1
|
Rossi KL, Budzinski RC, Medeiros ES, Boaretto BRR, Muller L, Feudel U. Dynamical properties and mechanisms of metastability: A perspective in neuroscience. Phys Rev E 2025; 111:021001. [PMID: 40103058 DOI: 10.1103/physreve.111.021001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Indexed: 03/20/2025]
Abstract
Metastability, characterized by a variability of regimes in time, is a ubiquitous type of neural dynamics. It has been formulated in many different ways in the neuroscience literature, however, which may cause some confusion. In this Perspective, we discuss metastability from the point of view of dynamical systems theory. We extract from the literature a very simple but general definition through the concept of metastable regimes as long-lived but transient epochs of activity with unique dynamical properties. This definition serves as an umbrella term that encompasses formulations from other works, and readily connects to concepts from dynamical systems theory. This allows us to examine general dynamical properties of metastable regimes, propose in a didactic manner several dynamics-based mechanisms that generate them, and discuss a theoretical tool to characterize them quantitatively. This Perspective leads to insights that help to address issues debated in the literature and also suggests pathways for future research.
Collapse
Affiliation(s)
- Kalel L Rossi
- Carl von Ossietzky University Oldenburg, Theoretical Physics/Complex Systems, ICBM, 26129 Oldenburg, Lower Saxony, Germany
| | - Roberto C Budzinski
- Western University, Department of Mathematics and Western Institute for Neuroscience, N6A 3K7 London, Ontario, Canada
- Fields Institute, Fields Lab for Network Science, M5T 3J1 Toronto, Ontario, Canada
| | - Everton S Medeiros
- São Paulo State University (UNESP), Institute of Geosciences and Exact Sciences, Avenida 24A 1515, 13506-900 Rio Claro, São Paulo, Brazil
| | - Bruno R R Boaretto
- Universidade Federal de São Paulo, Institute of Science and Technology, 12247-014 São José dos Campos, São Paulo, Brazil
- Universitat Politecnica de Catalunya, Department of Physics, 08222 Terrassa, Barcelona, Spain
| | - Lyle Muller
- Western University, Department of Mathematics and Western Institute for Neuroscience, N6A 3K7 London, Ontario, Canada
- Fields Institute, Fields Lab for Network Science, M5T 3J1 Toronto, Ontario, Canada
| | - Ulrike Feudel
- Carl von Ossietzky University Oldenburg, Theoretical Physics/Complex Systems, ICBM, 26129 Oldenburg, Lower Saxony, Germany
| |
Collapse
|
2
|
Lima Dias Pinto II, Zhou Z, Garcia JO, Srinivasan R. Symbolic dynamics of joint brain states during dyadic coordination. CHAOS (WOODBURY, N.Y.) 2025; 35:013110. [PMID: 39752205 DOI: 10.1063/5.0234902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/01/2024] [Indexed: 01/04/2025]
Abstract
We propose a novel approach to investigate the brain mechanisms that support coordination of behavior between individuals. Brain states in single individuals defined by the patterns of functional connectivity between brain regions are used to create joint symbolic representations of brain states in two or more individuals to investigate symbolic dynamics that are related to interactive behaviors. We apply this approach to electroencephalographic data from pairs of subjects engaged in two different modes of finger-tapping coordination tasks (synchronization and syncopation) under different interaction conditions (uncoupled, leader-follower, and mutual) to explore the neural mechanisms of multi-person motor coordination. Our results reveal that dyads exhibit mostly the same joint symbols in different interaction conditions-the most important differences are reflected in the symbolic dynamics. Recurrence analysis shows that interaction influences the dwell time in specific joint symbols and the structure of joint symbol sequences (motif length). In synchronization, increasing feedback promotes stability with longer dwell times and motif length. In syncopation, leader-follower interactions enhance stability (increase dwell time and motif length), but mutual interaction dramatically reduces stability. Network analysis reveals distinct topological changes with task and feedback. In synchronization, stronger coupling stabilizes a few states, preserving a core-periphery structure of the joint brain states while in syncopation we observe a more distributed flow amongst a larger set of joint brain states. This study introduces symbolic representations of metastable joint brain states and associated analytic tools that have the potential to expand our understanding of brain dynamics in human interaction and coordination.
Collapse
Affiliation(s)
- Italo Ivo Lima Dias Pinto
- Department of Cognitive Sciences, University of California, Irvine, California 92617, USA
- U.S. Army DEVCOM Army Research Laboratory, Humans in Complex Systems Division, Aberdeen Proving Ground, Maryland 21005, USA
| | - Zhibin Zhou
- Department of Cognitive Sciences, University of California, Irvine, California 92617, USA
| | - Javier Omar Garcia
- U.S. Army DEVCOM Army Research Laboratory, Humans in Complex Systems Division, Aberdeen Proving Ground, Maryland 21005, USA
| | - Ramesh Srinivasan
- Department of Cognitive Sciences, University of California, Irvine, California 92617, USA
- U.S. Army DEVCOM Army Research Laboratory, Humans in Complex Systems Division, Aberdeen Proving Ground, Maryland 21005, USA
- Department of Biomedical Engineering, University of California, Irvine, California 92617, USA
| |
Collapse
|
3
|
Fousek J, Rabuffo G, Gudibanda K, Sheheitli H, Petkoski S, Jirsa V. Symmetry breaking organizes the brain's resting state manifold. Sci Rep 2024; 14:31970. [PMID: 39738729 PMCID: PMC11686292 DOI: 10.1038/s41598-024-83542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Spontaneously fluctuating brain activity patterns that emerge at rest have been linked to the brain's health and cognition. Despite detailed descriptions of the spatio-temporal brain patterns, our understanding of their generative mechanism is still incomplete. Using a combination of computational modeling and dynamical systems analysis we provide a mechanistic description of the formation of a resting state manifold via the network connectivity. We demonstrate that the symmetry breaking by the connectivity creates a characteristic flow on the manifold, which produces the major data features across scales and imaging modalities. These include spontaneous high-amplitude co-activations, neuronal cascades, spectral cortical gradients, multistability, and characteristic functional connectivity dynamics. When aggregated across cortical hierarchies, these match the profiles from empirical data. The understanding of the brain's resting state manifold is fundamental for the construction of task-specific flows and manifolds used in theories of brain function. In addition, it shifts the focus from the single recordings towards the brain's capacity to generate certain dynamics characteristic of health and pathology.
