muscular strength, to sports-specific tasks. Through an ecological dynamics lens, and using basketball as an example, we explore the potential for parkour-based activity within the LTAD of youth basketball players. We propose parkour as a training modality to not only encourage movement diversity and adaptability, but also as part of an advanced strength training strategy for the transfer of conventional S&C training.
Collapse
Affiliation(s)
- Mark David Williams
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, United Kingdom
| | - Ben William Strafford
- Sport and Physical Activity Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Joseph Antony Stone
- Sport and Physical Activity Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
20
|
Zhao K, Zhang Z, Wen H, Scano A. Intra-Subject and Inter-Subject Movement Variability Quantified with Muscle Synergies in Upper-Limb Reaching Movements. Biomimetics (Basel) 2021; 6:63. [PMID: 34698082 PMCID: PMC8544238 DOI: 10.3390/biomimetics6040063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Quantifying movement variability is a crucial aspect for clinical and laboratory investigations in several contexts. However, very few studies have assessed, in detail, the intra-subject variability across movements and the inter-subject variability. Muscle synergies are a valuable method that can be used to assess such variability. In this study, we assess, in detail, intra-subject and inter-subject variability in a scenario based on a comprehensive dataset, including multiple repetitions of multi-directional reaching movements. The results show that muscle synergies are a valuable tool for quantifying variability at the muscle level and reveal that intra-subject variability is lower than inter-subject variability in synergy modules and related temporal coefficients, and both intra-subject and inter-subject similarity are higher than random synergy matching, confirming shared underlying control structures. The study deepens the available knowledge on muscle synergy-based motor function assessment and rehabilitation applications, discussing their applicability to real scenarios.
Collapse
Affiliation(s)
- Kunkun Zhao
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China; (Z.Z.); (H.W.)
| | - Zhisheng Zhang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China; (Z.Z.); (H.W.)
| | - Haiying Wen
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China; (Z.Z.); (H.W.)
| | - Alessandro Scano
- UOS STIIMA Lecco—Human-Centered, Smart & Safe, Living Environment, Italian National Research Council (CNR), Via Previati 1/E, 23900 Lecco, Italy
| |
Collapse
|
21
|
Yokoyama H, Kato T, Kaneko N, Kobayashi H, Hoshino M, Kokubun T, Nakazawa K. Basic locomotor muscle synergies used in land walking are finely tuned during underwater walking. Sci Rep 2021; 11:18480. [PMID: 34531519 PMCID: PMC8446023 DOI: 10.1038/s41598-021-98022-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
Underwater walking is one of the most common hydrotherapeutic exercises. Therefore, understanding muscular control during underwater walking is important for optimizing training regimens. The effects of the water environment on walking are mainly related to the hydrostatic and hydrodynamic theories of buoyancy and drag force. To date, muscular control during underwater walking has been investigated at the individual muscle level. However, it is recognized that the human nervous system modularly controls multiple muscles through muscle synergies, which are sets of muscles that work together. We found that the same set of muscle synergies was shared between the two walking tasks. However, some task-dependent modulation was found in the activation combination across muscles and temporal activation patterns of the muscle synergies. The results suggest that the human nervous system modulates activation of lower-limb muscles during water walking by finely tuning basic locomotor muscle synergies that are used during land walking to meet the biomechanical requirements for walking in the water environment.
Collapse
Affiliation(s)
- Hikaru Yokoyama
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Tatsuya Kato
- Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Naotsugu Kaneko
- Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Hirofumi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Motonori Hoshino
- College, National Rehabilitation Center for Persons with Disabilities, Saitama, 359-8555, Japan
| | - Takanori Kokubun
- Department of Physical Therapy, Faculty of Health and Social Services, Saitama Prefectural University, Saitama, 343-8540, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
22
|
Saito H, Yokoyama H, Sasaki A, Kato T, Nakazawa K. Flexible Recruitments of Fundamental Muscle Synergies in the Trunk and Lower Limbs for Highly Variable Movements and Postures. SENSORS (BASEL, SWITZERLAND) 2021; 21:6186. [PMID: 34577394 PMCID: PMC8472977 DOI: 10.3390/s21186186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
The extent to which muscle synergies represent the neural control of human behavior remains unknown. Here, we tested whether certain sets of muscle synergies that are fundamentally necessary across behaviors exist. We measured the electromyographic activities of 26 muscles, including bilateral trunk and lower limb muscles, during 24 locomotion, dynamic and static stability tasks, and we extracted the muscle synergies using non-negative matrix factorization. Our results show that 13 muscle synergies that may have unique functional roles accounted for almost all 24 tasks by combinations of single and/or merging of synergies. Therefore, our results may support the notion of the low dimensionality in motor outputs, in which the central nervous system flexibly recruits fundamental muscle synergies to execute diverse human behaviors. Further studies are required to validate the neural representation of the fundamental components of muscle synergies.
Collapse
Affiliation(s)
- Hiroki Saito
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; (H.S.); (H.Y.); (A.S.); (T.K.)
- Department of Physical Therapy, Tokyo University of Technology, Ota, Tokyo 144-8535, Japan
| | - Hikaru Yokoyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; (H.S.); (H.Y.); (A.S.); (T.K.)
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; (H.S.); (H.Y.); (A.S.); (T.K.)
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda, Tokyo 102-0083, Japan
| | - Tatsuya Kato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; (H.S.); (H.Y.); (A.S.); (T.K.)
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda, Tokyo 102-0083, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; (H.S.); (H.Y.); (A.S.); (T.K.)
| |
Collapse
|
23
|
Abd AT, Singh RE, Iqbal K, White G. Investigation of Power Specific Motor Primitives in an Upper Limb Rotational Motion. J Mot Behav 2021; 54:80-91. [PMID: 34167442 DOI: 10.1080/00222895.2021.1916424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The purpose of this study was to investigate muscle synergies (MS) during upper limb cycling motion across power levels (20, 40, 60, 80, 100, and 120 watts). The MS hypothesis is important to the understanding of modular control for human movements. In this study, we explore its importance in execution of phasic movements at various power levels. Electromyographic (EMG) signals were recorded from 7 upper limb muscles during cycling for 30s on a hand-cycle ergometer. A Non-Negative Matrix factorization (NNMF) algorithm was used to extract MS. Cosine similarity was used to compare the MS and cross-correlation was used to compare activation coefficients. We found that the number and structure of synergies were consistent across power levels while admitting modulation in their activation coefficients. A total of three shared MS explaining ≥95% of the variance accounted for (VAF) represented push and pull mechanism during cyclic motion.
