1
|
Pietras B. Pulse Shape and Voltage-Dependent Synchronization in Spiking Neuron Networks. Neural Comput 2024; 36:1476-1540. [PMID: 39028958 DOI: 10.1162/neco_a_01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/18/2024] [Indexed: 07/21/2024]
Abstract
Pulse-coupled spiking neural networks are a powerful tool to gain mechanistic insights into how neurons self-organize to produce coherent collective behavior. These networks use simple spiking neuron models, such as the θ-neuron or the quadratic integrate-and-fire (QIF) neuron, that replicate the essential features of real neural dynamics. Interactions between neurons are modeled with infinitely narrow pulses, or spikes, rather than the more complex dynamics of real synapses. To make these networks biologically more plausible, it has been proposed that they must also account for the finite width of the pulses, which can have a significant impact on the network dynamics. However, the derivation and interpretation of these pulses are contradictory, and the impact of the pulse shape on the network dynamics is largely unexplored. Here, I take a comprehensive approach to pulse coupling in networks of QIF and θ-neurons. I argue that narrow pulses activate voltage-dependent synaptic conductances and show how to implement them in QIF neurons such that their effect can last through the phase after the spike. Using an exact low-dimensional description for networks of globally coupled spiking neurons, I prove for instantaneous interactions that collective oscillations emerge due to an effective coupling through the mean voltage. I analyze the impact of the pulse shape by means of a family of smooth pulse functions with arbitrary finite width and symmetric or asymmetric shapes. For symmetric pulses, the resulting voltage coupling is not very effective in synchronizing neurons, but pulses that are slightly skewed to the phase after the spike readily generate collective oscillations. The results unveil a voltage-dependent spike synchronization mechanism at the heart of emergent collective behavior, which is facilitated by pulses of finite width and complementary to traditional synaptic transmission in spiking neuron networks.
Collapse
Affiliation(s)
- Bastian Pietras
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018, Barcelona, Spain
| |
Collapse
|
2
|
Franović I, Eydam S. Patched patterns and emergence of chaotic interfaces in arrays of nonlocally coupled excitable systems. CHAOS (WOODBURY, N.Y.) 2022; 32:091102. [PMID: 36182388 DOI: 10.1063/5.0111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
We disclose a new class of patterns, called patched patterns, in arrays of non-locally coupled excitable units with attractive and repulsive interactions. The self-organization process involves the formation of two types of patches, majority and minority ones, characterized by uniform average spiking frequencies. Patched patterns may be temporally periodic, quasiperiodic, or chaotic, whereby chaotic patterns may further develop interfaces comprised of units with average frequencies in between those of majority and minority patches. Using chaos and bifurcation theory, we demonstrate that chaos typically emerges via a torus breakup and identify the secondary bifurcation that gives rise to chaotic interfaces. It is shown that the maximal Lyapunov exponent of chaotic patched patterns does not decay, but rather converges to a finite value with system size. Patched patterns with a smaller wavenumber may exhibit diffusive motion of chaotic interfaces, similar to that of the incoherent part of chimeras.
Collapse
Affiliation(s)
- Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Sebastian Eydam
- Neural Circuits and Computations Unit, RIKEN Center for Brain Science, 2-1 Hirosawa, 351-0198 Wako, Japan
| |
Collapse
|
3
|
Franović I, Omel'chenko OE, Wolfrum M. Bumps, chimera states, and Turing patterns in systems of coupled active rotators. Phys Rev E 2021; 104:L052201. [PMID: 34942776 DOI: 10.1103/physreve.104.l052201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/20/2021] [Indexed: 11/07/2022]
Abstract
Self-organized coherence-incoherence patterns, called chimera states, have first been reported in systems of Kuramoto oscillators. For coupled excitable units, similar patterns where coherent units are at rest are called bump states. Here, we study bumps in an array of active rotators coupled by nonlocal attraction and global repulsion. We demonstrate how they can emerge in a supercritical scenario from completely coherent Turing patterns: a single incoherent unit appears in a homoclinic bifurcation, undergoing subsequent transitions to quasiperiodic and chaotic behavior, which eventually transforms into extensive chaos with many incoherent units. We present different types of transitions and explain the formation of coherence-incoherence patterns according to the classical paradigm of short-range activation and long-range inhibition.