Collapse
Affiliation(s)
- Jan Fousek
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France.
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.
| | - Giovanni Rabuffo
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France
| | - Kashyap Gudibanda
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France
| | - Hiba Sheheitli
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Spase Petkoski
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France
| | - Viktor Jirsa
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, 13005, Marseille, France.
| |
Collapse
|
4
|
Pavlidis E, Campillo F, Goldbeter A, Desroches M. Multiple-timescale dynamics, mixed mode oscillations and mixed affective states in a model of bipolar disorder. Cogn Neurodyn 2024; 18:3239-3257. [PMID: 39712089 PMCID: PMC11655942 DOI: 10.1007/s11571-022-09900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/03/2022] [Accepted: 10/09/2022] [Indexed: 11/28/2022] Open
Abstract
Mixed affective states in bipolar disorder (BD) is a common psychiatric condition that occurs when symptoms of the two opposite poles coexist during an episode of mania or depression. A four-dimensional model by Goldbeter (Progr Biophys Mol Biol 105:119-127, 2011; Pharmacopsychiatry 46:S44-S52, 2013) rests upon the notion that manic and depressive symptoms are produced by two competing and auto-inhibited neural networks. Some of the rich dynamics that this model can produce, include complex rhythms formed by both small-amplitude (subthreshold) and large-amplitude (suprathreshold) oscillations and could correspond to mixed bipolar states. These rhythms are commonly referred to as mixed mode oscillations (MMOs) and they have already been studied in many different contexts by Bertram (Mathematical analysis of complex cellular activity, Springer, Cham, 2015), (Petrov et al. in J Chem Phys 97:6191-6198, 1992). In order to accurately explain these dynamics one has to apply a mathematical apparatus that makes full use of the timescale separation between variables. Here we apply the framework of multiple-timescale dynamics to the model of BD in order to understand the mathematical mechanisms underpinning the observed dynamics of changing mood. We show that the observed complex oscillations can be understood as MMOs due to a so-called folded-node singularity. Moreover, we explore the bifurcation structure of the system and we provide possible biological interpretations of our findings. Finally, we show the robustness of the MMOs regime to stochastic noise and we propose a minimal three-dimensional model which, with the addition of noise, exhibits similar yet purely noise-driven dynamics. The broader significance of this work is to introduce mathematical tools that could be used to analyse and potentially control future, more biologically grounded models of BD.
Collapse
Affiliation(s)
- Efstathios Pavlidis
- Neuromod Institute, Université Côte d’Azur, 2004 route des Lucioles-BP93, Sophia Antipolis, 06902 France
- MathNeuro Team, Inria at Université Côte d’Azur, 2004 route des Lucioles-BP93, Sophia Antipolis, 06902 France
| | - Fabien Campillo
- MathNeuro Team, Inria at Université Côte d’Azur, 2004 route des Lucioles-BP93, Sophia Antipolis, 06902 France
| | - Albert Goldbeter
- Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, Brussels, B-1050 Belgium
| | - Mathieu Desroches
- MathNeuro Team, Inria at Université Côte d’Azur, 2004 route des Lucioles-BP93, Sophia Antipolis, 06902 France
| |
Collapse
|
5
|
Kumar A, Dos Santos ER, Laurienti PJ, Bollt E. Symmetry breaker governs synchrony patterns in neuronal inspired networks. CHAOS (WOODBURY, N.Y.) 2024; 34:113115. [PMID: 39504096 DOI: 10.1063/5.0209865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Experiments in the human brain reveal switching between different activity patterns and functional network organization over time. Recently, multilayer modeling has been employed across multiple neurobiological levels (from spiking networks to brain regions) to unveil novel insights into the emergence and time evolution of synchrony patterns. We consider two layers with the top layer directly coupled to the bottom layer. When isolated, the bottom layer would remain in a specific stable pattern. However, in the presence of the top layer, the network exhibits spatiotemporal switching. The top layer in combination with the inter-layer coupling acts as a symmetry breaker, governing the bottom layer and restricting the number of allowed symmetry-induced patterns. This structure allows us to demonstrate the existence and stability of pattern states on the bottom layer, but most remarkably, it enables a simple mechanism for switching between patterns based on the unique symmetry-breaking role of the governing layer. We demonstrate that the symmetry breaker prevents complete synchronization in the bottom layer, a situation that would not be desirable in a normal functioning brain. We illustrate our findings using two layers of Hindmarsh-Rose (HR) oscillators, employing the Master Stability function approach in small networks to investigate the switching between patterns.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Electrical and Computer Engineering, Clarkson University, 8 Clarkson Ave., Potsdam 13699, New York, USA
- Clarkson Center for Complex Systems Science, Clarkson University, 8 Clarkson Ave., Potsdam 13699, New York, USA
| | - Edmilson Roque Dos Santos