Collapse
Affiliation(s)
- A T Abd
- Department of Systems Engineering, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - R E Singh
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/N. C. State University, Raleigh, NC, USA
| | - K Iqbal
- Department of Systems Engineering, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - G White
- Department of Kinesiology, Colorado Mesa University, Grand Junction, CO, USA
| |
Collapse
|
24
|
Neuromuscular Control before and after Independent Walking Onset in Children with Cerebral Palsy. SENSORS 2021; 21:s21082714. [PMID: 33921544 PMCID: PMC8069021 DOI: 10.3390/s21082714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022]
Abstract
Early brain lesions which produce cerebral palsy (CP) may affect the development of walking. It is unclear whether or how neuromuscular control, as evaluated by muscle synergy analysis, differs in young children with CP compared to typically developing (TD) children with the same walking ability, before and after the onset of independent walking. Here we grouped twenty children with (high risk of) CP and twenty TD children (age 6.5–52.4 months) based on their walking ability, supported or independent walking. Muscle synergies were extracted from electromyography data of bilateral leg muscles using non-negative matrix factorization. Number, synergies’ structure and variability accounted for when extracting one (VAF1) or two (VAF2) synergies were compared between CP and TD. Children in the CP group recruited fewer synergies with higher VAF1 and VAF2 compared to TD children in the supported and independent walking group. The most affected side in children with asymmetric CP walking independently recruited fewer synergies with higher VAF1 compared to the least affected side. Our findings suggest that early brain lesions result in early alterations of neuromuscular control, specific for the most affected side in asymmetric CP.
Collapse
|
25
|
Santos PDG, Vaz JR, Correia PF, Valamatos MJ, Veloso AP, Pezarat-Correia P. Intermuscular Coordination in the Power Clean Exercise: Comparison between Olympic Weightlifters and Untrained Individuals-A Preliminary Study. SENSORS 2021; 21:s21051904. [PMID: 33803182 PMCID: PMC7963197 DOI: 10.3390/s21051904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
Abstract
Muscle coordination in human movement has been assessed through muscle synergy analysis. In sports science, this procedure has been mainly applied to the comparison between highly trained and unexperienced participants. However, the lack of knowledge regarding strength training exercises led us to study the differences in neural strategies to perform the power clean between weightlifters and untrained individuals. Synergies were extracted from electromyograms of 16 muscles of ten unexperienced participants and seven weightlifters. To evaluate differences, we determined the pairwise correlations for the synergy components and electromyographic profiles. While the shape of activation patterns presented strong correlations across participants of each group, the weightings of each muscle were more variable. The three extracted synergies were shifted in time with the unexperienced group anticipating synergy #1 (−2.46 ± 18.7%; p < 0.001) and #2 (−4.60 ± 5.71%; p < 0.001) and delaying synergy #3 (1.86 ± 17.39%; p = 0.01). Moreover, muscle vectors presented more inter-group variability, changing the composition of synergy #1 and #3. These results may indicate an adaptation in intermuscular coordination with training, and athletes in an initial phase of training should attempt to delay the hip extension (synergy #1), as well as the upper-limb flexion (synergy #2).
Collapse
Affiliation(s)
- Paulo D. G. Santos
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon University, 1499-002 Cruz Quebrada-Dafundo, Portugal; (P.D.G.S.); (P.F.C.); (M.J.V.); (P.P.-C.)
| | - João R. Vaz
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon University, 1499-002 Cruz Quebrada-Dafundo, Portugal; (P.D.G.S.); (P.F.C.); (M.J.V.); (P.P.-C.)
- CIPER, Faculty of Human Kinetics, Lisbon University, 1499-002 Cruz Quebrada-Dafundo, Portugal;
- Correspondence:
| | - Paulo F. Correia
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon University, 1499-002 Cruz Quebrada-Dafundo, Portugal; (P.D.G.S.); (P.F.C.); (M.J.V.); (P.P.-C.)
| | - Maria J. Valamatos
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon University, 1499-002 Cruz Quebrada-Dafundo, Portugal; (P.D.G.S.); (P.F.C.); (M.J.V.); (P.P.-C.)
- CIPER, Faculty of Human Kinetics, Lisbon University, 1499-002 Cruz Quebrada-Dafundo, Portugal;
| | - António P. Veloso
- CIPER, Faculty of Human Kinetics, Lisbon University, 1499-002 Cruz Quebrada-Dafundo, Portugal;
- Biomechanics and Functional Morphology Laboratory, Faculty of Human Kinetics, Lisbon University, 1499-002 Cruz Quebrada-Dafundo, Portugal
| | - Pedro Pezarat-Correia
- Neuromuscular Research Lab, Faculty of Human Kinetics, Lisbon University, 1499-002 Cruz Quebrada-Dafundo, Portugal; (P.D.G.S.); (P.F.C.); (M.J.V.); (P.P.-C.)
