1
|
Burzyńska M, Woźniak J, Urbański P, Kędziora J, Załuski R, Goździk W, Uryga A. Heart Rate Variability and Cerebral Autoregulation in Patients with Traumatic Brain Injury with Paroxysmal Sympathetic Hyperactivity Syndrome. Neurocrit Care 2024:10.1007/s12028-024-02149-1. [PMID: 39470966 DOI: 10.1007/s12028-024-02149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Severe traumatic brain injury (TBI) can lead to transient changes in autonomic nervous system (ANS) functioning and development of paroxysmal sympathetic hyperactivity (PSH) syndrome. Clinical manifestation of ANS disorders may be obscured by therapeutic interventions in TBI. This study aims to analyze ANS metrics and cerebral autoregulation in patients with PSH syndrome to determine their significance in early prognostication. METHODS This single-center retrospective study investigated the relationship between changes in ANS metrics, cerebral autoregulation, and PSH syndrome. Arterial blood pressure and intracranial pressure signals were monitored for 5 days post TBI. ANS metrics included time and frequency domain heart rate variability (HRV) metrics. Cerebral autoregulation was assessed using the pressure reactivity index. RESULTS Sixty-six patients with severe TBI (median age 33 [interquartile range 26-50] years) were analyzed, and PSH was confirmed in nine cases. Impairment of cerebral autoregulation was observed in 67% of patients with PSH and 72% without the syndrome. Patients with PSH had higher HRV in the low-frequency range (LF; 253 ± 178 vs. 176 ± 227 ms2; p = 0.035) and lower heart rates (HRs; 70 ± 7 vs. 78 ± 19 bpm; p = 0.027) compared to those without PSH. A receiver operating characteristic curve analysis indicated that HR (area under the curve (AUC) = 0.73, p = 0.006) and HRV in the LF (AUC = 0.70, p = 0.009) are moderate predictors of PSH. In the multiple logistic regression model for PSH, diffuse axonal trauma (odds ratio (OR) = 10.82, 95% confidence interval (CI) = 1.70-68.98, p = 0.012) and HR (OR = 0.91, 95% CI 0.84-0.98, p = 0.021) were significant factors. CONCLUSIONS Elevated HRV in the LF and decreased HR may serve as early predictors of PSH syndrome development, particularly in patients with diffuse axonal trauma. Further research is needed to investigate the utility of the cerebral autoregulation-ANS relationship in PSH prognostication.
Collapse
Affiliation(s)
- Małgorzata Burzyńska
- Clinical Department of Anesthesiology and Intensive Care, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Jowita Woźniak
- Department of Neurosurgery, Wroclaw University Hospital, Wroclaw, Poland
| | - Piotr Urbański
- Clinical Department of Anesthesiology and Intensive Care, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Jarosław Kędziora
- Clinical Department of Anesthesiology and Intensive Care, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Rafał Załuski
- Clinical Department of Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Waldemar Goździk
- Clinical Department of Anesthesiology and Intensive Care, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
2
|
Rizzo R, Wang JWJL, DePold Hohler A, Holsapple JW, Vaou OE, Ivanov PC. Dynamic networks of cortico-muscular interactions in sleep and neurodegenerative disorders. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1168677. [PMID: 37744179 PMCID: PMC10512188 DOI: 10.3389/fnetp.2023.1168677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023]
Abstract
The brain plays central role in regulating physiological systems, including the skeleto-muscular and locomotor system. Studies of cortico-muscular coordination have primarily focused on associations between movement tasks and dynamics of specific brain waves. However, the brain-muscle functional networks of synchronous coordination among brain waves and muscle activity rhythms that underlie locomotor control remain unknown. Here we address the following fundamental questions: what are the structure and dynamics of cortico-muscular networks; whether specific brain waves are main network mediators in locomotor control; how the hierarchical network organization relates to distinct physiological states under autonomic regulation such as wake, sleep, sleep stages; and how network dynamics are altered with neurodegenerative disorders. We study the interactions between all physiologically relevant brain waves across cortical locations with distinct rhythms in leg and chin muscle activity in healthy and Parkinson's disease (PD) subjects. Utilizing Network Physiology framework and time delay stability approach, we find that 1) each physiological state is characterized by a unique network of cortico-muscular interactions with specific hierarchical organization and profile of links strength; 2) particular brain waves play role as main mediators in cortico-muscular interactions during each state; 3) PD leads to muscle-specific breakdown of cortico-muscular networks, altering the sleep-stage stratification pattern in network connectivity and links strength. In healthy subjects cortico-muscular networks exhibit a pronounced stratification with stronger links during wake and light sleep, and weaker links during REM and deep sleep. In contrast, network interactions reorganize in PD with decline in connectivity and links strength during wake and non-REM sleep, and increase during REM, leading to markedly different stratification with gradual decline in network links strength from wake to REM, light and deep sleep. Further, we find that wake and sleep stages are characterized by specific links strength profiles, which are altered with PD, indicating disruption in the synchronous activity and network communication among brain waves and muscle rhythms. Our findings demonstrate the presence of previously unrecognized functional networks and basic principles of brain control of locomotion, with potential clinical implications for novel network-based biomarkers for early detection of Parkinson's and neurodegenerative disorders, movement, and sleep disorders.