- Department of Electrical and Computer Engineering, Clarkson University, 8 Clarkson Ave., Potsdam 13699, New York, USA
- Clarkson Center for Complex Systems Science, Clarkson University, 8 Clarkson Ave., Potsdam 13699, New York, USA
| | - Paul J Laurienti
- Department of Radiology, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem 27101, North Carolina, USA
| | - Erik Bollt
- Department of Electrical and Computer Engineering, Clarkson University, 8 Clarkson Ave., Potsdam 13699, New York, USA
- Clarkson Center for Complex Systems Science, Clarkson University, 8 Clarkson Ave., Potsdam 13699, New York, USA
| |
Collapse
|
6
|
Fan L, Su C, Li Y, Guo J, Huang Z, Zhang W, Liu T, Wang J. The alterations of repetitive transcranial magnetic stimulation on the energy landscape of resting-state networks differ across the human cortex. Hum Brain Mapp 2024; 45:e70029. [PMID: 39465912 PMCID: PMC11514123 DOI: 10.1002/hbm.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 10/29/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a promising intervention tool for the noninvasive modulation of brain activity and behavior in neuroscience research and clinical settings. However, the resting-state dynamic evolution of large-scale functional brain networks following rTMS has rarely been investigated. Here, using resting-state fMRI images collected from 23 healthy individuals before (baseline) and after 1 Hz rTMS of the left frontal (FRO) and occipital (OCC) lobes, we examined the different effects of rTMS on brain dynamics across the human cortex. By fitting a pairwise maximum entropy model (pMEM), we constructed an energy landscape for the baseline and poststimulus conditions by fitting a pMEM. We defined dominant brain states (local minima) in the energy landscape with synergistic activation and deactivation patterns of large-scale functional networks. We calculated state dynamics including appearance probability, transitions and duration. The results showed that 1 Hz rTMS induced increased and decreased state probability, transitions and duration when delivered to the FRO and OCC targets, respectively. Most importantly, the shortest path and minimum cost between dominant brain states were altered after stimulation. The absolute sum of the costs from the source states to the destinations was lower after OCC stimulation than after FRO stimulation. In conclusion, our study characterized the dynamic trajectory of state transitions in the energy landscape and suggested that local rTMS can induce significant dynamic perturbation involving stimulated and distant functional networks, which aligns with the modern view of the dynamic and complex brain. Our results suggest low-dimensional mapping of rTMS-induced brain adaption, which will contribute to a broader and more effective application of rTMS in clinical settings.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Chunwang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jinjia Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Zi‐Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Wenlong Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
- The Key Laboratory of Neuro‐informatics & Rehabilitation Engineering of Ministry of Civil AffairsXi'anShaanxiP. R. China
| |
Collapse
|
7
|
Jimenez-Marin A, Diez I, Erramuzpe A, Stramaglia S, Bonifazi P, Cortes JM. Open datasets and code for multi-scale relations on structure, function and neuro-genetics in the human brain. Sci Data 2024; 11:256. [PMID: 38424112 PMCID: PMC10904384 DOI: 10.1038/s41597-024-03060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
The human brain is an extremely complex network of structural and functional connections that operate at multiple spatial and temporal scales. Investigating the relationship between these multi-scale connections is critical to advancing our comprehension of brain function and disorders. However, accurately predicting structural connectivity from its functional counterpart remains a challenging pursuit. One of the major impediments is the lack of public repositories that integrate structural and functional networks at diverse resolutions, in conjunction with modular transcriptomic profiles, which are essential for comprehensive biological interpretation. To mitigate this limitation, our contribution encompasses the provision of an open-access dataset consisting of derivative matrices of functional and structural connectivity across multiple scales, accompanied by code that facilitates the investigation of their interrelations. We also provide additional resources focused on neuro-genetic associations of module-level network metrics, which present promising opportunities to further advance research in the field of network neuroscience, particularly concerning brain disorders.
Collapse
Affiliation(s)
- Antonio Jimenez-Marin
- Computational Neuroimaging Lab, Biobizkaia HRI, Barakaldo, Spain
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ibai Diez
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Asier Erramuzpe
- Computational Neuroimaging Lab, Biobizkaia HRI, Barakaldo, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Sebastiano Stramaglia
- Dipartamento Interateneo di Fisica, Universita Degli Studi di Bari Aldo Moro, INFN, Bari, Italy
| | - Paolo Bonifazi
- Computational Neuroimaging Lab, Biobizkaia HRI, Barakaldo, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Jesus M Cortes
- Computational Neuroimaging Lab, Biobizkaia HRI, Barakaldo, Spain.
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain.
- Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
8
|
Bollt E, Fish J, Kumar A, Roque Dos Santos E, Laurienti PJ. Fractal basins as a mechanism for the nimble brain. Sci Rep 2023; 13:20860. [PMID: 38012212 PMCID: PMC10682042 DOI: 10.1038/s41598-023-45664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/22/2023] [Indexed: 11/29/2023] Open
Abstract
An interesting feature of the brain is its ability to respond to disparate sensory signals from the environment in unique ways depending on the environmental context or current brain state. In dynamical systems, this is an example of multi-stability, the ability to switch between multiple stable states corresponding to specific patterns of brain activity/connectivity. In this article, we describe chimera states, which are patterns consisting of mixed synchrony and incoherence, in a brain-inspired dynamical systems model composed of a network with weak individual interactions and chaotic/periodic local dynamics. We illustrate the mechanism using synthetic time series interacting on a realistic anatomical brain network derived from human diffusion tensor imaging. We introduce the so-called vector pattern state (VPS) as an efficient way of identifying chimera states and mapping basin structures. Clustering similar VPSs for different initial conditions, we show that coexisting attractors of such states reveal intricately "mingled" fractal basin boundaries that are immediately reachable. This could explain the nimble brain's ability to rapidly switch patterns between coexisting attractors.
Collapse
Affiliation(s)
- Erik Bollt
- Department of Electrical and Computer Engineering, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA.
- Clarkson Center for Complex Systems Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA.
| | - Jeremie Fish
- Department of Electrical and Computer Engineering, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA
- Clarkson Center for Complex Systems Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA
| | - Anil Kumar
- Department of Electrical and Computer Engineering, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA
- Clarkson Center for Complex Systems Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA
| | - Edmilson Roque Dos Santos
- Department of Electrical and Computer Engineering, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA
- Clarkson Center for Complex Systems Science, Clarkson University, 8 Clarkson Ave., Potsdam, NY, 13699, USA
- Instituto de Ciências Matemáticas e Computação, Universidade de São Paulo, Av. Trab. São Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Paul J Laurienti
- Department of Radiology, Wake Forest University School of Medicine, 475 Vine Street, Winston-Salem, NC, 27101, USA
| |
Collapse
|
9
|
Fan L, Li Y, Huang ZG, Zhang W, Wu X, Liu T, Wang J. Low-frequency repetitive transcranial magnetic stimulation alters the individual functional dynamical landscape. Cereb Cortex 2023; 33:9583-9598. [PMID: 37376783 DOI: 10.1093/cercor/bhad228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive approach to modulate brain activity and behavior in humans. Still, how individual resting-state brain dynamics after rTMS evolves across different functional configurations is rarely studied. Here, using resting state fMRI data from healthy subjects, we aimed to examine the effects of rTMS to individual large-scale brain dynamics. Using Topological Data Analysis based Mapper approach, we construct the precise dynamic mapping (PDM) for each participant. To reveal the relationship between PDM and canonical functional representation of the resting brain, we annotated the graph using relative activation proportion of a set of large-scale resting-state networks (RSNs) and assigned the single brain volume to corresponding RSN-dominant or a hub state (not any RSN was dominant). Our results show that (i) low-frequency rTMS could induce changed temporal evolution of brain states; (ii) rTMS didn't alter the hub-periphery configurations underlined resting-state brain dynamics; and (iii) the rTMS effects on brain dynamics differ across the left frontal and occipital lobe. In conclusion, low-frequency rTMS significantly alters the individual temporo-spatial dynamics, and our finding further suggested a potential target-dependent alteration of brain dynamics. This work provides a new perspective to comprehend the heterogeneous effect of rTMS.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Wenlong Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Xiaofeng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi 710049, China
| |
Collapse
|
10
|
John YJ, Sawyer KS, Srinivasan K, Müller EJ, Munn BR, Shine JM. It's about time: Linking dynamical systems with human neuroimaging to understand the brain. Netw Neurosci 2022; 6:960-979. [PMID: 36875012 PMCID: PMC9976648 DOI: 10.1162/netn_a_00230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/04/2022] [Indexed: 11/04/2022] Open
Abstract
Most human neuroscience research to date has focused on statistical approaches that describe stationary patterns of localized neural activity or blood flow. While these patterns are often interpreted in light of dynamic, information-processing concepts, the static, local, and inferential nature of the statistical approach makes it challenging to directly link neuroimaging results to plausible underlying neural mechanisms. Here, we argue that dynamical systems theory provides the crucial mechanistic framework for characterizing both the brain's time-varying quality and its partial stability in the face of perturbations, and hence, that this perspective can have a profound impact on the interpretation of human neuroimaging results and their relationship with behavior. After briefly reviewing some key terminology, we identify three key ways in which neuroimaging analyses can embrace a dynamical systems perspective: by shifting from a local to a more global perspective, by focusing on dynamics instead of static snapshots of neural activity, and by embracing modeling approaches that map neural dynamics using "forward" models. Through this approach, we envisage ample opportunities for neuroimaging researchers to enrich their understanding of the dynamic neural mechanisms that support a wide array of brain functions, both in health and in the setting of psychopathology.