- CIPER, Faculty of Human Kinetics, Lisbon University, 1499-002 Cruz Quebrada-Dafundo, Portugal;
| |
Collapse
|
26
|
Synergistic Activation Patterns of Hand Muscles in Left-and Right-Hand Dominant Individuals. J Hum Kinet 2021; 76:89-100. [PMID: 33603927 PMCID: PMC7877284 DOI: 10.2478/hukin-2021-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Handedness has been associated with behavioral asymmetries between limbs that suggest specialized function of dominant and non-dominant hand. Whether patterns of muscle co-activation, representing muscle synergies, also differ between the limbs remains an open question. Previous investigations of proximal upper limb muscle synergies have reported little evidence of limb asymmetry; however, whether the same is true of the distal upper limb and hand remains unknown. This study compared forearm and hand muscle synergies between the dominant and non-dominant limb of left-handed and right-handed participants. Participants formed their hands into the postures of the American Sign Language (ASL) alphabet, while EMG was recorded from hand and forearm muscles. Muscle synergies were extracted for each limb individually by applying non-negative-matrix-factorization (NMF). Extracted synergies were compared between limbs for each individual, and between individuals to assess within and across participant differences. Results indicate no difference between the limbs for individuals, but differences in limb synergies at the population level. Left limb synergies were found to be more similar than right limb synergies across left- and right-handed individuals. Synergies of the left hand of left dominant individuals were found to have greater population level similarity than the other limbs tested. Results are interpreted with respect to known differences in the neuroanatomy and neurophysiology of proximal and distal upper limb motor control. Implications for skill training in sports requiring dexterous control of the hand are discussed.
Collapse
|
27
|
Muscle Synergies Reliability in the Power Clean Exercise. J Funct Morphol Kinesiol 2020; 5:jfmk5040075. [PMID: 33467290 PMCID: PMC7739416 DOI: 10.3390/jfmk5040075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 01/05/2023] Open
Abstract
Muscle synergy extraction has been utilized to investigate muscle coordination in human movement, namely in sports. The reliability of the method has been proposed, although it has not been assessed previously during a complex sportive task. Therefore, the aim of the study was to evaluate intra- and inter-day reliability of a strength training complex task, the power clean, assessing participants' variability in the task across sets and days. Twelve unexperienced participants performed four sets of power cleans in two test days after strength tests, and muscle synergies were extracted from electromyography (EMG) data of 16 muscles. Three muscle synergies accounted for almost 90% of variance accounted for (VAF) across sets and days. Intra-day VAF, muscle synergy vectors, synergy activation coefficients and individual EMG profiles showed high similarity values. Inter-day muscle synergy vectors had moderate similarity, while the variables regarding temporal activation were still strongly related. The present findings revealed that the muscle synergies extracted during the power clean remained stable across sets and days in unexperienced participants. Thus, the mathematical procedure for the extraction of muscle synergies through nonnegative matrix factorization (NMF) may be considered a reliable method to study muscle coordination adaptations from muscle strength programs.
Collapse
|
28
|
Elmeua González M, Šarabon N. Muscle modes of the equestrian rider at walk, rising trot and canter. PLoS One 2020; 15:e0237727. [PMID: 32810165 PMCID: PMC7446812 DOI: 10.1371/journal.pone.0237727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/01/2020] [Indexed: 01/08/2023] Open
Abstract
Equestrian sports have been a source of numerous studies throughout the past two decades, however, few scientists have focused on the biomechanical effects, including muscle activation, that the horse has on the rider. Because equitation is a sport of two (the horse-human dyad), we believe there is a need to fill in the knowledge gap in human biomechanics during riding. To investigate the differences between novice and advanced riders at a neuromuscular level we characterized the motor output of a set of riders’ key muscles during horse riding. Six recreational riders (24 ± 7 years) and nine professional riders (31 ± 5 years) from the Spanish Classical School of Riding (Lipica) volunteered to take part in this study. Riders’ upper body, core and lower limb muscles were monitored and synchronized with inertial data from the left horse’s leg at walk, rising trot and canter. We used principal component analysis to extract muscle modes. Three modes were identified in the advanced group whereas five modes were identified in the novice group. From the novice group, one mode united dorsal and ventral muscles of the body (reciprocal mode). Advanced riders showed higher core muscles engagement and better intermuscular coordination. We concluded that advanced horse riding is characterized by an ability to activate muscles contralaterally but not reciprocally (dorsal-ventral contraction). In addition, activating each muscle independently with different levels of activation, and the ability to quickly decrease overall muscle activity is distinctive of advanced riders.
Collapse
Affiliation(s)
| | - Nejc Šarabon
- Faculty of Health Sciences, University of Primorska, Koper, Slovenia
- S2P, Science to Practice, ltd., Laboratory for Motor Control and Motor Behaviour, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
29
|
Variability of Muscle Synergies in Hand Grasps: Analysis of Intra- and Inter-Session Data. SENSORS 2020; 20:s20154297. [PMID: 32752155 PMCID: PMC7435387 DOI: 10.3390/s20154297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022]
Abstract
Background. Muscle synergy analysis is an approach to understand the neurophysiological mechanisms behind the hypothesized ability of the Central Nervous System (CNS) to reduce the dimensionality of muscle control. The muscle synergy approach is also used to evaluate motor recovery and the evolution of the patients’ motor performance both in single-session and longitudinal studies. Synergy-based assessments are subject to various sources of variability: natural trial-by-trial variability of performed movements, intrinsic characteristics of subjects that change over time (e.g., recovery, adaptation, exercise, etc.), as well as experimental factors such as different electrode positioning. These sources of variability need to be quantified in order to resolve challenges for the application of muscle synergies in clinical environments. The objective of this study is to analyze the stability and similarity of extracted muscle synergies under the effect of factors that may induce variability, including inter- and intra-session variability within subjects and inter-subject variability differentiation. The analysis was performed using the comprehensive, publicly available hand grasp NinaPro Database, featuring surface electromyography (EMG) measures from two EMG electrode bracelets. Methods. Intra-session, inter-session, and inter-subject synergy stability was analyzed using the following measures: variance accounted for (VAF) and number of synergies (NoS) as measures of reconstruction stability quality and cosine similarity for comparison of spatial composition of extracted synergies. Moreover, an approach based on virtual electrode repositioning was applied to shed light on the influence of electrode position on inter-session synergy similarity. Results. Inter-session synergy similarity was significantly lower with respect to intra-session similarity, both considering coefficient of variation of VAF (approximately 0.2–15% for inter vs. approximately 0.1% to 2.5% for intra, depending on NoS) and coefficient of variation of NoS (approximately 6.5–14.5% for inter vs. approximately 3–3.5% for intra, depending on VAF) as well as synergy similarity (approximately 74–77% for inter vs. approximately 88–94% for intra, depending on the selected VAF). Virtual electrode repositioning revealed that a slightly different electrode position can lower similarity of synergies from the same session and can increase similarity between sessions. Finally, the similarity of inter-subject synergies has no significant difference from the similarity of inter-session synergies (both on average approximately 84–90% depending on selected VAF). Conclusion. Synergy similarity was lower in inter-session conditions with respect to intra-session. This finding should be considered when interpreting results from multi-session assessments. Lastly, electrode positioning might play an important role in the lower similarity of synergies over different sessions.