Collapse
Affiliation(s)
- Rossella Rizzo
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Jilin W. J. L. Wang
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
| | - Anna DePold Hohler
- Department of Neurology, Steward St. Elizabeth’s Medical Center, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - James W. Holsapple
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA, United States
| | - Okeanis E. Vaou
- Department of Neurology, Steward St. Elizabeth’s Medical Center, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Plamen Ch. Ivanov
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
- Harvard Medical School and Division of Sleep Medicine, Brigham and Women Hospital, Boston, MA, United States
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
3
|
Froese L, Hammarlund E, Åkerlund CAI, Tjerkaski J, Hong E, Lindblad C, Nelson DW, Thelin EP, Zeiler FA. The impact of sedative and vasopressor agents on cerebrovascular reactivity in severe traumatic brain injury. Intensive Care Med Exp 2023; 11:54. [PMID: 37541993 PMCID: PMC10403459 DOI: 10.1186/s40635-023-00524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/17/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The aim of this study is to evaluate the impact of commonly administered sedatives (Propofol, Alfentanil, Fentanyl, and Midazolam) and vasopressor (Dobutamine, Ephedrine, Noradrenaline and Vasopressin) agents on cerebrovascular reactivity in moderate/severe TBI patients. Cerebrovascular reactivity, as a surrogate for cerebral autoregulation was assessed using the long pressure reactivity index (LPRx). We evaluated the data in two phases, first we assessed the minute-by-minute data relationships between different dosing amounts of continuous infusion agents and physiological variables using boxplots, multiple linear regression and ANOVA. Next, we assessed the relationship between continuous/bolus infusion agents and physiological variables, assessing pre-/post- dose of medication change in physiology using a Wilcoxon signed-ranked test. Finally, we evaluated sub-groups of data for each individual dose change per medication, focusing on key physiological thresholds and demographics. RESULTS Of the 475 patients with an average stay of 10 days resulting in over 3000 days of recorded information 367 (77.3%) were male with a median Glasgow coma score of 7 (4-9). The results of this retrospective observational study confirmed that the infusion of most administered agents do not impact cerebrovascular reactivity, which is confirmed by the multiple linear regression components having p value > 0.05. Incremental dose changes or bolus doses in these medications in general do not lead to significant changes in cerebrovascular reactivity (confirm by Wilcoxon signed-ranked p value > 0.05 for nearly all assessed relationships). Within the sub-group analysis that separated the data based on LPRx pre-dose, a significance between pre-/post-drug change in LPRx was seen, however this may be more of a result from patient state than drug impact. CONCLUSIONS Overall, this study indicates that commonly administered agents with incremental dosing changes have no clinically significant influence on cerebrovascular reactivity in TBI (nor do they impair cerebrovascular reactivity). Though further investigation in a larger and more diverse TBI patient population is required.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Emma Hammarlund
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia A I Åkerlund
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Tjerkaski
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erik Hong
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - David W Nelson
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Frederick A Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
- Centre On Aging, University of Manitoba, Winnipeg, Canada.
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Froese L, Sainbhi AS, Gomez A, Marquez I, Amenta F, Batson C, Stein KY, Zeiler FA. Discrete Fourier Transform Windowing Techniques for Cerebral Physiological Research in Neural Injury: A Practical Demonstration. Neurotrauma Rep 2023; 4:410-419. [PMID: 37360544 PMCID: PMC10288301 DOI: 10.1089/neur.2022.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
To optimally assess oscillatory phenomena within physiological variables, spectral domain transforms are used. A discrete Fourier transform (DFT) is one of the most common methods used to attain this spectral change. In traumatic brain injury (TBI), a DFT is used to derive more complicated methods of physiological assessment, particularly that of cerebrovascular reactivity (CVR). However, a practical application of a DFT will introduce various errors that need to be considered. This study will evaluate the pulse amplitude DFT derivation of intracranial pressure (AMP) to highlight how slight differences in DFT methodologies can impact calculations. Utilizing a high-frequency prospectively maintained data set of TBI patients with recorded arterial and intracranial blood pressure, various cerebral physiological aspects of interest were assessed using the DFT windowing methods of rectangular, Hanning, and Chebyshev. These included AMP, CVR indices (including the pressure reactivity and pulse amplitude index), and the optimal cerebral perfusion pressure (with all methods of CVR). The results of the different DFT-derived windowing methods were compared using the Wilcoxon signed-ranked test and histogram plots between individual patients and over the whole 100-patient cohort. The results for this analysis demonstrate that, overall and for grand average values, there were limited differences between the different DFT windowing techniques. However, there were individual patient outliers to whom the different methods resulted in noticeably different overall values. From this information, for derived indices utilizing a DFT in the assessment of AMP, there are limited differences within the resulting calculations for larger aggregates of data. However, when the amplitude of spectrally resolved response is important and needs to be robust in smaller moments in time, it is recommended to use a window that has amplitude accuracy (such as Chebyshev or flat-top).