Collapse
Affiliation(s)
- Yohan J. John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA
| | - Kayle S. Sawyer
- Departments of Anatomy and Neurobiology, Boston University, Boston University, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Boston VA Healthcare System, Boston, MA, USA
- Sawyer Scientific, LLC, Boston, MA, USA
| | - Karthik Srinivasan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eli J. Müller
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| | - Brandon R. Munn
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| | - James M. Shine
- Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
11
|
Signal Variability and Cognitive Function in Older Long-Term Survivors of Breast Cancer with Exposure to Chemotherapy: A Prospective Longitudinal Resting-State fMRI Study. Brain Sci 2022; 12:brainsci12101283. [PMID: 36291217 PMCID: PMC9599386 DOI: 10.3390/brainsci12101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 01/07/2023] Open
Abstract
The purpose of this study was to assess the effect of chemotherapy on brain functional resting-state signal variability and cognitive function in older long-term survivors of breast cancer. This prospective longitudinal study enrolled women age ≥ 65 years of age who were breast cancer survivors after exposure to chemotherapy (CH), age-matched survivors not exposed to chemotherapy, and healthy controls. Participants completed resting-state functional brain MRI and neurocognitive testing upon enrollment (timepoint 1, TP1) and again two years later (timepoint 2, TP2). There were 20 participants in each of the three groups at TP1. The CH group showed a significant decrease in SDBOLD (blood-oxygen-level-dependent signal variability in standard deviation) in the right middle occipital gyrus (ΔSDBOLD = -0.0018, p = 0.0085, q (pFDR) = 0.043 at MNI (42, -76, 17)) and right middle temporal gyrus (ΔSDBOLD = -0.0021, p = 0.0006, q (pFDR) = 0.001 at MNI (63, -39, -12)). There were negative correlations between the crystallized composite scores and SDBOLD values at the right inferior occipital gyrus (correlation coefficient r = -0.84, p = 0.001, q (pFDR) = 0.016) and right middle temporal gyrus (r = -0.88, p = 0.000, q (pFDR) = 0.017) for the CH group at TP1. SDBOLD could be a potentially useful neuroimaging marker for older long-term survivors of breast cancer with exposure to chemotherapy.
Collapse
|
12
|
Gatica M, E. Rosas F, A. M. Mediano P, Diez I, P. Swinnen S, Orio P, Cofré R, M. Cortes J. High-order functional redundancy in ageing explained via alterations in the connectome in a whole-brain model. PLoS Comput Biol 2022; 18:e1010431. [PMID: 36054198 PMCID: PMC9477425 DOI: 10.1371/journal.pcbi.1010431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 09/15/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
The human brain generates a rich repertoire of spatio-temporal activity patterns, which support a wide variety of motor and cognitive functions. These patterns of activity change with age in a multi-factorial manner. One of these factors is the variations in the brain's connectomics that occurs along the lifespan. However, the precise relationship between high-order functional interactions and connnectomics, as well as their variations with age are largely unknown, in part due to the absence of mechanistic models that can efficiently map brain connnectomics to functional connectivity in aging. To investigate this issue, we have built a neurobiologically-realistic whole-brain computational model using both anatomical and functional MRI data from 161 participants ranging from 10 to 80 years old. We show that the differences in high-order functional interactions between age groups can be largely explained by variations in the connectome. Based on this finding, we propose a simple neurodegeneration model that is representative of normal physiological aging. As such, when applied to connectomes of young participant it reproduces the age-variations that occur in the high-order structure of the functional data. Overall, these results begin to disentangle the mechanisms by which structural changes in the connectome lead to functional differences in the ageing brain. Our model can also serve as a starting point for modeling more complex forms of pathological ageing or cognitive deficits.
Collapse
Affiliation(s)
- Marilyn Gatica
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando E. Rosas
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
- Data Science Institute, Imperial College London, London, United Kingdom
- Center for Complexity Science, Imperial College London, London, United Kingdom
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Pedro A. M. Mediano
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, Queen Mary University of London, London, United Kingdom
| | - Ibai Diez
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephan P. Swinnen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Rodrigo Cofré
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
- Department of Integrative and Computational Neuroscience, Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Jesus M. Cortes
- Neuroimaging Lab, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
13
|
Fernandez-Iriondo I, Jimenez-Marin A, Sierra B, Aginako N, Bonifazi P, Cortes JM. Brain Mapping of Behavioral Domains Using Multi-Scale Networks and Canonical Correlation Analysis. Front Neurosci 2022; 16:889725. [PMID: 35801180 PMCID: PMC9255673 DOI: 10.3389/fnins.2022.889725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Simultaneous mapping of multiple behavioral domains into brain networks remains a major challenge. Here, we shed some light on this problem by employing a combination of machine learning, structural and functional brain networks at different spatial resolutions (also known as scales), together with performance scores across multiple neurobehavioral domains, including sensation, motor skills, and cognition. Provided by the Human Connectome Project, we make use of three cohorts: 640 participants for model training, 160 subjects for validation, and 200 subjects for model performance testing thus enhancing prediction generalization. Our modeling consists of two main stages, namely dimensionality reduction in brain network features at multiple scales, followed by canonical correlation analysis, which determines an optimal linear combination of connectivity features to predict multiple behavioral performance scores. To assess the differences in the predictive power of each modality, we separately applied three different strategies: structural unimodal, functional unimodal, and multimodal, that is, structural in combination with functional features of the brain network. Our results show that the multimodal association outperforms any of the unimodal analyses. Then, to answer which human brain structures were most involved in predicting multiple behavioral scores, we simulated different synthetic scenarios in which in each case we completely deleted a brain structure or a complete resting state network, and recalculated performance in its absence. In deletions, we found critical structures to affect performance when predicting single behavioral domains, but this occurred in a lesser manner for prediction of multi-domain behavior. Overall, our results confirm that although there are synergistic contributions between brain structure and function that enhance behavioral prediction, brain networks may also be mutually redundant in predicting multidomain behavior, such that even after deletion of a structure, the connectivity of the others can compensate for its lack in predicting behavior.