Collapse
|
30
|
Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview. Appl Bionics Biomech 2020; 2020:2041549. [PMID: 32676126 PMCID: PMC7330631 DOI: 10.1155/2020/2041549] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 11/17/2022] Open
Abstract
In the last few decades, a number of technological developments have advanced the spread of wearable sensors for the assessment of human motion. These sensors have been also developed to assess athletes' performance, providing useful guidelines for coaching, as well as for injury prevention. The data from these sensors provides key performance outcomes as well as more detailed kinematic, kinetic, and electromyographic data that provides insight into how the performance was obtained. From this perspective, inertial sensors, force sensors, and electromyography appear to be the most appropriate wearable sensors to use. Several studies were conducted to verify the feasibility of using wearable sensors for sport applications by using both commercially available and customized sensors. The present study seeks to provide an overview of sport biomechanics applications found from recent literature using wearable sensors, highlighting some information related to the used sensors and analysis methods. From the literature review results, it appears that inertial sensors are the most widespread sensors for assessing athletes' performance; however, there still exist applications for force sensors and electromyography in this context. The main sport assessed in the studies was running, even though the range of sports examined was quite high. The provided overview can be useful for researchers, athletes, and coaches to understand the technologies currently available for sport performance assessment.
Collapse
|
31
|
Singh RE, White G, Delis I, Iqbal K. Alteration of muscle synergy structure while walking under increased postural constraints. COGNITIVE COMPUTATION AND SYSTEMS 2020. [DOI: 10.1049/ccs.2019.0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Rajat Emanuel Singh
- Department of Systems EngineeringUniversity of Arkansas at Little RockARUSA
- School of Counseling Human Performance & RehabilitationUniversity of Arkansas at Little RockARUSA
| | - Gannon White
- Department of KinesiologyColorado Mesa UniversityCOUSA
| | | | - Kamran Iqbal
- Department of Systems EngineeringUniversity of Arkansas at Little RockARUSA
| |
Collapse
|
32
|
Abd AT, Singh RE, Iqbal K, White G. Muscle Synergies are Robust across Participants in Upper Limb Rotational Motion. 2020 7TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ICEEE) 2020. [DOI: 10.1109/iceee49618.2020.9102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
33
|
Pellegrino L, Coscia M, Casadio M. Muscle activities in similar arms performing identical tasks reveal the neural basis of muscle synergies. Exp Brain Res 2019; 238:121-138. [DOI: 10.1007/s00221-019-05679-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/07/2019] [Indexed: 12/19/2022]
|
34
|
Hug F, Vogel C, Tucker K, Dorel S, Deschamps T, Le Carpentier É, Lacourpaille L. Individuals have unique muscle activation signatures as revealed during gait and pedaling. J Appl Physiol (1985) 2019; 127:1165-1174. [DOI: 10.1152/japplphysiol.01101.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although it is known that the muscle activation patterns used to produce even simple movements can vary between individuals, these differences have not been considered to prove the existence of individual muscle activation strategies (or signatures). We used a machine learning approach (support vector machine) to test the hypothesis that each individual has unique muscle activation signatures. Eighty participants performed a series of pedaling and gait tasks, and 53 of these participants performed a second experimental session on a subsequent day. Myoelectrical activity was measured from eight muscles: vastus lateralis and medialis, rectus femoris, gastrocnemius lateralis and medialis, soleus, tibialis anterior, and biceps femoris -long head. The classification task involved separating data into training and testing sets. For the within-day classification, each pedaling/gait cycle was tested using the classifier, which had been trained on the remaining cycles. For the between-day classification, each cycle from day 2 was tested using the classifier, which had been trained on the cycles from day 1. When considering all eight muscles, the activation profiles were assigned to the corresponding individuals with a classification rate of up to 99.28% (2,353/2,370 cycles) and 91.22% (1,341/1,470 cycles) for the within-day and between-day classification, respectively. When considering the within-day classification, a combination of two muscles was sufficient to obtain a classification rate >80% for both pedaling and gait. When considering between-day classification, a combination of four to five muscles was sufficient to obtain a classification rate >80% for pedaling and gait. These results demonstrate that strategies not only vary between individuals, as is often assumed, but are unique to each individual. NEW & NOTEWORTHY We used a machine learning approach to test the uniqueness and robustness of muscle activation patterns. We considered that, if an algorithm can accurately identify participants, one can conclude that these participants exhibit discernible differences and thus have unique muscle activation signatures. Our results show that activation patterns not only vary between individuals, but are unique to each individual. Individual differences should, therefore, be considered relevant information for addressing fundamental questions about the control of movement.
