1
|
Turley K, Rafferty J, Bond R, Mulvenna M, Ryan A, Crawford L. Evaluating the Impact of a Daylight-Simulating Luminaire on Mood, Agitation, Rest-Activity Patterns, and Social Well-Being Parameters in a Care Home for People With Dementia: Cohort Study. JMIR Mhealth Uhealth 2024; 12:e56951. [PMID: 39611803 PMCID: PMC11622703 DOI: 10.2196/56951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/17/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024] Open
Abstract
Background Living with a diagnosis of dementia can involve managing certain behavioral and psychological symptoms. Alongside cognitive decline, this cohort expresses a suppression in melatonin production which can negatively influence their alignment of sleep or wake timings with the 24 hour day and night cycle. As a result, their circadian rhythms become disrupted. Since daylight has the capacity to stimulate the circadian rhythm and humans spend approximately 90% of their time indoors, research has shifted toward the use of indoor lighting to achieve this same effect. This type of lighting is programmed in a daylight-simulating manner; mimicking the spectral changes of the sun throughout the day. As such, this paper focuses on the use of a dynamic lighting and sensing technology used to support the circadian rhythm, behavioral and psychological symptoms, and well-being of people living with dementia. Objective This study aimed to understand how dynamic lighting, as opposed to static lighting, may impact the well-being of those who are living with dementia. Methods An ethically approved trial was conducted within a care home for people with dementia. Data were collected in both quantitative and qualitative formats using environmentally deployed radar sensing technology and the validated QUALIDEM (Quality of Life for People With Dementia) well-being scale, respectively. An initial 4 weeks of static baseline lighting was used before switching out for 12 weeks of dynamic lighting. Metrics were collected for 11 participants on mood, social interactions, agitation, sense of feeling, and sleep and rest-activity over a period of 16 weeks. Results Dynamic lighting showed significant improvement with a moderate effect size in well-being parameters including positive affect (P=.03), social isolation (P=.048), and feeling at home (P=.047) after 5-10 weeks of dynamic lighting exposure. The results also highlight statistically significant improvements in rest-activity-related parameters of interdaily stability (P<.001), intradaily variation (P<.001), and relative amplitude (P=.03) from baseline to weeks 5-10, with the effect propagating for interdaily stability at weeks 10-16 as well (P<.001). Nonsignificant improvements are also noted for sleep metrics with a small effect size; however, the affect in agitation does not reflect this improvement. Conclusions Dynamic lighting has the potential to support well-being in dementia, with seemingly stronger influence in earlier weeks where the dynamic lighting initially follows the static lighting contrast, before proceeding to aggregate as marginal gains over time. Future longitudinal studies are recommended to assess the additional impact that varying daylight availability throughout the year may have on the measured parameters.
Collapse
Affiliation(s)
- Kate Turley
- School of Computing, Ulster University, Cromore Rd, Belfast, BT52 1SA, United Kingdom, 44 28 7012 3456
| | - Joseph Rafferty
- School of Computing, Ulster University, Cromore Rd, Belfast, BT52 1SA, United Kingdom, 44 28 7012 3456
| | - Raymond Bond
- School of Computing, Ulster University, Cromore Rd, Belfast, BT52 1SA, United Kingdom, 44 28 7012 3456
| | - Maurice Mulvenna
- School of Computing, Ulster University, Cromore Rd, Belfast, BT52 1SA, United Kingdom, 44 28 7012 3456
| | - Assumpta Ryan
- School of Nursing and Pandemic Science, Ulster University, Belfast, United Kingdom
| | | |
Collapse
|
2
|
Nishio H, Cano-Ramirez DL, Muranaka T, de Barros Dantas LL, Honjo MN, Sugisaka J, Kudoh H, Dodd AN. Circadian and environmental signal integration in a natural population of Arabidopsis. Proc Natl Acad Sci U S A 2024; 121:e2402697121. [PMID: 39172785 PMCID: PMC11363283 DOI: 10.1073/pnas.2402697121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Plants sense and respond to environmental cues during 24 h fluctuations in their environment. This requires the integration of internal cues such as circadian timing with environmental cues such as light and temperature to elicit cellular responses through signal transduction. However, the integration and transduction of circadian and environmental signals by plants growing in natural environments remains poorly understood. To gain insights into 24 h dynamics of environmental signaling in nature, we performed a field study of signal transduction from the nucleus to chloroplasts in a natural population of Arabidopsis halleri. Using several modeling approaches to interpret the data, we identified that the circadian clock and temperature are key regulators of this pathway under natural conditions. We identified potential time-delay steps between pathway components, and diel fluctuations in the response of the pathway to temperature cues that are reminiscent of the process of circadian gating. We found that our modeling framework can be extended to other signaling pathways that undergo diel oscillations and respond to environmental cues. This approach of combining studies of gene expression in the field with modeling allowed us to identify the dynamic integration and transduction of environmental cues, in plant cells, under naturally fluctuating diel cycles.