Collapse
Affiliation(s)
- Izaro Fernandez-Iriondo
- Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Computational Neuroimaging Lab, BioCruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Doctoral Programme in Informatics Engineering, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Antonio Jimenez-Marin
- Computational Neuroimaging Lab, BioCruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Basilio Sierra
- Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Naiara Aginako
- Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Paolo Bonifazi
- Computational Neuroimaging Lab, BioCruces-Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Jesus M. Cortes
- Computational Neuroimaging Lab, BioCruces-Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
14
|
Chomiak T, Rasiah NP, Molina LA, Hu B, Bains JS, Füzesi T. A versatile computational algorithm for time-series data analysis and machine-learning models. NPJ PARKINSONS DISEASE 2021; 7:97. [PMID: 34753948 PMCID: PMC8578326 DOI: 10.1038/s41531-021-00240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022]
Abstract
Here we introduce Local Topological Recurrence Analysis (LoTRA), a simple computational approach for analyzing time-series data. Its versatility is elucidated using simulated data, Parkinsonian gait, and in vivo brain dynamics. We also show that this algorithm can be used to build a remarkably simple machine-learning model capable of outperforming deep-learning models in detecting Parkinson’s disease from a single digital handwriting test.
Collapse
Affiliation(s)
- Taylor Chomiak
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada. .,CSM Optogenetics Facility, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada.
| | - Neilen P Rasiah
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Leonardo A Molina
- CSM Optogenetics Facility, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Bin Hu
- Division of Translational Neuroscience, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada
| | - Jaideep S Bains
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Tamás Füzesi
- CSM Optogenetics Facility, University of Calgary, 3330 Hospital Drive, Calgary, AB, T2N 4N1, Canada. .,Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
15
|
Safari A, Moretti P, Diez I, Cortes JM, Muñoz MA. Persistence of hierarchical network organization and emergent topologies in models of functional connectivity. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.02.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Rabuffo G, Fousek J, Bernard C, Jirsa V. Neuronal Cascades Shape Whole-Brain Functional Dynamics at Rest. eNeuro 2021; 8:ENEURO.0283-21.2021. [PMID: 34583933 PMCID: PMC8555887 DOI: 10.1523/eneuro.0283-21.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/20/2023] Open
Abstract
At rest, mammalian brains display remarkable spatiotemporal complexity, evolving through recurrent functional connectivity (FC) states on a slow timescale of the order of tens of seconds. While the phenomenology of the resting state dynamics is valuable in distinguishing healthy and pathologic brains, little is known about its underlying mechanisms. Here, we identify neuronal cascades as a potential mechanism. Using full-brain network modeling, we show that neuronal populations, coupled via a detailed structural connectome, give rise to large-scale cascades of firing rate fluctuations evolving at the same time scale of resting-state networks (RSNs). The ignition and subsequent propagation of cascades depend on the brain state and connectivity of each region. The largest cascades produce bursts of blood oxygen level-dependent (BOLD) co-fluctuations at pairs of regions across the brain, which shape the simulated RSN dynamics. We experimentally confirm these theoretical predictions. We demonstrate the existence and stability of intermittent epochs of FC comprising BOLD co-activation (CA) bursts in mice and human functional magnetic resonance imaging (fMRI). We then provide evidence for the existence and leading role of the neuronal cascades in humans with simultaneous EEG/fMRI recordings. These results show that neuronal cascades are a major determinant of spontaneous fluctuations in brain dynamics at rest.
Collapse
Affiliation(s)
- Giovanni Rabuffo
- Aix Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
| | - Jan Fousek
- Aix Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
| | - Christophe Bernard
- Aix Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
| | - Viktor Jirsa
- Aix Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
| |
Collapse
|
17
|
An Electroencephalogram Metric of Temporal Complexity Tracks Psychometric Impairment Caused by Low-dose Nitrous Oxide. Anesthesiology 2021; 134:202-218. [PMID: 33433619 DOI: 10.1097/aln.0000000000003628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nitrous oxide produces non-γ-aminobutyric acid sedation and psychometric impairment and can be used as scientific model for understanding mechanisms of progressive cognitive disturbances. Temporal complexity of the electroencephalogram may be a sensitive indicator of these effects. This study measured psychometric performance and the temporal complexity of the electroencephalogram in participants breathing low-dose nitrous oxide. METHODS In random order, 20, 30, and 40% end-tidal nitrous oxide was administered to 12 participants while recording 32-channel electroencephalogram and psychometric function. A novel metric quantifying the spatial distribution of temporal electroencephalogram complexity, comprised of (1) absolute cross-correlation calculated between consecutive 0.25-s time samples; 2) binarizing these cross-correlation matrices using the median of all channels as threshold; (3) using quantitative recurrence analysis, the complexity in temporal changes calculated by the Shannon entropy of the probability distribution of the diagonal line lengths; and (4) overall spatial extent and intensity of brain complexity, was quantified by calculating median temporal complexity of channels whose complexities were above 1 at baseline. This region approximately overlay the brain's default mode network, so this summary statistic