Collapse
Affiliation(s)
- François Hug
- Movement, Interactions, Performance, Nantes Université, EA 4334, Nantes, France
- National Health and Medical Research Council Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Institut Universitaire de France, Paris, France
| | - Clément Vogel
- Movement, Interactions, Performance, Nantes Université, EA 4334, Nantes, France
| | - Kylie Tucker
- National Health and Medical Research Council Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sylvain Dorel
- Movement, Interactions, Performance, Nantes Université, EA 4334, Nantes, France
| | - Thibault Deschamps
- Movement, Interactions, Performance, Nantes Université, EA 4334, Nantes, France
| | | | - Lilian Lacourpaille
- Movement, Interactions, Performance, Nantes Université, EA 4334, Nantes, France
| |
Collapse
|
35
|
Holubarsch J, Helm M, Ringhof S, Gollhofer A, Freyler K, Ritzmann R. Stumbling reactions in hypo and hyper gravity - muscle synergies are robust across different perturbations of human stance during parabolic flights. Sci Rep 2019; 9:10490. [PMID: 31324854 PMCID: PMC6642199 DOI: 10.1038/s41598-019-47091-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/10/2019] [Indexed: 11/21/2022] Open
Abstract
The control of bipedal stance and the capacity to regain postural equilibrium after its deterioration in variable gravities are crucial prerequisites for manned space missions. With an emphasize on natural orthograde posture, computational techniques synthesize muscle activation patterns of high complexity to a simple synergy organization. We used nonnegative matrix factorization to identify muscle synergies during postural recovery responses in human and to examine the functional significance of such synergies for hyper-gravity (1.75 g) and hypo-gravity (0.25 g). Electromyographic data were recorded from leg, trunk and arm muscles of five human exposed to five modes of anterior and posterior support surface translations during parabolic flights including transitional g-levels of 0.25, 1 and 1.75 g. Results showed that in 1 g four synergies accounted for 99% of the automatic postural response across all muscles and perturbation directions. Each synergy in 1 g was correlated to the corresponding one in 0.25 and 1.75 g. This study therefore emphasizes the similarity of the synergy organization of postural recovery responses in Earth, hypo- and hyper-gravity conditions, indicating that the muscle synergies and segmental strategies acquired under terrestrial habits are robust and persistent across variable and acute changes in gravity levels.
Collapse
Affiliation(s)
- Janek Holubarsch
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Michael Helm
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Steffen Ringhof
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.
| | - Albert Gollhofer
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Kathrin Freyler
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Ramona Ritzmann
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany.,Praxisklinik Rennbahn AG, Muttenz, Switzerland
| |
Collapse
|
36
|
Jure FA, Arguissain FG, Biurrun Manresa JA, Andersen OK. Conditioned pain modulation affects the withdrawal reflex pattern to nociceptive stimulation in humans. Neuroscience 2019; 408:259-271. [DOI: 10.1016/j.neuroscience.2019.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/21/2019] [Accepted: 04/08/2019] [Indexed: 12/18/2022]
|
37
|
Niu CM, Bao Y, Zhuang C, Li S, Wang T, Cui L, Xie Q, Lan N. Synergy-Based FES for Post-Stroke Rehabilitation of Upper-Limb Motor Functions. IEEE Trans Neural Syst Rehabil Eng 2019; 27:256-264. [DOI: 10.1109/tnsre.2019.2891004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
On the Reliability and Repeatability of Surface Electromyography Factorization by Muscle Synergies in Daily Life Activities. Appl Bionics Biomech 2018; 2018:5852307. [PMID: 30595715 PMCID: PMC6282145 DOI: 10.1155/2018/5852307] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 05/24/2018] [Accepted: 08/17/2018] [Indexed: 12/02/2022] Open
Abstract
Muscle synergy theory is a new appealing approach for different research fields. This study is aimed at evaluating the robustness of EMG reconstruction via muscle synergies and the repeatability of muscle synergy parameters as potential neurophysiological indices. Eight healthy subjects performed walking, stepping, running, and ascending and descending stairs' trials for five repetitions in three sessions. Twelve muscles of the dominant leg were analyzed. The “nonnegative matrix factorization” and “variability account for” were used to extract muscle synergies and to assess EMG goodness reconstruction, respectively. Intraclass correlation was used to quantify methodology reliability. Cosine similarity and coefficient of determination assessed the repeatability of the muscle synergy vectors and the temporal activity patterns, respectively. A 4-synergy model was selected for EMG signal factorization. Intraclass correlation was excellent for the overall reconstruction, while it ranged from fair to excellent for single muscles. The EMG reconstruction was found repeatable across sessions and subjects. Considering the selection of neurophysiological indices, the number of synergies was not repeatable neither within nor between subjects. Conversely, the cosine similarity and coefficient of determination values allow considering the muscle synergy vectors and the temporal activity patterns as potential neurophysiological indices due to their similarity both within and between subjects. More specifically, some synergies in the 4-synergy model reveal themselves as more repeatable than others, suggesting focusing on them when seeking at the neurophysiological index identification.
Collapse
|
39
|
Fabre-Adinolfi D, Parietti-Winkler C, Pierret J, Lassalle-Kinic B, Frère J. You are better off running than walking revisited: Does an acute vestibular imbalance affect muscle synergies? Hum Mov Sci 2018; 62:150-160. [PMID: 30384183 DOI: 10.1016/j.humov.2018.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/31/2018] [Accepted: 10/21/2018] [Indexed: 12/30/2022]
Abstract
It has been suggested that vestibular cues are inhibited for the benefit of spinal locomotor centres in parallel with the increase in locomotion speed. This study aimed at quantifying the influence of a transient vestibular tone imbalance (TVTI) on gait kinematics, muscle activity and muscle synergies during walking and running. Twelve participants walk or run at a self-selected speed with or without TVTI, which was generated by 10 body rotations just prior the locomotion task. Three-dimensional lower-limb kinematic was recorded simultaneously with the surface electromyographic (EMG) activity of 8 muscles to extract muscle synergies via non-negative matrix factorization. Under TVTI, there was an increased gait deviation in walking compared to running (22.8 ± 8.4° and 8.5 ± 3.6°, respectively; p < 0.01), while the number (n = 4) and the composition of the muscle synergies did not differ across conditions (p = 0.78). A higher increase (p < 0.05) in EMG activity due to TVTI was found during walking compared to running, especially during stance. These findings confirmed that the central nervous system inhibited misleading vestibular signals according to the increase in locomotion speed for the benefit of spinal mechanisms, expressed by the muscle synergies.