Collapse
Affiliation(s)
- Haruki Nishio
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
- Data Science and AI Innovation Research Promotion Center, Shiga University, Hikone, Shiga522-8522, Japan
| | - Dora L. Cano-Ramirez
- The Sainsbury Laboratory, University of Cambridge, CambridgeCB2 1LR, United Kingdom
- School of Biological Sciences, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - Tomoaki Muranaka
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi464-0814, Japan
| | | | - Mie N. Honjo
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Jiro Sugisaka
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga520-2113, Japan
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, NorwichNR4 7RU, United Kingdom
| |
Collapse
|
3
|
del Olmo M, Schmal C, Mizaikoff C, Grabe S, Gabriel C, Kramer A, Herzel H. Are circadian amplitudes and periods correlated? A new twist in the story. F1000Res 2024; 12:1077. [PMID: 37771612 PMCID: PMC10526121 DOI: 10.12688/f1000research.135533.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 09/30/2023] Open
Abstract
Three parameters are important to characterize a circadian and in general any biological clock: period, phase and amplitude. While circadian periods have been shown to correlate with entrainment phases, and clock amplitude influences the phase response of an oscillator to pulse-like zeitgeber signals, the co-modulations of amplitude and periods, which we term twist, have not been studied in detail. In this paper we define two concepts: parametric twist refers to amplitude-period correlations arising in ensembles of self-sustained, limit cycle clocks in the absence of external inputs, and phase space twist refers to the co-modulation of an individual clock's amplitude and period in response to external zeitgebers. Our findings show that twist influences the interaction of oscillators with the environment, facilitating entrainment, speeding upfastening recovery to pulse-like perturbations or modifying the response of an individual clock to coupling. This theoretical framework might be applied to understand the emerging properties of other oscillating systems.
Collapse
Affiliation(s)
- Marta del Olmo
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Christoph Schmal
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Camillo Mizaikoff
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Saskia Grabe
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Christian Gabriel
- Laboratory of Chronobiology, Institute for Medical Immunology, Charite Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Achim Kramer
- Laboratory of Chronobiology, Institute for Medical Immunology, Charite Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt Universität zu Berlin and Charité Universitätsmedizin Berlin, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
4
|
Wong QYA, Lim JJ, Ng JY, Lim YYE, Sio YY, Chew FT. Sleep and allergic diseases among young Chinese adults from the Singapore/Malaysia Cross-Sectional Genetic Epidemiology Study (SMCGES) cohort. J Physiol Anthropol 2024; 43:6. [PMID: 38291494 PMCID: PMC10826209 DOI: 10.1186/s40101-024-00356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Sleep disruption has been shown to affect immune function and thus influence allergic disease manifestation. The specific effects of sleep on allergic diseases, however, are less well-established; hence, in a unique population of young Chinese adults, we investigated the association between sleep and allergic disease. METHODS Young Chinese adults recruited from Singapore in the Singapore/Malaysia Cross-Sectional Genetic Epidemiology Study (SMCGES) were analyzed. We used the International Study of Asthma and Allergies in Childhood (ISAAC) protocol and a skin prick test to determine atopic dermatitis (AD), allergic rhinitis (AR), and asthma status. Information regarding total sleep time (TST) and sleep quality (SQ) was also obtained. RESULTS Of 1558 participants with a mean age of 25.0 years (SD = 7.6), 61.4% were female, and the mean total sleep time (TST) was 6.8 h (SD = 1.1). The proportions of AD, AR, and asthma were 24.5% (393/1542), 36.4% (987/1551), and 14.7% (227/1547), respectively. 