was termed "default-mode-network complexity." RESULTS Nitrous oxide concentration correlated with psychometric impairment (r = 0.50, P < 0.001). Baseline regional electroencephalogram complexity at midline was greater than in lateral temporal channels (1.33 ± 0.14 bits vs. 0.81 ± 0.12 bits, P < 0.001). A dose of 40% N2O decreased midline (mean difference [95% CI], 0.20 bits [0.09 to 0.31], P = 0.002) and prefrontal electroencephalogram complexity (mean difference [95% CI], 0.17 bits [0.08 to 0.27], P = 0.002). The lateral temporal region did not change significantly (mean difference [95% CI], 0.14 bits [-0.03 to 0.30], P = 0.100). Default-mode-network complexity correlated with N2O concentration (r = -0.55, P < 0.001). A default-mode-network complexity mixed-effects model correlated with psychometric impairment (r2 = 0.67; receiver operating characteristic area [95% CI], 0.72 [0.59 to 0.85], P < 0.001). CONCLUSIONS Temporal complexity decreased most markedly in medial cortical regions during low-dose nitrous oxide exposures, and this change tracked psychometric impairment. EDITOR’S PERSPECTIVE
Collapse
|
18
|
Saberi M, Khosrowabadi R, Khatibi A, Misic B, Jafari G. Topological impact of negative links on the stability of resting-state brain network. Sci Rep 2021; 11:2176. [PMID: 33500525 PMCID: PMC7838299 DOI: 10.1038/s41598-021-81767-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/12/2021] [Indexed: 11/08/2022] Open
Abstract
Stability is a physical attribute that stands opposite the change. However, it is still unclear how the arrangement of links called topology affects network stability. In this study, we tackled this issue in the resting-state brain network using structural balance. Structural balance theory employs the quality of triadic associations between signed links to determine the network stability. In this study, we showed that negative links of the resting-state network make hubs to reduce balance-energy and push the network into a more stable state compared to null-networks with trivial topologies. In this regard, we created a global measure entitled 'tendency to make hub' to assess the hubness of the network. Besides, we revealed nodal degrees of negative links have an exponential distribution that confirms the existence of negative hubs. Our findings indicate that the arrangement of negative links plays an important role in the balance (stability) of the resting-state brain network.
Collapse
Affiliation(s)
- Majid Saberi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C., Evin Sq., Tehran, 19839-63113, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C., Evin Sq., Tehran, 19839-63113, Iran.
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Gholamreza Jafari
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C., Evin Sq., Tehran, 19839-63113, Iran
- Physics Department, Shahid Beheshti University, G.C., Tehran, 1983969411, Iran
| |
Collapse
|
19
|
Paul S, Arora A, Midha R, Vu D, Roy PK, Belmonte MK. Autistic traits and individual brain differences: functional network efficiency reflects attentional and social impairments, structural nodal efficiencies index systemising and theory-of-mind skills. Mol Autism 2021; 12:3. [PMID: 33478557 PMCID: PMC7818759 DOI: 10.1186/s13229-020-00377-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Autism is characterised not only by impaired social cognitive 'empathising' but also by superior rule-based 'systemising'. These cognitive domains intertwine within the categorical diagnosis of autism, yet behavioural genetics suggest largely independent heritability, and separable brain mechanisms. We sought to determine whether quantitative behavioural measures of autistic traits are dimensionally associated with structural and functional brain network integrity, and whether brain bases of autistic traits vary independently across individuals. METHODS Thirty right-handed neurotypical adults (12 females) were administered psychometric (Social Responsiveness Scale, Autism Spectrum Quotient and Systemising Quotient) and behavioural (Attention Network Test and theory-of-mind reaction time) measures of autistic traits, and structurally (diffusion tensor imaging) and functionally (500 s of 2 Hz eyes-closed resting fMRI) derived graph-theoretic measures of efficiency of information integration were computed throughout the brain and within subregions. RESULTS Social impairment was positively associated with functional efficiency (r = .47, p = .006), globally and within temporo-parietal and prefrontal cortices. Delayed orienting of attention likewise was associated with greater functional efficiency (r = - .46, p = .0133). Systemising was positively associated with global structural efficiency (r = .38, p = 0.018), driven specifically by temporal pole; theory-of-mind reaction time was related to structural efficiency (r = - .40, p = 0.0153) within right supramarginal gyrus. LIMITATIONS Interpretation of these relationships is complicated by the many senses of the term 'connectivity', including functional, structural and computational; by the approximation inherent in group functional anatomical parcellations when confronted with individual variation in functional anatomy; and by the validity, sensitivity and specificity of the several survey and experimental behavioural measures applied as correlates of brain structure and function. CONCLUSIONS Functional connectivities highlight distributed networks associated with domain-general properties such as attentional orienting and social cognition broadly, associating more impaired behaviour with more efficient brain networks that may reflect heightened feedforward information flow subserving autistic strengths and deficits alike. Structural connectivity results highlight specific anatomical nodes of convergence, reflecting cognitive and neuroanatomical independence of systemising and theory-of-mind. In addition, this work shows that individual differences in theory-of-mind related to brain structure can be measured behaviourally, and offers neuroanatomical evidence to pin down the slippery construct of 'systemising' as the capacity to construct invariant contextual associations.