Collapse
Affiliation(s)
- Dimitri Fabre-Adinolfi
- Université de Lorraine, Laboratory « Développement, Adaptation et Handicap » (EA 3450), F-54000 Nancy, France; University Hospital of Nancy, Department of Oto-Rhino-Laryngology Head and Neck Surgery, F-54000 Nancy, France
| | - Cécile Parietti-Winkler
- Université de Lorraine, Laboratory « Développement, Adaptation et Handicap » (EA 3450), F-54000 Nancy, France; University Hospital of Nancy, Department of Oto-Rhino-Laryngology Head and Neck Surgery, F-54000 Nancy, France
| | - Jonathan Pierret
- Université de Lorraine, Laboratory « Développement, Adaptation et Handicap » (EA 3450), F-54000 Nancy, France; L.-Pierquin Rehabilitation Center, F-54000 Nancy, France
| | | | - Julien Frère
- Université de Lorraine, Laboratory « Développement, Adaptation et Handicap » (EA 3450), F-54000 Nancy, France.
| |
Collapse
|
40
|
Costa-Garcia A, Itkonen M, Yamasaki H, Shibata-Alnajjar F, Shimoda S. A Novel Approach to the Segmentation of sEMG Data Based on the Activation and Deactivation of Muscle Synergies During Movement. IEEE Robot Autom Lett 2018. [DOI: 10.1109/lra.2018.2811506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Deciphering the functional role of spatial and temporal muscle synergies in whole-body movements. Sci Rep 2018; 8:8391. [PMID: 29849101 PMCID: PMC5976658 DOI: 10.1038/s41598-018-26780-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/11/2018] [Indexed: 12/29/2022] Open
Abstract
Voluntary movement is hypothesized to rely on a limited number of muscle synergies, the recruitment of which translates task goals into effective muscle activity. In this study, we investigated how to analytically characterize the functional role of different types of muscle synergies in task performance. To this end, we recorded a comprehensive dataset of muscle activity during a variety of whole-body pointing movements. We decomposed the electromyographic (EMG) signals using a space-by-time modularity model which encompasses the main types of synergies. We then used a task decoding and information theoretic analysis to probe the role of each synergy by mapping it to specific task features. We found that the temporal and spatial aspects of the movements were encoded by different temporal and spatial muscle synergies, respectively, consistent with the intuition that there should a correspondence between major attributes of movement and major features of synergies. This approach led to the development of a novel computational method for comparing muscle synergies from different participants according to their functional role. This functional similarity analysis yielded a small set of temporal and spatial synergies that describes the main features of whole-body reaching movements.
Collapse
|
42
|
A Systematic Review on Muscle Synergies: From Building Blocks of Motor Behavior to a Neurorehabilitation Tool. Appl Bionics Biomech 2018; 2018:3615368. [PMID: 29849756 PMCID: PMC5937559 DOI: 10.1155/2018/3615368] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/29/2018] [Indexed: 12/20/2022] Open
Abstract
The central nervous system (CNS) is believed to utilize specific predefined modules, called muscle synergies (MS), to accomplish a motor task. Yet questions persist about how the CNS combines these primitives in different ways to suit the task conditions. The MS hypothesis has been a subject of debate as to whether they originate from neural origins or nonneural constraints. In this review article, we present three aspects related to the MS hypothesis: (1) the experimental and computational evidence in support of the existence of MS, (2) algorithmic approaches for extracting them from surface electromyography (EMG) signals, and (3) the possible role of MS as a neurorehabilitation tool. We note that recent advances in computational neuroscience have utilized the MS hypothesis in motor control and learning. Prospective advances in clinical, medical, and engineering sciences and in fields such as robotics and rehabilitation stand to benefit from a more thorough understanding of MS.
Collapse
|
43
|
Hilt PM, Delis I, Pozzo T, Berret B. Space-by-Time Modular Decomposition Effectively Describes Whole-Body Muscle Activity During Upright Reaching in Various Directions. Front Comput Neurosci 2018; 12:20. [PMID: 29666576 PMCID: PMC5891645 DOI: 10.3389/fncom.2018.00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/12/2018] [Indexed: 11/13/2022] Open
Abstract
The modular control hypothesis suggests that motor commands are built from precoded modules whose specific combined recruitment can allow the performance of virtually any motor task. Despite considerable experimental support, this hypothesis remains tentative as classical findings of reduced dimensionality in muscle activity may also result from other constraints (biomechanical couplings, data averaging or low dimensionality of motor tasks). Here we assessed the effectiveness of modularity in describing muscle activity in a comprehensive experiment comprising 72 distinct point-to-point whole-body movements during which the activity of 30 muscles was recorded. To identify invariant modules of a temporal and spatial nature, we used a space-by-time decomposition of muscle activity that has been shown to encompass classical modularity models. To examine the decompositions, we focused not only on the amount of variance they explained but also on whether the task performed on each trial could be decoded from the single-trial activations of modules. For the sake of comparison, we confronted these scores to the scores obtained from alternative non-modular descriptions of the muscle data. We found that the space-by-time decomposition was effective in terms of data approximation and task discrimination at comparable reduction of dimensionality. These findings show that few spatial and temporal modules give a compact yet approximate representation of muscle patterns carrying nearly all task-relevant information for a variety of whole-body reaching movements.