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Izzy Marquez
- Undergraduate Engineering Program, Department of Biosystems Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fiorella Amenta
- Undergraduate Engineering Program, Department of Biosystems Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
5
|
Froese L, Gomez A, Sainbhi AS, Vakitbilir N, Marquez I, Amenta F, Stein KY, Zeiler FA. Temporal relationship between vasopressor and sedative administration and cerebrovascular response in traumatic brain injury: a time-series analysis. Intensive Care Med Exp 2023; 11:30. [PMID: 37246179 DOI: 10.1186/s40635-023-00515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/21/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Although vasopressor and sedative agents are commonly used within the intensive care unit to mediate systemic and cerebral physiology, the full impact such agents have on cerebrovascular reactivity remains unclear. Using a prospectively maintained database of high-resolution critical care and physiology, the time-series relationship between vasopressor/sedative administration, and cerebrovascular reactivity was interrogated. Cerebrovascular reactivity was assessed through intracranial pressure and near infrared spectroscopy measures. Using these derived measures, the relationship between hourly dose of medication and hourly index values could be evaluated. The individual medication dose change and their corresponding physiological response was compared. Given the high number of doses of propofol and norepinephrine, a latent profile analysis was used to identify any underlying demographic or variable relationships. Finally, using time-series methodologies of Granger causality and vector impulse response functions, the relationships between the cerebrovascular reactivity derived variables were compared. RESULTS From this retrospective observational study of 103 TBI patients, the evaluation between the changes in vasopressor or sedative agent dosing and the previously described cerebral physiologies was completed. The assessment of the physiology pre/post infusion agent change resulted in similar overall values (Wilcoxon signed-ranked p value > 0.05). Time series methodologies demonstrated that the basic physiological relationships were identical before and after an infusion agent was changed (Granger causality demonstrated the same directional impact in over 95% of the moments, with response function being graphically identical). CONCLUSIONS This study suggests that overall, there was a limited association between the changes in vasopressor or sedative agent dosing and the previously described cerebral physiologies including that of cerebrovascular reactivity. Thus, current regimens of administered sedative and vasopressor agents appear to have little to no impact on cerebrovascular reactivity in TBI.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Nuray Vakitbilir
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Izabella Marquez
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Fiorella Amenta
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Kevin Y Stein
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Division of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Centre on Aging, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Association between temporal patterns of baroreflex sensitivity after traumatic brain injury and prognosis: a preliminary study. Neurol Sci 2023; 44:1653-1663. [PMID: 36609622 PMCID: PMC10102132 DOI: 10.1007/s10072-022-06579-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) may lead to an increase in intracranial pressure (ICP) as well as impairment of cerebral vascular reactivity and the autonomic nervous system. This study aimed to investigate individual patterns of changes in baroreflex sensitivity (BRS) along with the assessment of pressure reactivity index (PRx) and ICP after TBI. MATERIALS AND METHODS Twenty-nine TBI patients with continuous arterial blood pressure (ABP) and ICP monitoring were included. BRS was calculated using the sequential cross-correlation method. PRx was estimated using slow-wave oscillations of ABP and ICP. Outcome was assessed using the Glasgow Outcome Scale. RESULTS Pooled data analysis of the lower breakpoint during the week that followed TBI revealed that BRS reached a minimum about 2 days after TBI. In patients with good outcome, there was a significant increase in BRS during the 7 days following TBI: rp = 0.21; p = 0.008 and the temporal changes in BRS showed either a "U-shaped" pattern or a gradual increase over time. The BRS value after 1.5 days was found to be a significant predictor of mortality (cut-off BRS = 1.8 ms/mm Hg; AUC = 0.83). In patients with poor outcome, ICP and PRx increased while BRS remained low. CONCLUSIONS We found an association between temporal patterns of BRS and prognosis in the early days following TBI. Further research in a larger cohort of patients is needed to confirm the weight of these preliminary observations for prediction of prognosis in TBI patients.