Collapse
Affiliation(s)
- Subhadip Paul
- MIND Research Network, 1101 Yale Blvd NE, Albuquerque, NM, 87106, USA.,National Brain Research Centre, NH-8, Nainwal Mode, Manesar, 122051, India
| | - Aditi Arora
- National Brain Research Centre, NH-8, Nainwal Mode, Manesar, 122051, India.,Centre for Cognitive Neuroscience, Universität Salzburg, Kapitelgasse 4-6, 5020, Salzburg, Austria
| | - Rashi Midha
- National Brain Research Centre, NH-8, Nainwal Mode, Manesar, 122051, India.,National Institute of Mental Health and Neuro Sciences, Hosur Road, Bangalore, 560029, India
| | - Dinh Vu
- Department of Psychology, University of Oslo, Harald Schjelderups hus, Forskningsveien 3A, 0373, Oslo, Norway.,Department of Psychology, Chaucer Bldg., Nottingham Trent University, Shakespeare Street, Nottingham, NG1 4FQ, UK
| | - Prasun K Roy
- National Brain Research Centre, NH-8, Nainwal Mode, Manesar, 122051, India.,School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Matthew K Belmonte
- National Brain Research Centre, NH-8, Nainwal Mode, Manesar, 122051, India. .,Department of Psychology, Chaucer Bldg., Nottingham Trent University, Shakespeare Street, Nottingham, NG1 4FQ, UK. .,The Com DEALL Trust, 224, 6th 'A' Main Road, near Specialist Hospital, 2nd Block, HRBR Layout, Bangalore, 560043, India.
| |
Collapse
|
20
|
Deschle N, Ignacio Gossn J, Tewarie P, Schelter B, Daffertshofer A. On the Validity of Neural Mass Models. Front Comput Neurosci 2021; 14:581040. [PMID: 33469424 PMCID: PMC7814001 DOI: 10.3389/fncom.2020.581040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/01/2020] [Indexed: 11/26/2022] Open
Abstract
Modeling the dynamics of neural masses is a common approach in the study of neural populations. Various models have been proven useful to describe a plenitude of empirical observations including self-sustained local oscillations and patterns of distant synchronization. We discuss the extent to which mass models really resemble the mean dynamics of a neural population. In particular, we question the validity of neural mass models if the population under study comprises a mixture of excitatory and inhibitory neurons that are densely (inter-)connected. Starting from a network of noisy leaky integrate-and-fire neurons, we formulated two different population dynamics that both fall into the category of seminal Freeman neural mass models. The derivations contained several mean-field assumptions and time scale separation(s) between membrane and synapse dynamics. Our comparison of these neural mass models with the averaged dynamics of the population reveals bounds in the fraction of excitatory/inhibitory neuron as well as overall network degree for a mass model to provide adequate estimates. For substantial parameter ranges, our models fail to mimic the neural network's dynamics proper, be that in de-synchronized or in (high-frequency) synchronized states. Only around the onset of low-frequency synchronization our models provide proper estimates of the mean potential dynamics. While this shows their potential for, e.g., studying resting state dynamics obtained by encephalography with focus on the transition region, we must accept that predicting the more general dynamic outcome of a neural network via its mass dynamics requires great care.
Collapse
Affiliation(s)
- Nicolás Deschle
- Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Institute for Complex Systems and Mathematical Biology, University of Aberdeen, King's College, Aberdeen, United Kingdom
| | - Juan Ignacio Gossn
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Astronomía y Física del Espacio, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom.,Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Björn Schelter
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, King's College, Aberdeen, United Kingdom
| | - Andreas Daffertshofer
- Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
21
|
Bielski K, Adamus S, Kolada E, Rączaszek-Leonardi J, Szatkowska I. Parcellation of the human amygdala using recurrence quantification analysis. Neuroimage 2020; 227:117644. [PMID: 33338610 DOI: 10.1016/j.neuroimage.2020.117644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 01/05/2023] Open
Abstract
Several previous attempts have been made to divide the human amygdala into smaller subregions based on the unique functional properties of the subregions. Although these attempts have provided valuable insight into the functional heterogeneity in this structure, the possibility that spatial patterns of functional characteristics can quickly change over time has rarely been considered in previous studies. In the present study, we explicitly account for the dynamic nature of amygdala activity. Our goal was not only to develop another parcellation method but also to augment existing methods with novel information about amygdala subdivisions. We performed state-specific amygdala parcellation using resting-state fMRI (rsfMRI) data and recurrence quantification analysis (RQA). RsfMRI data from 102 subjects were acquired with a 3T Trio Siemens scanner. We analyzed values of several RQA measures across all voxels in the amygdala and found two amygdala subdivisions, the ventrolateral (VL) and dorsomedial (DM) subdivisions, that differ with respect to one of the RQA measures, Shannon's entropy of diagonal lines. Compared to the DM subdivision, the VL subdivision can be characterized by a higher value of entropy. The results suggest that VL activity is determined and influenced by more brain structures than is DM activity. To assess the biological validity of the obtained subdivisions, we compared them with histological atlases and currently available parcellations based on structural connectivity patterns (Anatomy Probability Maps) and cytoarchitectonic features (SPM Anatomy toolbox). Moreover, we examined their cortical and subcortical functional connectivity. The obtained results are similar to those previously reported on parcellation performed on the basis of structural connectivity patterns. Functional connectivity analysis revealed that the VL subdivision has strong connections to several cortical areas, whereas the DM subdivision is mainly connected to subcortical regions. This finding suggests that the VL subdivision corresponds to the basolateral subdivision of the amygdala (BLA), while the DM subdivision has some characteristics typical of the centromedial amygdala (CMA). The similarity in functional connectivity patterns between the VL subdivision and BLA, as well as between the DM subdivision and CMA, confirm the utility of our parcellation method. Overall, the study shows that parcellation based on BOLD signal dynamics is a powerful tool for identifying distinct functional systems within the amygdala. This tool might be useful for future research on functional brain organization.
Collapse
Affiliation(s)
- Krzysztof Bielski
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Sylwia Adamus
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Emilia Kolada
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Iwona Szatkowska
- Laboratory of Emotions Neurobiology, BRAINCITY - Centre of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|