Collapse
Affiliation(s)
- Pauline M Hilt
- Institut National de la Santé et de la Recherche Médicale, U1093, Cognition Action Plasticité Sensorimotrice, Dijon, France.,Italian Institute of Technology CTNSC@UniFe (Center of Translational Neurophysiology for Speech and Communication), Ferrara, Italy
| | - Ioannis Delis
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Thierry Pozzo
- Institut National de la Santé et de la Recherche Médicale, U1093, Cognition Action Plasticité Sensorimotrice, Dijon, France.,Italian Institute of Technology CTNSC@UniFe (Center of Translational Neurophysiology for Speech and Communication), Ferrara, Italy
| | - Bastien Berret
- CIAMS, Université Paris-Sud, Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
44
|
Feasibility of Muscle Synergy Outcomes in Clinics, Robotics, and Sports: A Systematic Review. Appl Bionics Biomech 2018; 2018:3934698. [PMID: 29808098 PMCID: PMC5902115 DOI: 10.1155/2018/3934698] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 01/04/2023] Open
Abstract
In the last years, several studies have been focused on understanding how the central nervous system controls muscles to perform a specific motor task. Although it still remains an open question, muscle synergies have come to be an appealing theory to explain the modular organization of the central nervous system. Even though the neural encoding of muscle synergies remains controversial, a large number of papers demonstrated that muscle synergies are robust across different tested conditions, which are within a day, between days, within a single subject, and between subjects that have similar demographic characteristics. Thus, muscle synergy theory has been largely used in several research fields, such as clinics, robotics, and sports. The present systematical review aims at providing an overview on the applications of muscle synergy theory in clinics, robotics, and sports; in particular, the review is focused on the papers that provide tangible information for (i) diagnosis or pathology assessment in clinics, (ii) robot-control design in robotics, and (iii) athletes' performance assessment or training guidelines in sports.
Collapse
|
45
|
Low-Dimensional Motor Control Representations in Throwing Motions. Appl Bionics Biomech 2018; 2017:3050917. [PMID: 29463956 PMCID: PMC5804375 DOI: 10.1155/2017/3050917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/09/2017] [Accepted: 10/29/2017] [Indexed: 01/10/2023] Open
Abstract
In this study, we identified a low-dimensional representation of control mechanisms in throwing motions from a variety of subjects and target distances. The control representation was identified at the kinematic level in task and joint spaces, respectively, and at the muscle activation level using the theory of muscle synergies. Representative features of throwing motions in all of these spaces were chosen to be investigated. Features were extracted using factorization and clustering techniques from the muscle data of unexperienced subjects (with different morphologies and physical conditions) during a series of throwing tasks. Two synergy extraction methods were tested to assess their consistency. For the task features, the degrees of freedom (DoF), and the muscles under study, the results can be summarized as (1) a control representation across subjects consisting of only two synergies at the activation level and of representative features in the task and joint spaces, (2) a reduction of control redundancy (since the number of synergies are less than the number of actions to be controlled), (3) links between the synergies triggering intensity and the throwing distance, and finally (4) consistency of the extraction methods. Such results are useful to better represent mechanisms hidden behind such dynamical motions and could offer a promising control representation for synthesizing motions with muscle-driven characters.
Collapse
|
46
|
Maguire CC, Sieben JM, De Bie RA. Movement goals encoded within the cortex and muscle synergies to reduce redundancy pre and post-stroke. The relevance for gait rehabilitation and the prescription of walking-aids. A literature review and scholarly discussion. Physiother Theory Pract 2018; 35:1-14. [PMID: 29400592 DOI: 10.1080/09593985.2018.1434579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current knowledge of neural and neuromuscular processes controlling gait and movement as well as an understanding of how these mechanisms change following stroke is an important basis for the development of effective rehabilitation interventions. To support the translation of findings from basic research into useful treatments in clinical practice, up-to-date neuroscience should be presented in forms accessible to all members of the multidisciplinary team. In this review we discuss aspects of cortical control of gait and movement, muscle synergies as a way of translating cortical commands into specific muscle activity and as an efficient means of reducing neural and musculoskeletal redundancy. We discuss how these mechanisms change following stroke, potential consequences for gait rehabilitation, and the prescription and use of walking-aids as well as areas requiring further research.
Collapse
Affiliation(s)
- Clare C Maguire
- a Department of Physiotherapy, BZG Bildungszentrum Gesundheit Basel-Stadt , Munchenstein , Switzerland.,b Health Division , Bern University of Applied Science , Bern , Switzerland.,c Caphri Research School , Maastricht University , Maastricht , the Netherlands
| | - Judith M Sieben
- c Caphri Research School , Maastricht University , Maastricht , the Netherlands.,d Department of Anatomy and Embryology , Maastricht University , Maastricht , the Netherlands
| | - Robert A De Bie
- c Caphri Research School , Maastricht University , Maastricht , the Netherlands.,e Department of Epidemiology , Maastricht University , Maastricht , the Netherlands
| |
Collapse
|
47
|
Jacobs DA, Koller JR, Steele KM, Ferris DP. Motor modules during adaptation to walking in a powered ankle exoskeleton. J Neuroeng Rehabil 2018; 15:2. [PMID: 29298705 PMCID: PMC5751608 DOI: 10.1186/s12984-017-0343-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). METHODS Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. RESULTS Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R2 with time. CONCLUSIONS Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and motor skill consolidation across sessions) led to improved consistency of the muscle patterns. Subjects adapted primarily by changing the timing of their muscle patterns rather than the weightings of muscles in the modules. The results of this study give new insight into strategies for muscle recruitment during adaptation to a powered ankle exoskeleton.
Collapse
Affiliation(s)
- Daniel A. Jacobs
- Department of Mechanical Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA USA
| | - Jeffrey R. Koller
- Department of Mechanical Engineering, University of Washington, 3900 E Stevens Way NE, Seattle, WA USA
| | - Katherine M. Steele
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward St, Ann Arbor, MI USA
| | - Daniel P. Ferris
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL USA
| |
Collapse
|
48
|
Fox AS, Bonacci J, McLean SG, Saunders N. Exploring individual adaptations to an anterior cruciate ligament injury prevention programme. Knee 2018; 25:83-98. [PMID: 29329889 DOI: 10.1016/j.knee.2017.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Individual responses to anterior cruciate ligament injury prevention programmes (ACL IPPs) have received little attention. This study examined the effects of an ACL IPP on neuromuscular control and lower limb biomechanics during landing at the group and individual levels. METHODS Sixteen female athletes were randomly allocated to training (n=8) or control (n=8) groups. Electromyography, and three-dimensional kinematic and kinetic data were collected during landing at two testing sessions. Repeated measures ANOVA and effect sizes (Cohen's d) examined the effect of the IPP at the group and individual levels. A sub-group analysis comparing the effect of the IPP on 'high-' (i.e. large peak knee abduction moment at baseline) versus 'low-risk' individuals was also conducted. RESULTS At the group level; the IPP increased activation of the medial hamstrings prior to landing (p<0.001; d=0.264) and the medial gastrocnemius at landing (p<0.001; d=0.426), and increased hip external rotation early after initial contact (p<0.001; d=0.476). Variable adaptations were seen across individuals within the training group for all variables (p<0.001). The IPP had a large effect in reducing frontal plane knee moments for 'high-risk' individuals (d>0.91), however these results did not reach statistical significance (p>0.05). CONCLUSIONS The IPP induced adaptations during landing, however, individual data revealed dissimilar responses to the programme. Individuals displaying a pre-existing high-risk strategy may incur greater benefits from IPPs, yet only if the programme targets the relevant high-risk strategy.