Collapse
Affiliation(s)
- Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Oleh E Omel'chenko
- University of Potsdam, Institute of Physics and Astronomy, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
4
|
Laing CR, Bläsche C. The effects of within-neuron degree correlations in networks of spiking neurons. BIOLOGICAL CYBERNETICS 2020; 114:337-347. [PMID: 32124039 DOI: 10.1007/s00422-020-00822-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/15/2020] [Indexed: 05/20/2023]
Abstract
We consider the effects of correlations between the in- and out-degrees of individual neurons on the dynamics of a network of neurons. By using theta neurons, we can derive a set of coupled differential equations for the expected dynamics of neurons with the same in-degree. A Gaussian copula is used to introduce correlations between a neuron's in- and out-degree, and numerical bifurcation analysis is used determine the effects of these correlations on the network's dynamics. For excitatory coupling, we find that inducing positive correlations has a similar effect to increasing the coupling strength between neurons, while for inhibitory coupling it has the opposite effect. We also determine the propensity of various two- and three-neuron motifs to occur as correlations are varied and give a plausible explanation for the observed changes in dynamics.
Collapse
Affiliation(s)
- Carlo R Laing
- School of Natural and Computational Sciences, Massey University, NSMC, Private Bag 102-904, Auckland, New Zealand.
| | - Christian Bläsche
- School of Natural and Computational Sciences, Massey University, NSMC, Private Bag 102-904, Auckland, New Zealand
| |
Collapse
|
5
|
Kaminker V, Wackerbauer R. Alternating activity patterns and a chimeralike state in a network of globally coupled excitable Morris-Lecar neurons. CHAOS (WOODBURY, N.Y.) 2019; 29:053121. [PMID: 31154794 DOI: 10.1063/1.5093483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Spatiotemporal chaos collapses to either a rest state or a propagating pulse in a ring network of diffusively coupled, excitable Morris-Lecar neurons. Adding global varying synaptic coupling to the ring network reveals complex transient behavior. Spatiotemporal chaos collapses into a transient pulse that reinitiates spatiotemporal chaos to allow sequential pattern switching until a collapse to the rest state. A domain of irregular neuron activity coexists with a domain of inactive neurons forming a transient chimeralike state. Transient spatial localization of the chimeralike state is observed for stronger synapses.
Collapse
Affiliation(s)
- Vitaliy Kaminker
- Department of Physics, University of Alaska, Fairbanks, Alaska 99775-5920, USA
| | - Renate Wackerbauer
- Department of Physics, University of Alaska, Fairbanks, Alaska 99775-5920, USA
| |
Collapse
|
6
|
Santos MS, Protachevicz PR, Iarosz KC, Caldas IL, Viana RL, Borges FS, Ren HP, Szezech JD, Batista AM, Grebogi C. Spike-burst chimera states in an adaptive exponential integrate-and-fire neuronal network. CHAOS (WOODBURY, N.Y.) 2019; 29:043106. [PMID: 31042937 DOI: 10.1063/1.5087129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Chimera states are spatiotemporal patterns in which coherence and incoherence coexist. We observe the coexistence of synchronous (coherent) and desynchronous (incoherent) domains in a neuronal network. The network is composed of coupled adaptive exponential integrate-and-fire neurons that are connected by means of chemical synapses. In our neuronal network, the chimera states exhibit spatial structures both with spike and burst activities. Furthermore, those desynchronized domains not only have either spike or burst activity, but we show that the structures switch between spikes and bursts as the time evolves. Moreover, we verify the existence of multicluster chimera states.
Collapse
Affiliation(s)
- Moises S Santos
- Department of Physics, Federal University of Paraná, 80060-000 Curitiba, PR, Brazil
| | - Paulo R Protachevicz
- Graduate in Science Program-Physics, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Kelly C Iarosz
- Institute of Physics, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Iberê L Caldas
- Institute of Physics, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Ricardo L Viana
- Department of Physics, Federal University of Paraná, 80060-000 Curitiba, PR, Brazil
| | - Fernando S Borges
- Center for Mathematics Computation and Cognition, Federal University of ABC, 09606-045 São Bernardo do Campo, SP, Brazil
| | - Hai-Peng Ren
- Shaanxi Key Laboratory of Complex System Control and Intelligent Information Processing, Xian University of Technology, Xi'an 710048, People's Republic of China
| | - José D Szezech
- Graduate in Science Program-Physics, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Antonio M Batista
- Graduate in Science Program-Physics, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology, King's College, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| |
Collapse
|
7
|
Chouzouris T, Omelchenko I, Zakharova A, Hlinka J, Jiruska P, Schöll E. Chimera states in brain networks: Empirical neural vs. modular fractal connectivity. CHAOS (WOODBURY, N.Y.) 2018; 28:045112. [PMID: 31906648 DOI: 10.1063/1.5009812] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Complex spatiotemporal patterns, called chimera states, consist of coexisting coherent and incoherent domains and can be observed in networks of coupled oscillators. The interplay of synchrony and asynchrony in complex brain networks is an important aspect in studies of both the brain function and disease. We analyse the collective dynamics of FitzHugh-Nagumo neurons in complex networks motivated by its potential application to epileptology and epilepsy surgery. We compare two topologies: an empirical structural neural connectivity derived from diffusion-weighted magnetic resonance imaging and a mathematically constructed network with modular fractal connectivity. We analyse the properties of chimeras and partially synchronized states and obtain regions of their stability in the parameter planes. Furthermore, we qualitatively simulate the dynamics of epileptic seizures and study the influence of the removal of nodes on the network synchronizability, which can be useful for applications to epileptic surgery.