59.8% (235/393) of AD cases suffered from AD-related sleep disturbances, 37.1% (209/564) of AR cases suffered from AR-related sleep disturbances, and 25.1% (57/227) of asthma cases suffered from asthma-related sleep disturbances. Only asthma cases showed a significantly lower mean TST than those without asthma (p = 0.015). Longer TST was significantly associated with lower odds of AR (OR = 0.905, 95% CI = 0.820-0.999) and asthma (OR = 0.852, 95% CI = 0.746-0.972). Linear regression analyses showed that lower TST was significantly associated with asthma (β = - 0.18, SE = 0.076, p-value = 0.017), and AR when adjusted for AR-related sleep disturbances (β = - 0.157, SE = 0.065, p-value = 0.016). Only sleep disturbances due to AR were significantly associated with a poorer SQ (OR = 1.962, 95% CI = 1.245-3.089). CONCLUSIONS We found that sleep quality, but not sleep duration was significantly poorer among AD cases, although the exact direction of influence could not be determined. In consideration of the literature coupled with our findings, we posit that TST influences allergic rhinitis rather than vice versa. Finally, the association between TST and asthma is likely mediated by asthma-related sleep disturbances, since mean TST was significantly lower among those with nighttime asthma symptoms. Future studies could consider using objective sleep measurements coupled with differential expression analysis to investigate the pathophysiology of sleep and allergic diseases.
Collapse
Affiliation(s)
- Qi Yi Ambrose Wong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Block S2, Level 5, 14 Science Drive 4, Lower Kent Ridge Road, Singapore, 117543, Singapore
| | - Jun Jie Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Block S2, Level 5, 14 Science Drive 4, Lower Kent Ridge Road, Singapore, 117543, Singapore
| | - Jun Yan Ng
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Block S2, Level 5, 14 Science Drive 4, Lower Kent Ridge Road, Singapore, 117543, Singapore
| | - Yi Ying Eliza Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Block S2, Level 5, 14 Science Drive 4, Lower Kent Ridge Road, Singapore, 117543, Singapore
| | - Yang Yie Sio
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Block S2, Level 5, 14 Science Drive 4, Lower Kent Ridge Road, Singapore, 117543, Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Allergy and Molecular Immunology Laboratory, Lee Hiok Kwee Functional Genomics Laboratories, Block S2, Level 5, 14 Science Drive 4, Lower Kent Ridge Road, Singapore, 117543, Singapore.
| |
Collapse
|
5
|
Manella G, Bolshette N, Golik M, Asher G. Input integration by the circadian clock exhibits nonadditivity and fold-change detection. Proc Natl Acad Sci U S A 2022; 119:e2209933119. [PMID: 36279450 PMCID: PMC9636907 DOI: 10.1073/pnas.2209933119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Circadian clocks are synchronized by external timing cues to align with one another and the environment. Various signaling pathways have been shown to independently reset the phase of the clock. However, in the body, circadian clocks are exposed to a multitude of potential timing cues with complex temporal dynamics, raising the question of how clocks integrate information in response to multiple signals. To investigate different modes of signal integration by the circadian clock, we used Circa-SCOPE, a method we recently developed for high-throughput phase resetting analysis. We found that simultaneous exposure to different combinations of known pharmacological resetting agents elicits a diverse range of responses. Often, the response was nonadditive and could not be readily predicted by the response to the individual signals. For instance, we observed that dexamethasone is dominant over other tested inputs. In the case of signals administered sequentially, the background levels of a signal attenuated subsequent resetting by the same signal, but not by signals acting through a different pathway. This led us to examine whether the circadian clock is sensitive to relative rather than absolute levels of the signal. Importantly, our analysis revealed the involvement of a signal-specific fold-change detection mechanism in the clock response. This mechanism likely stems from properties of the signaling pathway that are upstream to the clock. Overall, our findings elucidate modes of input integration by the circadian clock, with potential relevance to clock resetting under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Gal Manella
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Marina Golik
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|