van Opstal AJ. Neural encoding of instantaneous kinematics of eye-head gaze shifts in monkey superior Colliculus.
Commun Biol 2023;
6:927. [PMID:
37689726 PMCID:
PMC10492853 DOI:
10.1038/s42003-023-05305-z]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/31/2023] [Indexed: 09/11/2023] Open
Abstract
The midbrain superior colliculus is a crucial sensorimotor stage for programming and generating saccadic eye-head gaze shifts. Although it is well established that superior colliculus cells encode a neural command that specifies the amplitude and direction of the upcoming gaze-shift vector, there is controversy about the role of the firing-rate dynamics of these neurons during saccades. In our earlier work, we proposed a simple quantitative model that explains how the recruited superior colliculus population may specify the detailed kinematics (trajectories and velocity profiles) of head-restrained saccadic eye movements. We here show that the same principles may apply to a wide range of saccadic eye-head gaze shifts with strongly varying kinematics, despite the substantial nonlinearities and redundancy in programming and execute rapid goal-directed eye-head gaze shifts to peripheral targets. Our findings could provide additional evidence for an important role of the superior colliculus in the optimal control of saccades.
Collapse