Collapse
Affiliation(s)
- Teresa Chouzouris
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Iryna Omelchenko
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Jaroslav Hlinka
- Institute of Computer Science, Czech Academy of Sciences, Pod Vodarenskou vezi 2, 18207 Prague, Czech Republic
| | - Premysl Jiruska
- Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
8
|
Devalle F, Roxin A, Montbrió E. Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks. PLoS Comput Biol 2017; 13:e1005881. [PMID: 29287081 PMCID: PMC5764488 DOI: 10.1371/journal.pcbi.1005881] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 01/11/2018] [Accepted: 11/15/2017] [Indexed: 12/25/2022] Open
Abstract
Recurrently coupled networks of inhibitory neurons robustly generate oscillations in the gamma band. Nonetheless, the corresponding Wilson-Cowan type firing rate equation for such an inhibitory population does not generate such oscillations without an explicit time delay. We show that this discrepancy is due to a voltage-dependent spike-synchronization mechanism inherent in networks of spiking neurons which is not captured by standard firing rate equations. Here we investigate an exact low-dimensional description for a network of heterogeneous canonical Class 1 inhibitory neurons which includes the sub-threshold dynamics crucial for generating synchronous states. In the limit of slow synaptic kinetics the spike-synchrony mechanism is suppressed and the standard Wilson-Cowan equations are formally recovered as long as external inputs are also slow. However, even in this limit synchronous spiking can be elicited by inputs which fluctuate on a time-scale of the membrane time-constant of the neurons. Our meanfield equations therefore represent an extension of the standard Wilson-Cowan equations in which spike synchrony is also correctly described. Population models describing the average activity of large neuronal ensembles are a powerful mathematical tool to investigate the principles underlying cooperative function of large neuronal systems. However, these models do not properly describe the phenomenon of spike synchrony in networks of neurons. In particular, they fail to capture the onset of synchronous oscillations in networks of inhibitory neurons. We show that this limitation is due to a voltage-dependent synchronization mechanism which is naturally present in spiking neuron models but not captured by traditional firing rate equations. Here we investigate a novel set of macroscopic equations which incorporate both firing rate and membrane potential dynamics, and that correctly generate fast inhibition-based synchronous oscillations. In the limit of slow-synaptic processing oscillations are suppressed, and the model reduces to an equation formally equivalent to the Wilson-Cowan model.
Collapse
Affiliation(s)
- Federico Devalle
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Department of Physics, Lancaster University, Lancaster, United Kingdom
| | - Alex Roxin
- Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, Bellaterra, Barcelona, Spain
| | - Ernest Montbrió
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
9
|
Esnaola-Acebes JM, Roxin A, Avitabile D, Montbrió E. Synchrony-induced modes of oscillation of a neural field model. Phys Rev E 2017; 96:052407. [PMID: 29347806 DOI: 10.1103/physreve.96.052407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Indexed: 05/01/2023]
Abstract
We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF) neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave number produce transient standing waves with a specific temporal frequency, analogously to those in a tense string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state. Perturbations of this state excite the network's oscillatory modes, which reflect the interplay of episodes of synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory modes operate in neural bump states and are maintained away from onset.
Collapse
Affiliation(s)
- Jose M Esnaola-Acebes
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
| | - Alex Roxin
- Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona), Spain
| | - Daniele Avitabile
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG2 7RD, United Kingdom
| | - Ernest Montbrió
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
| |
Collapse
|