Collapse
|
7
|
Froese L, Gomez A, Sainbhi AS, Vakitbilir N, Marquez I, Amenta F, Park K, Stein KY, Thelin EP, Zeiler FA. Cerebrovascular Reactivity Is Not Associated With Therapeutic Intensity in Adult Traumatic Brain Injury: A Validation Study. Neurotrauma Rep 2023; 4:307-317. [PMID: 37187506 PMCID: PMC10181802 DOI: 10.1089/neur.2023.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Within traumatic brain injury (TBI) care, there is growing interest in pathophysiological markers as surrogates of disease severity, which may be used to improve and individualize care. Of these, assessment of cerebrovascular reactivity (CVR) has been extensively studied given that it is a consistent, independent factor associated with mortality and functional outcome. However, to date, the literature supports little-to-no impact of current guideline-supported therapeutic interventions on continuously measured CVR. Previous work in this area has suffered from a lack of validation studies, given the rarity of time-matched high-frequency cerebral physiology with serially recorded therapeutic interventions; thus, we undertook a validation study. Utilizing the Winnipeg Acute TBI database, we evaluated the association between daily treatment intensity levels, as measured through the therapeutic intensity level (TIL) scoring system, and continuous multi-modal-derived CVR measures. CVR measures included the intracranial pressure (ICP)-derived pressure reactivity index, pulse amplitude index, and RAC index (a correlation between the pulse amplitude of ICP and cerebral perfusion pressure), as well as the cerebral autoregulation measure of near-infrared spectroscopy-based cerebral oximetry index. These measures were also derived over a key threshold for each day and were compared to the daily total TIL measure. In summary, we could not observe any overall relationship between TIL and these CVR measures. This validates previous findings and represents only the second such analysis to date. This helps to confirm that CVR appears to remain independent of current therapeutic interventions and is a potential unique physiological target for critical care. Further work into the high-frequency relationship between critical care and CVR is required.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Address correspondence to: Logan Froese, BSc (Eng), Biomedical Engineering, Faculty of Engineering, University of Manitoba, 75 Chancellor's Circle, Winnipeg, Manitoba R3T 5V6, Canada;
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nuray Vakitbilir
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Izzy Marquez
- Undergraduate Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fiorella Amenta
- Undergraduate Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kangyun Park
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eric P. Thelin
- Division of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Frederick A. Zeiler
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Zeiler FA, Aries M, Czosnyka M, Smieleweski P. Cerebral Autoregulation Monitoring in Traumatic Brain Injury: An Overview of Recent Advances in Personalized Medicine. J Neurotrauma 2022; 39:1477-1494. [PMID: 35793108 DOI: 10.1089/neu.2022.0217] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Impaired cerebral autoregulation (CA) in moderate/severe traumatic brain injury (TBI) has been identified as a strong associate with poor long-term outcomes, with recent data highlighting its dominance over cerebral physiologic dysfunction seen in the acute phase post injury. With advances in bedside continuous cerebral physiologic signal processing, continuously derived metrics of CA capacity have been described over the past two decades, leading to improvements in cerebral physiologic insult detection and development of novel personalized approaches to TBI care in the intensive care unit (ICU). This narrative review focuses on highlighting the concept of continuous CA monitoring and consequences of impairment in moderate/severe TBI. Further, we provide a comprehensive description and overview of the main personalized cerebral physiologic targets, based on CA monitoring, that are emerging as strong associates with patient outcomes. CA-based personalized targets, such as optimal cerebral perfusion pressure (CPPopt), lower/upper limit of regulation (LLR/ULR), and individualized intra-cranial pressure (iICP) are positioned to change the way we care for TBI patients in the ICU, moving away from the "one treatment fits all" paradigm of current guideline-based therapeutic approaches, towards a true personalized medicine approach tailored to the individual patient. Future perspectives regarding research needs in this field are also discussed.
Collapse
Affiliation(s)
- Frederick Adam Zeiler
- Health Sciences Centre, Section of Neurosurgery, GB-1 820 Sherbrook Street, Winnipeg, Manitoba, Canada, R3A1R9;
| | - Marcel Aries
- University of Maastricht Medical Center, Department of Intensive Care, Maastricht, Netherlands;
| | - Marek Czosnyka
- university of cambridge, neurosurgery, Canbridge Biomedical Campus, box 167, cambridge, United Kingdom of Great Britain and Northern Ireland, cb237ar;
| | - Peter Smieleweski
- Cambridge University, Neurosurgery, Cambridge, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|