Collapse
Affiliation(s)
- Aaron S Fox
- Centre for Sports Research, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia.
| | - Jason Bonacci
- Centre for Sports Research, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia
| | | | - Natalie Saunders
- Centre for Sports Research, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia
| |
Collapse
|
49
|
Yokoyama H, Hagio K, Ogawa T, Nakazawa K. Motor module activation sequence and topography in the spinal cord during air-stepping in human: Insights into the traveling wave in spinal locomotor circuits. Physiol Rep 2017; 5:5/22/e13504. [PMID: 29180480 PMCID: PMC5704080 DOI: 10.14814/phy2.13504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 01/06/2023] Open
Abstract
Coordinated locomotor muscle activity is generated by the spinal central pattern generators (CPGs), which are modulated by peripheral and supraspinal inputs. The CPGs would consist of multiple motor modules generating basic muscle activity, which are distributed rostrocaudally along the spinal cord. To activate the motor modules in proper sequence, rostrocaudally traveling waves of activation in the spinal cord are important mechanisms in the CPGs. The traveling waves of activation have been observed in nonhuman vertebrates. However, they have not yet been confirmed during human locomotion. Although, rostrocaudal wave‐like activations in the spinal cord were observed during walking in humans in a previous study, the propagation shifted rostrally toward the upper lumbar segments at foot contact. Here, using an air stepping task to remove the foot‐contact interactions, we examined whether the traveling wave mechanism exists in the human spinal circuits based on the activation sequence of motor modules and their topography. We measured electromyographic activity of lower leg muscles during the air‐stepping task. Then, we extracted motor modules (i.e., basic patterns of sets of muscle activations: muscle synergies) from the measured muscle activities using nonnegative matrix factorization method. Next, we reconstructed motoneuron (MN) activity from each module activity based on myotomal charts. We identified four types of motor modules from muscle activities during the air‐stepping task. Each motor module represented different sets of synergistic muscle activations. MN clusters innervating each motor module were sequentially activated from the rostral to caudal region in the spinal cord, from the initial flexion to the last extension phase during air‐stepping. The rostrocaudally sequential activation of MN clusters suggests the possibility that rostrocaudally traveling waves exist in human locomotor spinal circuits. The present results advance the understanding of human locomotor control mechanisms, and provide important insights into the evolution of locomotor networks in vertebrates.
Collapse
Affiliation(s)
- Hikaru Yokoyama
- Laboratory of Sports Sciences, Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Kohtaroh Hagio
- Laboratory of Sports Sciences, Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Ogawa
- Laboratory of Sports Sciences, Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kimitaka Nakazawa
- Laboratory of Sports Sciences, Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
50
|
Boccia G, Zoppirolli C, Bortolan L, Schena F, Pellegrini B. Shared and task-specific muscle synergies of Nordic walking and conventional walking. Scand J Med Sci Sports 2017; 28:905-918. [PMID: 29027265 DOI: 10.1111/sms.12992] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2017] [Indexed: 01/08/2023]
Abstract
Nordic walking is a form of walking that includes a poling action, and therefore an additional subtask, with respect to conventional walking. The aim of this study was to assess whether Nordic walking required a task-specific muscle coordination with respect to conventional walking. We compared the electromyographic (EMG) activity of 15 upper- and lower-limb muscles of 9 Nordic walking instructors, while executing Nordic walking and conventional walking at 1.3 ms-1 on a treadmill. Non-negative matrix factorization method was applied to identify muscle synergies, representing the spatial and temporal organization of muscle coordination. The number of muscle synergies was not different between Nordic walking (5.2 ± 0.4) and conventional walking (5.0 ± 0.7, P = .423). Five muscle synergies accounted for 91.2 ± 1.1% and 92.9 ± 1.2% of total EMG variance in Nordic walking and conventional walking, respectively. Similarity and cross-reconstruction analyses showed that 4 muscle synergies, mainly involving lower-limb and trunk muscles, are shared between Nordic walking and conventional walking. One synergy acting during upper limb propulsion is specific to Nordic walking, modifying the spatial organization and the magnitude of activation of upper limb muscles compared to conventional walking. The inclusion of the poling action in Nordic walking does not increase the complexity of movement control and does not change the coordination of lower limb muscles. This makes Nordic walking a physical activity suitable also for people with low motor skill.
Collapse
Affiliation(s)
- G Boccia
- CeRiSM Research Centre for Sport, Mountain, and Health, University of Verona, Rovereto, Trento, Italy.,NeuroMuscularFunction Research Group, Department of Medical Sciences, School of Exercise and Sport Sciences, University of Turin, Torino, Italy
| | - C Zoppirolli
- CeRiSM Research Centre for Sport, Mountain, and Health, University of Verona, Rovereto, Trento, Italy.,Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - L Bortolan
- CeRiSM Research Centre for Sport, Mountain, and Health, University of Verona, Rovereto, Trento, Italy.,Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - F Schena
- CeRiSM Research Centre for Sport, Mountain, and Health, University of Verona, Rovereto, Trento, Italy.,Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| | - B Pellegrini
- CeRiSM Research Centre for Sport, Mountain, and Health, University of Verona, Rovereto, Trento, Italy.,Department of Neuroscience, Biomedicine and Movement Science, University of Verona, Verona, Italy
| |
Collapse
|